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Abstract 
 

Today's methods of writing programs that are executed on shared-memory 

multiprocessors systems rely mostly on locking mechanism.  

On one hand, those methods enable programmers to write correct multi-threaded 

programs that access shared resources; on the other hand, lock usage reduces 

performance due to suboptimal use of them. 

In this survey paper we will show several implementations of Transactional Memory 

(TM) that enables execution of multithreaded programs without using a locking 

mechanism, thus improving performance. There are several approaches to handle 

that issue. Some of them improve the performance by eliminating the locks, whereas 

others require programmers to write "transaction oriented programs".        

In TM systems, every processor speculatively executes transactions. If data conflict 

occurs, several processors will undo their changes and restart their transaction 

according to an arbitration mechanism.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

 

Transactional Memory (TM) is a multiprocessor architecture that eliminates the 

current need for locks and semaphores for synchronization, thus eliminating the 

problems that locks and semaphores usage causes like Priority inversion, Convoying 

and Deadlocks [2].  

It is essential that in a survey paper that handles TM some basic terms be reminded: 

• Transaction is a term used in databases that refer to the finite sequence of 

instructions executed together and having the properties of Serializability and 

Atomicity.  

• Serializability means that instructions from two different transactions will never 

be interleaved. 

• Atomicity means that a transaction attempts to make a sequence of changes to the 

shared memory and either commits all the changes, or aborts all of them. 

• All memory references which were read by a transaction are called a read set and 

all memory references which were written by it are called a write set. The union of 

these two is called the data set. 

 

Today's methods of writing programs that are executed on shared-memory 

multiprocessors systems rely mostly on locking mechanism. On one hand, those 

methods enable programmers to write correct multi-threaded programs that access 

shared resources; on the other hand, lock usage reduces performance due to 

suboptimal use of them. There are several approaches to handle that issue. Some of 

them improve the performance by eliminating the locks, whereas others require 

programmers to write "transaction oriented programs".        

 

We will begin with a premature implementation of the first approach, Speculative 

Lock Elision (SLE) [3], a technique to remove dynamically unnecessary locks and 

enable highly concurrent multithreaded execution. 

  

We will then continue with an improvement of the latter, Transactional Lock Removal 

[4], such that removes locks entirely. 

 

Transactional Memory expands regular coherence protocols from treating a single 

block to treating a whole transaction. Transactional memory works in the similar way 

as in databases.  Transactions are speculatively executed in different threads on 

different processors, but they have to commit. Only one transaction can commit in a 

single step, whereas other transactions that read\write the same memory block are 

forced to restart. 

 

Transactional memory Coherence and Consistency (TCC) [5, 6] presents a 

completely different approach. Instead of eliminating existing locks, TCC requires a 

"transaction oriented programming". TCC model tend to take advantage of shared 

memory thus producing an illusion of common memory, but on the other hand it 

wants to get the relaxed latency as message passing does. TCC replaces the 

conventional block treating coherence protocols. TCC uses the concepts provided in 

the earlier work on Transactional Memory [2] and during that article it will be 

compared to that early proposal. 

 



In order to take advantage of the proposed TCC model, two programming structures 

were suggested: one for loop based parallelization and second for fork based 

parallelization [6]. 

 

One serious disadvantage of proposed TCC is the assumption that transactions will be 

relatively small. This assumption is only partially true. While vast majority of 

transactions are small there are a few very large transactions that should be treated as 

well. Solution to that problem can be found in the advanced TM models (chapter 5 in 

this paper) such as: UTM, LTM [8], VTM [9], LogTM [10]. 

 

 

Advanced TM models allow transactions to be suspended, to migrate, or to overflow 

state from local buffers. Such abilities require decoupling transactional state from 

processor state. VTM uses lazy version management and eager conflict detection, 

however ideally, transactional memory should use eager version management and 

eager conflict detection (those terms will be defined on chapter 5).To this end Log-

based Transactional memory (LogTM) [9] is proposed with the advantage of relying 

on existing coherent and consistency protocols, instead of replacing them using a 

complex hardware like UTM does. 

 

     

     

The rest of the paper is organized as follows: 

Chapter 2 describes SLE [3]. TLR [4] is summarized in chapter 3. Chapter 4 

summarizes TCC [6]. Advanced TM models described in chapter 5.  

Finally in Chapter 6, we conclude with a table that compares all the surveyed TM 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 Speculative Lock Elision  

 
2.1 The Problem 

 

In multithreaded programs, synchronization mechanisms, usually locks, are often used 

to guarantee threads have exclusive access to shared data for a critical section of code. 

A thread acquires the lock, executes its critical section, and releases the lock.  

All other threads wait for the lock until the first thread has completed its critical 

section, serializing access and thus making the entire critical section appear to execute 

atomically. 

For a variety of reasons, concurrent accesses to a shared data structure by multiple 

threads within a critical section may in fact not conflict, and such accesses do not 

require serialization, for example:  

 
l.LOCK(mutex) 

2.if (input_grade > University->max_grade) 

3.      University->max_grade = input_grade; 

4.UNLOCK(mutex) 

 

Since a store instruction (line 3) to a shared object is present, the lock is required. 

However, most dynamic executions do not perform the store operation and thus do 

not require the lock.  

 

Additionally, multiple threads may update different fields of a shared object, while 

holding the shared object lock, and often these updates do not conflict, for example, 

Updates of a simple C struct: 
Thread #l 

 
LOCK(example_struct.mutex) 

ID = example_struct.ID; 

if (ID < 0) 

    example_struct.ID = INPUT_ID; 

UNLOCK(example_struct.mutex) 

 

Thread #2 
 

 

 

 

 

 

LOCK(example_struct.mutex) 

GRADE = example_struct.GRADE; 

if (GRADE < 100) 

   example_struct.GRADE = 100; 

UNLOCK(example_struct.mutex) 

In the last two examples, conventional speculative execution in out-of-order 

processors cannot take advantage of the parallelism present because the threads will 

first wait for a free lock and then acquire the lock in a serialized manner. 

 

 

 

 

 

 

 

 

 

 

 

 



 

2.2 Where can we influence? (Or what is the Solution?) 

 

The key insight is that locks do not always have to be acquired for a correct 

execution. 

 

Ideally, programmers would be able to use frequent and conservative synchronization 

to write obviously correct multithreaded programs, and a tool would automatically 

remove all such conservative use. Thus, even though programmers use simple 

schemes to write correct code, synchronization would be performed only when 

necessary for correctness; and performance would not be degraded by the presence of 

dynamically unnecessary synchronization. 

 

In Speculative Lock Elision (SLE) [3], the hardware dynamically identifies 

synchronization operations, predicts them as being unnecessary, and elides them.  

By removing these operations, the program behaves as if synchronization were not 

present in the program. Of course, doing so can break the program in situations where 

synchronization is required for correctness. Such situations are detected using pre-

existing cache coherence mechanisms and without executing synchronization 

operations. In this case, recovery is performed and the lock is explicitly acquired. 

Synchronization is performed only when the hardware determines that serialization is 

required for correctness. 

 

SLE has the following key features: 

1. Enables highly concurrent multithreaded execution: 

Multiple threads can concurrently execute critical sections guarded by the 

same lock. 

2. Simplifies correct multithreaded code development: 

Programmers can use conservative synchronization to write correct 

multithreaded programs without significant performance impact. If the 

synchronization is not required for correctness, the execution will behave as if 

the synchronization were not present. 

3. Can be implemented easily: 

SLE can be implemented entirely in the micro-architecture, without instruction 

set support and without system level modifications (e.g. no coherence protocol 

changes are required) and is transparent to programmers.  

Existing synchronization instructions are identified dynamically. 

Programmers do not have to learn a new programming methodology and can 

continue to use well understood synchronization routines. The technique can 

be incorporated into modern processor designs, independent of the system and 

the cache coherence protocol. 

 

 

 

 

 

 

 

 

 



2.3 Speculative Lock Elision algorithm 

 

Atomicity means all changes performed within a critical section appear to be 

performed instantaneously. By acquiring a lock, a thread can prevent other threads 

from observing any memory updates being performed within the critical section. 

While this conventional approach trivially guarantees atomicity of all updates in the 

critical section, it is only one way to guarantee atomicity. 

Locks can be elided and critical sections concurrently executed if atomicity can be 

guaranteed for all memory operations within the critical sections by other means.  

For guaranteeing atomicity, the following conditions must hold within a critical 

section: 

1. Data read within a speculatively executing critical section is not modified by 

another thread before the speculative critical section completes. 

2. Data written within a speculatively executing critical section is not accessed (read 

or written) by another thread before the speculative critical section completes. 

A processor can provide the appearance of atomicity for memory operations within 

the critical section without acquiring the lock by ensuring that partial updates 

performed by a thread within a critical section are not observed by other threads. The 

entire critical section appears to have executed atomically, and program semantics are 

maintained. 

The key observation is that a lock does not always have to be acquired for a correct 

execution if hardware can provide the appearance of atomicity for all memory 

operations within the critical section.  

If a data conflict occurs, i.e., two threads compete for the same data other than for 

reading, atomicity cannot be guaranteed and the lock needs to be acquired. Data 

conflicts among threads are detected using existing cache protocol implementations. 

Any execution not meeting the above two conditions is not retired architecturally, 

thus guaranteeing correctness. 

 

Algorithmically: 

1. When a lock-acquire operation is seen, the processor predicts that memory 

operations in the critical section will occur atomically and elides the lock 

acquire. 

2. Execute critical section speculatively and buffer results. 

3. If hardware cannot provide atomicity, trigger miss-speculation, recover and 

explicitly acquire lock. 

4. If the lock-release is encountered, then atomicity was not violated (else a miss-

speculation would have been triggered earlier). Elide lock-release operation, 

commit speculative state, and exit speculative critical section. 

 

Eliding the lock acquire leaves the lock in a FREE state, allowing other threads to 

apply the same algorithm and also speculatively enter the critical section. Even 

though the lock was not modified, either at the time of the acquisition or the release, 

critical section semantics are maintained. 

In step 3, the processor can alternatively try to execute the algorithm again a finite 

number of times before explicitly acquiring the lock. Forward progress is always 

guaranteed because after the restart threshold is reached, the lock is explicitly 

acquired. 

The above algorithm requires processors to recognize lock-acquire and release 

operations 



2.4 Speculative Lock Elision, Is it so Perfect? 

 

SLE is a hardware proposal for eliding lock acquires from a dynamic execution 

stream, thus breaking a critical performance barrier by allowing non-conflicting 

critical sections to execute and commit concurrently. SLE showed how lock based 

critical sections can be executed speculatively and committed atomically without 

acquiring locks if no data conflicts were observed among critical sections.  

A data conflict occurs if, of all threads accessing a given memory location 

simultaneously, at least one thread is writing to the location. While SLE provided 

concurrent completion for critical sections accessing disjoint data sets, data conflicts 

result in threads restarting and acquiring the lock serially. Thus, when data conflicts 

occur, SLE suffers from the key problems of locks due to lock acquisitions. 

A Solution to that problem will be given on chapter 3 (Transactional Lock-Free 

Execution of Lock-Based Programs). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Transactional Lock-Free Execution of Lock-Based Programs 

 
3.1 The Problem or Why SLE is not perfect? 

 
We seek to improve multithreaded programming trade-offs by providing architectural 

support for optimistic lock-free execution. 

In a lock-free execution, shared objects are never locked when accessed by various 

threads. While SLE (see chapter 2 in this paper) provided concurrent completion for 

critical sections accessing disjoint data sets, data conflicts result in threads restarting 

and acquiring the lock serially. Thus, when data conflicts occur, SLE suffers from the 

key problems of locks due to lock acquisitions. 

We must then, refine the SLE method. 

 
3.2 The Solution or Where can we do better? 

 

A refinement of SLE must include a lock-free method, such a constraint produces 

another problem, let us discuss it. 

 

An execution of an optimistic lock-free transaction can be made serializable if the 

data speculatively modified by any transaction are not exposed until after the 

transaction commits and no other transaction writes to speculatively read data. A 

serializable execution can be achieved trivially by acquiring exclusive ownership of 

all required resources. If the thread executing the transaction does so for all required 

resources, the thread can operate upon the resources and then commit the updates 

atomically and instantly, thus achieving serializability. 

In cache-coherent shared-memory multiprocessors the above requires:  

1) Acquiring all required cache blocks (that are accessed within the transaction) in an 

appropriate ownership state.  

2) Retaining such ownership until the end of the transaction.  

3) Executing the sequence of instructions forming the transaction.  

4) Speculatively operating upon the cache blocks if necessary. 

5) Making all updates visible atomically to other threads at the end of the transaction.  

However, livelock prevents resources from being retained thus preventing successful 

execution of the lock-free transaction. 

Livelock can occur if processors executing critical sections speculatively and in a 

lock-free manner repeatedly experience conflicts (as with SLE, the lock can always be 

acquired and forward progress is guaranteed but we require a solution that does not 

rely on lock acquisitions), for example:  

Consider two processors, P1 and P2. Assume both P1 and P2 have elided the lock 

(using SLE) and are in optimistic lock-free transaction execution mode. Both 

processors are accessing (and writing) shared memory locations A and B in the 

critical sections. The two processors write the two locations in reverse order of each 

other, P1 writes A first and then B while P2 writes B first and then A. That scenario 

result with a sequence that may occur indefinitely with no processor making forward 

progress because each processor repeatedly restarts the other processor. 

Livelock occurs because neither processor obtains ownership of both cache blocks 

simultaneously. To ensure livelock freedom, among competing processors one 

processor must win the conflict and retain ownership.  

Let us conclude that a new scheme should include a resolution mechanism. 



3.3 Does TLR do the job? 

 

TLR [4] assigns priorities to the lock-free transactions and employs the following key 

idea:  

Transactions with higher priority never wait for transactions with lower priority.  

In the event of a conflict, the lower priority transaction is restarted or forced to wait. 

Consider two transactions T1 and T2 executing speculatively. 

Suppose T2 issues a request that causes a data conflict with a request previously made 

by T1, and T1 receives T2's conflicting request. The conflict is resolved as follows:  

if T2's priority is lesser than T1's priority, then T2 waits for T1 to complete (T1 wins the 

conflict), else T1 is restarted (T2 wins the conflict).  

For starvation freedom the resolution mechanism must guarantee all contenders 

eventually succeed and become winners.  

We use timestamps for conflict resolution, earlier timestamp implies higher priority. 

Thus, the contender with the earlier timestamp wins the conflict. 

 

TLR elides locks using SLE (see chapter 2 in this paper) to construct an optimistic 

transaction but in addition also uses a timestamp-based conflict resolution scheme to 

provide lock-free execution even in the presence of data conflicts.  

A single, globally unique, timestamp is assigned to all memory requests generated for 

data within the optimistic lock-free critical section.  

Existing cache coherence protocols are used to detect data conflicts.  

On a conflict, some threads may restart (employing hardware miss-speculation 

recovery mechanisms) but the same timestamp determined at the beginning of the 

optimistic lock-free critical section is used for subsequent re-executions until the 

critical section is successfully executed.  

A timestamp update occurs only after a successful execution. Doing so guarantees 

each thread will eventually win any conflict by virtue of having the earliest timestamp 

in the system and thus will succeed in executing its optimistic lock-free critical 

section. If the speculative data can be locally buffered, all non-conflicting transactions 

proceed and complete concurrently without serialization or dependence on the lock. 

Transactions experiencing data conflicts are ordered without interfering with non-

conflicting transactions and without lock acquisitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 The Algorithm and a final observation 

 

1. Calculate local timestamp. 

2. Identify transaction start: 

a) Initiate TLR mode (use SLE to elide locks). 

b) Execute transaction speculatively. 

3. During transactional speculative execution. 

a) Locally buffer speculative updates. 

b) Append timestamp to all outgoing requests. 

c) If incoming request conflicts with retainable block and has later 

timestamp, retain ownership and force requestor to wait. 

d) If incoming request conflicts with retainable block and has earlier 

timestamp, service request and restart from step 2b if necessary.  

Give up any retained ownerships. 

e) If insufficient resources, acquire lock. 

i. No buffer space. 

ii. Operation cannot be undone (e.g. I/O). 

4. Identify transaction end: 

a) If all blocks available in local cache in appropriate coherence state, 

atomically commit memory updates from local buffer into cache (write to 

cache using SLE). 

b) Commit transaction register (processor) state. 

c) Service waiters if any. 

d) Update local timestamp. 

 

 

 

 

 
In the TLR algorithm three key invariants must hold:  

a) The timestamp is retained and re-used following a conflict-induced miss-

speculation.  

b) Timestamps are updated in a strictly monotonic order following a successful TLR 

execution. 

c) The earlier timestamp request never loses a resource conflict and thus succeeds in 

obtaining ownership of the resource.  

 

If TLR is applied, these invariants collectively provide two guarantees: 

1. A processor eventually has the earliest timestamp in the system. 

2. A processor with the earliest timestamp eventually has a successful lock-free 

transactional execution. 

 

The two properties above result in the following observation: 

In a finite number of steps, a node will eventually have the earliest timestamp for 

all blocks it accesses and operates upon within its optimistic transaction and is 

thus guaranteed to have a successful starvation-free lock-free execution. 
 

 

 

 



4 Transactional memory Coherence and Consistency (TCC) 

System with multiple processors always engage problem with communication and 

synchronization of processors. Today there are two common methods to treat these 

problems: shared memory and message passing. 

Shared Memory creates an illusion of one single shared memory to all processors. 

Whereas that conception eases the programmers work by avoiding manual data 

distribution, it requires an additional hardware. There are two major ways to keep the 

coherence in the shared memory: snooping on the shared bus and using directory-

based technique over the scalable interconnection network. In cache coherence 

protocols that using snooping the most up-to-date cache line has a special state, like a 

Modified state in MESI protocol for example. Directory based cache coherence 

achieved by tracking the place of the most up-to-date block in a special structure - a 

Directory. Both these methods require a complex hardware. 

Message passing on the other hand didn't require that hardware support. Programmers 

should combine in a single message all the data they wish to transfer to another 

processor. These actions require programmers work much harder than in the Shared 

Memory, however message passing still has two important advantages over Shared 

Memory. Firstly, message passing require a relatively small bus traffic as there is no 

signal creation following each load/store like in the shared memory. Secondly, 

message passing enable synchronization of the processors as the messages are sent 

and received. 

When Shared Memory method used the synchronization achieved by use of locks, 

semaphores and barriers. Unwise use of these tools may cause serious problems like: 

Priority inversion, Convoying and Deadlock. Attempt to eliminate the use of locks 

mechanism by software methods have shown to be very harmful to performance [2]. 

Thus lock free data structures need a hardware support. TCC architecture provides 

such support. 

4.1 TCC Principles 

The TCC tends to take the advantages of both these method and combine them in a 

single coherence and consistency protocol. On the one hand the TCC will provide the 

programmers with the illusion of one shared memory, but on the other hand it will 

provide a way for processors synchronization and lower the bus traffic by tracking a 

whole transaction instead of every load and store. 

 

There are two methods for validating the transaction [1]: 

1. Backward validation: the committed transaction validates itself against active 

transaction and restarts itself if a violation is detected. 

2. Forward validation: every active transaction validates itself against a 

committed one and restarts itself if a violation is detected. 

 

The first approach was used in earlier Transactional Memory proposal [2]. The 

violation was discovered only in the validation stage thus creating an orphan. The 

orphan is a transaction that executes after its data was changed by a committed 

transaction. Of course, orphan cannot commit, but it is able to create an erroneous 

situation like divide by zero, for example. The solution that is proposed here is a 

frequent use of validation instructions in a transaction code.  

 

The other, much better, approach is used in TCC. Processors in a TCC system will 

execute the transaction's instructions speculatively. When the transaction finishes the 



TCC hardware will arbitrate system wide for giving the transaction the right to 

commit its stores. If the transaction commits the processor will combine all the stores 

of the transaction in a single message and broadcast it to the rest of the system. Other 

processors by snooping will detect those writes and if they recognize that they have 

used modified data they will have to roll back and restart the transaction [5]. 

Combining all transaction's read in a single packet is greatly relaxes the bus traffic 

since there is no need to send a message and make an arbitration for every load/store.  

Creation of an orphan is impossible since every active transaction is being forced to 

restart when a committed one has made a change to its data set. 

 

TCC enable us to replace the existing coherence and consistency protocols.  

The consistency and coherence in TCC kept by order of transactions commits. For the 

main memory all memory accesses from transactions that committed earlier are 

happened before all accesses from the transactions that committed later, even if in 

reality those accesses were interleaved in time. Processor which read data that was 

modified by committed transaction is forced to restart the transaction. 

During the transaction all the stores are kept locally so it is possible that the same 

blocks with different values are kept on the same time in different processors caches. 

After the transaction commits and the stores are broadcasted, it is possible for other 

processors to see which blocks are modified. The processors should invalidate 

appropriate blocks if only addresses were broadcasted or modify them if the new data 

was also broadcasted with the addresses. Of course, if was detected that some data 

was used too early there is a need to restart the currently running transaction.   

Detecting that the block that was read in current transaction is modified by another 

committed transaction and rolling back is analogous to RAW situation in a single 

processor that issues out of order instructions. In TCC the commit specifies the "right 

execution order". Therefore if load 'D' executed in processor P1's transaction and 

afterwards processor P2's transaction containing store to the same address as 'D' 

committed then it means that load 'D' was executed before the preceding store 'D' 

was. Thus the processor should roll back and reload the right 'D'. It should discard all 

the instruction that 'D' was involved in them and all instruction that were executed 

after branches that use of 'D' caused. 

Analogously to RAW there can be WAR and RAW dependencies all are treated by 

TCC. WAR avoided by the fact that data read in the 'earlier' transaction didn't know 

about the 'later' transaction's writes, even if the write was chronologically performed 

before that read on other processor local cache. Similarly WAW dependency is 

avoided since the 'later' transaction's write will overwrite the 'earlier' transaction's 

write.   

Now let's take a glance in the most common problems of using locks: Priority 

inversion, Convoying and Deadlock. Priority inversion never occurs in TCC. There 

are no locks that may lock a lock needed by a higher priority process. Moreover the 

arbitration made in TCC can prefer a higher priority transaction over the lower ones in 

giving the commit approvals. Convoying eliminated. The fact that some process was 

de-scheduled cannot make other to wait. On the contrary, there will be less 

competition on the bus. Deadlocks are also avoided in absence of locks. The 

conclusion of these is that the use of TCC already pays itself by elimination of these 

problems that are very common and very difficult to debug. 

 

 

   



4.2 TCC Hardware Support 

 

Every processor in TCC system should have the following information in their local 

cache [5]:  

• Read Bits: these bits indicate the cache line was speculatively read. When 

another processor's transaction committed the hardware will compare the 

addresses of cache lines with those bits set on in order to detect data that was 

read too early.  If committed transaction modified data that has the same address 

as data in the cache line with that bit on has, the read will be discarded and the 

transaction will be restarted. 

• Modified Bits: these bits indicate the cache line was speculatively written. When 

another processor's transaction committed the hardware will compare the 

addresses of cache lines with those bits set on. If committed transaction 

modified data that has the same address as data in the cache line with that bit on, 

all writes will be discarded and the transaction will be restarted. 

• Renamed Bits: these bits indicate that the word or byte was read from the local 

generated data thus there is no need to set the Read Bits on that cache line. 

These bits are optionally and their purpose is to improve the performance by 

reducing the number of false transactions restarts. 

In order to avoid false violation caused by writes to different places in the same cache 

line it can be useful to use multiple Read/Modified Bits per cache line.  

 

During the transaction the lines with Read/Modified Bits should not be removed from 

the local cache. If capacity problems arise then the lines should be stored in the victim 

buffer. If that solution is not good enough, the processor must be stalled and request 

to commit the transaction should be made. If atomicity of the transaction requires that 

the remaining part of the transaction should be executed without being interleaved 

with another transaction, the bus has to be stalled till that transaction fully commits. 

That means that there may be a situation where the bus is not utilized at all, but there 

are many transactions which want to commit, thus stalling their processors. Of course, 

it is very bad situation and they should happen rarely when the transactions are very 

big. Another solution to that problem seen in Unbounded Transactional Memory 

(UTM) [8] see chapter 5.1. 

The TCC hardware should provide a way to save the registers file in order to restore it 

if a violation occurs. That can be implemented in software by executing some code 

before the transaction begins and on a violation. Another option is to implement this 

in hardware by copying the register file to a special register file. As usual the software 

solution is cheaper since no additional hardware is required but the overhead in 

hardware implementation is much lower. 

We need a mechanism to collect all the writes into a single packet. That can be done 

by using a dedicated buffer for speculative writes or by storing the list of all these 

writes.  

Finally there should be a mechanism to store the phases of processors. The phases 

needed by the bus controller in order to arbitrate the commits, thus the arbiter will not 

permit the commitments of transaction when there are processors with elder phases. 

 

In order to exploit the TCC hardware new programming techniques should be use. 

These techniques explained in the next chapter. 

 

 



4.3 Programming with TCC 

 

TCC hides from the programmer most of the difficulties of concurrent programming, 

however in order to achieve better performance results the programmer should be 

aware to some goals: 

1. Minimize Violations: the programmer should try to avoid using multiple 

transactions that compete on the same data, thus causing one another to restart. 

The transactions preferred to be a relatively small, thus abort and restart in the 

case of data violation will cause a relatively small work waste.  

2. Minimize Transaction Overhead: using too small transaction should also be 

avoided. Too many transactions cause a huge overhead created by starting and 

ending the transactions. 

3. Avoid Buffer Overflow: all data changes are stored in a special buffer. Hence 

a long transaction that makes a lot of writes can exceed the hardware limit. 

That situation greatly reduces the performance (see chapters 4.2 and 5.1 for 

more details).   

 

Parallelization of the code for TCC requires very small changes. TCC programming 

techniques enable to make a tradeoff between programming effort and performance. 

The code can be easily and quickly transformed to one that guaranties correctness, 

however in order to increase the performance by the means of the three goals above 

additional changes optionally can be done. The programmers can use the feedback 

from the hardware reports, detect the system bottleneck and make improvements in 

the code.  

 

The programming in TCC can be divided to three steps: 

1. Division into Transactions: the programmer should divide the code into 

transactions that can be executed in parallel on different processors. During 

that process the programmer is not required to assure that there are no data 

violations between concurrent transactions, since the TCC hardware will 

detect any data violation and assure the correctness. 

2.  Order Specification: If transactions will be committed in the same order 

as the instructions in the sequential program, the program will be executed 

correctly. That order is a default commitment order, however if a 

programmer knows that order is not essential he/she can fully or partially 

remove that constrain and thus improving the performance. 

3. Performance Tuning: After the program was run in TCC system, the 

programmer can see a report about the locations of the violations. That 

knowledge can help the programmer to make additional performance 

improving changes. 

 

Two methods are proposed for defining transactions and specifying commitment 

order: Loop-Based and Fork-Based Parallelization. 

 

 

 

 

 

 

 



4.3.1 Loop-Based Parallelization 

 

The principles of Loop-Based Parallelization will be presented through a code 

example. This is a procedure that counts the appearance of each letter in some string: 

 

char str[1024]={0}; 

int letter_counter[26]={0}; 

 

//str gets the string (assume all letters in lower case) 

str = load_string(); 

 

while (str[i] !=0) 

{ 

 if (str[i]≥'a' && str[i]≤'z') 

  letter_counter[str[i]-'a']++;  

 i++; 

} 

 

The compiler will recognize a whole code as a one single transaction and there will be 

no parallelism. However the programmer is able to change the while loop to t_while 

loop, thus converting the loop to a parallel one. Every loop iteration will become an 

independent transaction that can be executed on another processor. The commitment 

order will be the original loop order, thus preserving the correctness.  

 

Of cause, now we will have too many transactions thus reducing the performance. 

The solution will be to combine number of iteration to a larger iteration like in loop 

enrolling. That can be achieved by use of t_while_n( predicate; #), where # is the 

number of iteration that should be enrolled to a single one. Preferably that enrolling 

should be done automatically by a compiler. The value of # should either be decided 

by the compiler or even in the run time according to the input. 

As we can see in the code there is no need to assure that some transaction will commit 

before another does. Therefore we can enable the transaction to be committed out of 

order. For that purpose we can use t_while_unordered and t_while_unordered_n. In 

unordered loops there is additional requirement that the programmer should take care 

of. The loop terminating predicate should be false not only for a specific iteration, but 

it should give false for all iteration after it. In our example the condition (str[i] !=0) is 

good only if we assume that the array was initialized thus all the chars after the first 

'\0' are themselves '\0'. Otherwise we can get a string like "memory\0j" and will count 

the letter 'j' even though it appears after the first '\0', while the original program won't 

count it. 

 

Similarly to t_while loop the f_for loop can be used. Example and explanations of 

t_for use can be found in [6]. 

 

 

 

 

 

 

 



4.3.2 Fork-Based Parallelization and Commit Order Settings 

 

Another TCC software structures enables us to run the transactions on a different 

threads and even specify commit order of several transactions. 

 

The syntax of t_fork function reminds the C function fork. 

void t_fork(void  (*child_function_ptr)(void*), void *input_data,  

int child_sequence_num, int parent_phase_increment, int child_phase_increment); 

 

Where child function is of the form:  

void child_function(void *input_data); 

 

Before t_fork is called, the running (parent) transaction is forced to commit. That 

done because, if the running transaction will be aborted later the child tread will be 

logically canceled and then will be created again on transaction restart. Thus we will 

get into malicious situation, where two or even more identical threads in the system 

doing the same. 

 

Every transaction has two parameters: sequence and phase. The TCC arbitration will 

allow only to the transaction with the lowest phase in a given sequence to commit. 

The sequence of the child is set in child_sequence_num argument. If 

T_SAME_SEQUENCE constant was used, the parent and the child will have the 

same sequence, otherwise the child will have a different sequence specified in 

child_sequence_num.  

The parent transaction phase will be parent_phase_increment over the old parent 

transaction phase. For example, parent_phase_increment == 0 will cause the new 

parent transaction be of the same phase as the old one. 

The child phase will be child_phase_increment over the parent transaction if 

T_SAME_SEQUENCE was used, otherwise it will be child_phase_increment over 

the youngest transaction with the same sequence.  

 

We can explicitly force a transaction to commit by using:  

void t_commit (int phase_increment) ; 

void t_wait_for_sequence (int phase_increment, int wait_for_sequence_num); 

 

 

t_commit function will commit the current transaction and start a new one with the 

phase incremented by phase_increment. 

 

t_wait_for_sequence routine does the same operation, but before it creates a new 

transaction it waits until all transactions with wait_for_sequence_num will commit.  

 

All the structures and routines we have mentioned provide the programmer with the 

tools to write a good parallel running program, but where and how exactly to use them 

is not a simple question. To answer it we can use the TCC feedback reports. Running 

the program and getting a feedback, will help a programmer to locate the bottleneck 

and to improve the performance of the program. 

 

 

 



5 Advanced Transactional Memory Models 

 
One serious disadvantage of proposed TCC is the assumption that transactions will be 

relatively small. This assumption is only partially true. While vast majority of 

transactions are small there are a few very large transactions that should be treated as 

well. Solution to that problem can be found in the advanced TM models. 

 

TM simplifies parallel programming by guaranteeing that transactions appear to 

execute atomically and in isolation. Implementing these properties includes providing 

data version management for the simultaneous storage of both new (visible if the 

transaction commits) and old (retained if the transaction aborts) values. 

Most (hardware) TM systems leave old values “in place” (the target memory address) 

and buffer new values elsewhere until commit. This makes aborts fast, but penalizes 

(the much more frequent) commits. 

 

TM systems must provide transaction atomicity (all or nothing) and isolation (the 

partially-complete state of a transaction is hidden from other transactions). 

Providing these properties requires data version management and conflict detection, 

whose implementations distinguish alternative TM proposals. 

 

Version management handles the simultaneous storage of both new data (to be visible 

if the transaction commits) and old data (retained if the transaction aborts). At most 

one of these values can be stored “in place” (the target memory address), while the 

other value must be stored “on the side” (e.g. in speculative hardware).  

On a store, a TM system can use eager version management and put the new value in 

place, or use lazy version management to (temporarily) leave the old value in place. 

 

Conflict detection signals an overlap between the write set (data written) of one 

transaction and the write set or read set (data read) of other concurrent transactions. 

Conflict detection is called eager (Forward validation) if it detects offending loads or 

stores immediately and lazy (Backward validation) if it defers detection until later 

(e.g. when transactions commit). 

 

We will present these advanced TM models with respect to version management and 

conflict detection. 

 

 
5.1 Unbounded transactional memory 
 
The main goal of the Unbounded Transactional Memory (UTM) [7] is to enable 

execution of transaction of unlimited size and duration.  

UTM adds two new instructions to the ISA: XBEGIN pc and XEND. 

On XBEGIN, UTM saves a snapshot of the register-renaming table and keep it till the 

XEND when the transaction commits. If data conflict is detected and transaction is 

forced to restart, the register file will be restored from the snapshot. UTM ensures that 

these register won't be reused till the transaction's commit. The pc of XBEGIN 

specifies the relative location of the abort handler function that will be called on 

transaction abort. 

 



UTM keep a track of all the transactions in the system in a dedicated data structure a 

transaction log. All transaction logs in the system are combined in a single data 

structure xstate which is kept in the main memory. Every log is built of a commit 

record and a list of log entries. Commit record keeps the transaction's state: Pending, 

Committed and Aborted. Every log entry has the pointer to the block that was read / 

written by the transaction, the old value for backup and the readers list (other 

transactions that have read the block). 

Finally xstate has a RW bit and the log pointer for each memory block. If some block 

was written by some transaction the value of RW bit will be W, otherwise R.  Log 

pointer points out to the newest transaction log for that memory block. Using these 

two can help in detection of data conflicts. 

When a conflict is detected the system uses RW bit, the log pointer and the readers 

list to get all the transactions that have used data from some block. These transactions 

can be restarted and the old value from transaction log will be restored.  

 

UTM has the following system characteristics: 

• UTM uses eager Version management, thus writes the new values to the 

memory and keeps the old ones for backup. 

•  If the space allocated for a given transaction log is not large enough the system 

will abort the transaction allocate a larger space and restart the transaction again. 

In order to free the memory allocated for already committed transactions the 

system will constantly iterate the log entries and clean up the transaction logs as 

well as the log pointers. 

• Like as in TLR, UTM uses timestamps to ensure a progress.  

• Cache will be used to accelerate the process. Since the transaction log is not 

important for committed transactions the log can be stored on the cache. If 

transaction commits without problems it will be deleted from the cache, without 

being written back to the main memory, thus accelerating the process. 

• UTM should enable use of transactions for indefinite time, with possible 

migration between processors and data set bigger than the physical memory like 

it does in the virtual memory. Therefore UTM should use the paging method to 

page xstate parts to the disk. 

• Of course I\O during the transaction will cause an error since transaction cannot 

be restarted. 

• Nested transactions are supported by keeping track of the nesting depth. 

 

5.1.1 LTM 

 

Implementation of UTM is very difficult, thus the Large Transactional Memory 

(LTM) [7] was proposed. LTM uses the same concepts and structures as UTM with 

the following restrictions: 

• Memory size is limited to the physical memory size and not to the virtual 

memory size. 

• The duration of transactions should be less the time slice and transactions 

cannot migrate between processors.  

• Transactions are not linked to data structure, but to a specific cache. 

• LTM uses lazy Version management, thus the memory contains only the 

original values. 

• Conflicts are detected using the cache coherence protocol. 



5.2 Virtual transactional memory 
 

Virtual Transactional Memory (VTM) [8], a combined hardware/software system 

architecture that allows the programmer to obtain the benefits of transactional 

memory without having to provide explicit mechanisms to deal with those rare 

instances in which transactions encounter resource or scheduling limitations. 

The underlying VTM mechanism transparently hides resource exhaustion both in 

space (cache overflows) and time (scheduling and clock interrupts). When a 

transaction overflows its buffers, VTM remaps evicted entries to new locations in 

virtual memory. When a transaction exhausts its scheduling quantum (or is 

interrupted), VTM saves its state in virtual memory so that the transaction can be 

resumed later. 

VTM virtualizes transactional memory in much the same way that virtual memory 

(VM) virtualizes physical memory. Programmers write applications without concern 

for underlying hardware limitations. Even so, the analogy between VTM and VM is 

just an analogy.  

VTM achieves virtualization by decoupling transactional state from the underlying 

hardware on which the transaction is executing and allowing that state to move 

seamlessly (and without involving the programmer) into the transaction’s virtual 

address space. This virtual memory based overflow space allows transactions to 

bypass hardware resource limits when necessary. Since the virtual address space is 

independent of the underlying hardware, a transaction can be swapped out, or migrate 

without losing transactional properties. 

VTM doesn't slow down the common case where hardware resources are sufficient. 

Virtualization provides essential functionality, and has an insignificant effect on 

performance.  

VTM detects inter thread synchronization conflicts, and commits or aborts multiple 

updates to disjoint virtual memory locations in an atomic, non-blocking way.  

To this end, VTM provides two operational modes:  

• A hardware-only fast mode provides transactional execution for common case 

transactions that do not exceed hardware resources and are not interrupted. This 

mode is based on mechanisms used in UTM (see 5.1 in this paper), SLE (see 2 in 

this paper), TLR (see 3 in this paper)-this mode's performance effectively 

determines the performance of the overall scheme.  

• A second mode, implemented by a combination of programmer-transparent 

software structures and hardware machinery, supports transactions that encounter 

buffer overflow, page faults, context switches, or thread migration. 

 
 

 

 

 

 

 

 

 

 

 



 
5.3 Log-based transactional memory 

 
LogTM implements eager version management by creating a per-thread transaction 

log in cacheable virtual memory, which holds the virtual addresses and old values of 

all memory blocks modified during a transaction, like UTM does. LogTM detects in-

cache conflicts using a directory protocol (MOESI) and read/write bits on cache 

blocks. LogTM extends the directory protocol to perform conflict detection even after 

replacing transactional data from the cache. In LogTM, a processor commits a 

transaction by discarding the log (resetting a log pointer) and flash clearing the 

read/write bits. No other work is needed, because new values are already in place and. 

On abort, LogTM must walk the log to restore values. It was found that aborts 

sufficiently rare thus, using a trap handler to perform them in software. For ease of 

implementation, the processor whose coherence request causes a conflict always 

resolves the conflict by waiting (to reduce aborts) or aborting (if deadlock is possible). 

Currently, LogTM does not permit thread movement or paging within transactions, as 

do UTM and VTM. 

 

We would like to point out several key points regarding LogTM: 

• LogTM uses eager version management to store new values “in place,” making 

commits faster than aborts. On commit, no data moves (even when transactions 

overflow the cache). 

• LogTM efficiently allows cache evictions of transactional data by extending a 

MOESI directory protocol to enable: 

� Fast conflict detection on evicted blocks.  

� Fast commit by lazily resetting the directory state. LogTM does not require 

log or hash table walks to evict a cache block, detect a conflict, or commit 

a transaction, but works best if evictions of transactional data are 

uncommon.  

• LogTM handles aborts via a "log walk" by software with little performance 

penalty. 

• LogTM implementations could use other coherence protocols (e.g. snooping), 

extended with appropriate filters to limit false conflicts.  

• LogTM uses hardware to save user-visible register state and restore it on 

transaction abort. This could also be done by the compiler or run-time support. 

• LogTM implementation uses timestamps to prioritize transactions and resolve 

conflicts. This simple, but rigid policy may result in convoys [2](e.g., if a 

transaction gets pre-empted) or priority inversion (e.g., if a logically earlier 

transaction holds a block needed by a higher priority, but logically later 

transaction).  

• Because LogTM stores the old values in the user program’s address space, these 

mechanisms appear possible. 

• LogTM’s log structure also lends itself to a straight-forward extension to nested 

transactions. 

 

 

 

 

 



6 Conclusions 
 

Transactional Memory appears to be a powerful architecture that increases the 

performance and eases the programming on shared-memory multiprocessors systems. 

We saw that there is a huge progress in that area beginning from the early Herlihy 

proposal [2], through various TM models, till the latest proposals of UTM, VTM and 

LogTM. We think that it is desirable to develop a Transactional Memory system and 

believe that it will be the next evolution in the multiprocessors architecture. Finally 

we summarize all TM proposals in a single table (table 6 on the following page).     
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TM System version management Conflict detection 
Demands from the 

Programmer 

Relation to 

Coherence and 

consistency 

protocols 

Data Conflict arbitration Actions due to resources depletion 

Ideal 

Eager (puts new 

values “in place,” 

making commits 

faster than aborts. 

This makes sense 

when commits are 

much more common 

than aborts, which 

we generally find) 

Eager (finds conflicts 

early, reducing wasted 

work by conflicting 

transactions. This 

makes sense, since 

standard coherence 

makes implementing 

eager conflict 

detection efficient  

No Locks are used 

(Ideal from 

programmer's point of 

view). 

 Exist Unlimited resources. 

Early TM [2] 

Lazy Lazy Special instructions are 

used (e.g. validate, 

commit). 

 No Locks are used. 

Uses existent and 

extends them.  

Exist It is required that transactions will not exceed resources 

limits. 

SLE [3] 

Lazy Eager  Transparent. Doesn't Implement, 

Uses existent. 

Doesn’t Exist (Lock acquisition 

required and restarting the 

transaction). 

Use locks. 

TLR [5] 

Lazy Eager  Transparent (≡ The 

programmer uses Locks 

to define critical 

sections, as he usually 

does). 

Doesn't Implement, 

Uses existent. 

Exist Use locks. 

TCC [6 7] 

Lazy Lazy Special software 

structures are used: 

transactional loops and 

forks. 

No Locks are used. 

Replaces the existent. Exist Commits the changes and stalls the bus until 

The transaction ends. 

VTM [9] 
Lazy Eager No Locks are used. Replaces the existent. Exist VTM remaps evicted entries to new locations in virtual 

memory. 

UTM[8] 

Eager Eager Special instructions are 

added to ISA (e.g 

XBEGIN, XEND) 

No Locks are used. 

Replaces the existent. Exist It keeps track of all transactions and use paging when 

Physical memory is full. 

LTM [8] 
Lazy Eager No Locks are used. Uses the existent. Exist It keeps track of all transactions, assuming that it won't 

exceed physical memory space. 

LogTM [10] 
Eager Eager No Locks are used. Uses the existent. Exist It keeps a log of all transactions and use paging when 

Physical memory is full. 

 

Table 6: Comparison of all surveyed TM Models. 

 



References 

 
[1] Jiandong Huang, John A. Stankovic, Krithi Ramamritham and Don Towsley. 

Experimental Evaluation of real-Time Optimistic Concurrency Control Schemes. 

February, 1991 

 

[2] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural 

Support for Lock-Free Data Structures 

 

[3] R. Rajwar and J. Goodman, “Speculative Lock Elision: Enabling Highly 

Concurrent Multithreaded Execution,” Proceedings of the 34th International 

Symposium on Microarchitecture (MICRO-34), December 2001. 

 

[4] Ravi Rajwar and James R. Goodman. Transactional Lock- Free Execution of 

Lock-Based Programs. In Proc. of the Tenth Intl. Conference on Architectural 

Support for Programming Languages and Operating Systems, Oct. 2002. 

 

[5] L. Hammond, V. Wong, et al. Transactional memory coherence and consistency. 

In ISCA 31, pp. 102.113, June 2004.  

 

[6] L. Hammond, V. Wong, et al. Programming with Transactional coherence and 

consistency (TCC). 

 

[7] C. Scott Ananian, Krste Asanovic', Bradley C. Kuszmaul, Charles E. Leiserson 

and Sean Lie. Unbounded Transactional Memory 

  

[8] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional 

Memory. In Proc. of the 32nd Annual Intl. Symp. On Computer Architecture, Jun. 

2005. 

  

[9] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill & David A. 

Wood. LogTM: Log-based Transactional Memory. 

 Appears in the proceedings of the12th Annual International Symposium on High 

Performance Computer Architecture (HPCA-12) Austin, TX February 11-15, 2006 

 

 

 

 

 

 

 

 

 

 


