Natural Language Processing

Tagging
Plan

• What are part-of-speech tags?
• What are tagging models?
• Models for tagging
Model zoo

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Tagging</th>
<th>Parsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generative</td>
<td>HMMs</td>
<td>PCFGs</td>
</tr>
<tr>
<td>Log-linear</td>
<td>Greedy</td>
<td>Transition-based parsing</td>
</tr>
<tr>
<td></td>
<td>Locally normalized</td>
<td>Viterbi</td>
</tr>
<tr>
<td></td>
<td>Globally normalized</td>
<td>forward-backward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CKY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inside-outside</td>
</tr>
</tbody>
</table>

And also deep learning methods!
The DT stuffy JJ room NN is AUX filled VBN with IN students NNS
Cross-language variations

• Some languages don’t have adjectives or adverbs (use verbs instead)
 • “I see well”: “eye me-clear”

• Some language have noun classifiers
 • Mandarin ("three —long and flat— knives")
 • Thai
What is it good for

- Characterizes the behavior of a word in context
- Useful for downstream applications/tasks
 - Parsing
 - what are parse trees good for?
 - Question answering (if the question is “when” then the answer should contain a numeral)
 - Articulation (object/object)
 - Punctuation (Hebrew)
- But with a lot of data can often do without it.
How to determine what it is

• Morphology
 • -ly
 • ה׳ הידיעת
 • Can you add possesives?

• Context
 • Appears after “the”
 • Before a verb
How to determine what it is

• Morphology
 • -ly
 • ה‘ הידיעה
 • Can you add possessives?

• Context
 • Appears after “the”
 • Before a verb

The yinkish dripner blorked quastofically into the nindin with the pidbis.
How to determine what it is

The yinkish dripner blorked quastofically into the nindin with the pidibs.

• yinkish: adjective (or noun?)
• dripner: noun
• blorked: verb
• quastofically: adverb
• nindin: noun
• pidibs: noun
I study nlp because
I like science

I study nlp because
science
Nouns

• In English:
 • Take 's, ness, ment
 • Occur after “the”
 • Refer to objects and entities in the real world
 • But also “smoking is forbidden”
• Types:
 • Proper nouns: Israel, Tel-Aviv University
 • Common nouns
 • Count nouns: classroom
 • Mass nouns: sand
Verbs

- Usually describe actions, states and processes
 - eat, talk
- Can have rich morphology (tense, aspect, …)
Adjectives and adverbs

• Adjectives:
 • Describe a noun, a property of some entity or object (color, texture, state, …)

• Adverbs:
 • Describe an action (direction, degree, manner, time, location)
Prepositions vs. particles

• Prepositions
 • on the table

• Particles:
 • interested in music
<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>coordin. conjunction</td>
<td>and, but, or</td>
<td>SYM</td>
<td>symbol</td>
<td>+, %, &</td>
</tr>
<tr>
<td>CD</td>
<td>cardinal number</td>
<td>one, two</td>
<td>TO</td>
<td>“to”</td>
<td>to</td>
</tr>
<tr>
<td>DT</td>
<td>determiner</td>
<td>a, the</td>
<td>UH</td>
<td>interjection</td>
<td>ah, oops</td>
</tr>
<tr>
<td>EX</td>
<td>existential ‘there’</td>
<td>there</td>
<td>VB</td>
<td>verb base form</td>
<td>eat</td>
</tr>
<tr>
<td>FW</td>
<td>foreign word</td>
<td>mea culpa</td>
<td>VBG</td>
<td>verb gerund</td>
<td>eating</td>
</tr>
<tr>
<td>IN</td>
<td>preposition/sub-conj</td>
<td>of, in, by</td>
<td>VBD</td>
<td>verb past tense</td>
<td>ate</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
<td>yellow</td>
<td>VBN</td>
<td>verb past participle</td>
<td>eaten</td>
</tr>
<tr>
<td>JJR</td>
<td>adj., comparative</td>
<td>bigger</td>
<td>VBP</td>
<td>verb non-3sg pres</td>
<td>eat</td>
</tr>
<tr>
<td>JJS</td>
<td>adj., superlative</td>
<td>wildest</td>
<td>VBZ</td>
<td>verb 3sg pres</td>
<td>eats</td>
</tr>
<tr>
<td>LS</td>
<td>list item marker</td>
<td>1, 2, One</td>
<td>WDT</td>
<td>wh-determiner</td>
<td>which, that</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
<td>can, should</td>
<td>WP</td>
<td>wh-pronoun</td>
<td>what, who</td>
</tr>
<tr>
<td>NN</td>
<td>noun, sing. or mass</td>
<td>llama</td>
<td>WP$</td>
<td>possessive wh-</td>
<td>whose</td>
</tr>
<tr>
<td>NNS</td>
<td>noun, plural</td>
<td>llamas</td>
<td>WRB</td>
<td>wh-adverb</td>
<td>how, where</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, sing.</td>
<td>IBM</td>
<td>$</td>
<td>dollar sign</td>
<td>$</td>
</tr>
<tr>
<td>NNPS</td>
<td>proper noun, plural</td>
<td>Carolinas</td>
<td>#</td>
<td>pound sign</td>
<td>#</td>
</tr>
<tr>
<td>PDT</td>
<td>predeterminer</td>
<td>all, both</td>
<td>“</td>
<td>left quote</td>
<td>‘ or “</td>
</tr>
<tr>
<td>POS</td>
<td>possessive ending</td>
<td>’s</td>
<td>”</td>
<td>right quote</td>
<td>’ or ”</td>
</tr>
<tr>
<td>PRP</td>
<td>personal pronoun</td>
<td>I, you, he</td>
<td>(</td>
<td>left parenthesis</td>
<td>[, (, {, <</td>
</tr>
<tr>
<td>PRP$</td>
<td>possessive pronoun</td>
<td>your, one’s</td>
<td>)</td>
<td>right parenthesis</td>
<td>],), }, ></td>
</tr>
<tr>
<td>RB</td>
<td>adverb</td>
<td>quickly, never</td>
<td>,</td>
<td>comma</td>
<td>,</td>
</tr>
<tr>
<td>RBR</td>
<td>adverb, comparative</td>
<td>faster</td>
<td>.</td>
<td>sentence-final punc.</td>
<td>. ! ?</td>
</tr>
<tr>
<td>RBS</td>
<td>adverb, superlative</td>
<td>fastest</td>
<td>:</td>
<td>mid-sentence punc.</td>
<td>: ; ... --</td>
</tr>
<tr>
<td>RP</td>
<td>particle</td>
<td>up, off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10.1: Penn Treebank part-of-speech tags (including punctuation).
Universal tag set (>20 languages)

- **ADJ**: adjective
- **ADP**: adposition
- **ADV**: adverb
- **AUX**: auxiliary
- **CCONJ**: coordinating conjunction
- **DET**: determiner
- **INTJ**: interjection
- **NOUN**: noun
- **NUM**: numeral
- **PART**: particle
- **PRON**: pronoun
- **PROPN**: proper noun
- **PUNCT**: punctuation
- **SCONJ**: subordinating conjunction
- **SYM**: symbol
- **VERB**: verb
- **X**: other
Part-of-speech tagging

Input:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Output:
Profits\(N\) soared\(V\) at\(P\) Boeing\(N\) Co.\(N\), easily\(Adv\) topping\(V\) forecasts\(N\) on\(P\) Wall\(N\) Street\(N\), as\(P\) their\(POSS\) CEO\(N\) Alan\(N\) Mulally\(N\) announced\(V\) first\(Adj\) quarter\(N\) results\(N\).

N: noun
V: verb
P: preposition
Adv: adverb
Adj: adjective
...

- Why is this hard?
Information sources

• Local:
 • *can* is usually a modal verb (MD) but is sometimes a noun (N)

• Contextual
 • a noun is more likely than a verb after a determiner
 • DT NN is common but DT MD is not

• Conflict:
 • *The can* is in the garage
Distribution of POS tags

- Brown corpus
- “most common tag” baseline gets ~90%
- SOTA: 97%
- one error per 30 words

<table>
<thead>
<tr>
<th>#tags</th>
<th>#word types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35340</td>
</tr>
<tr>
<td>2</td>
<td>3760</td>
</tr>
<tr>
<td>3</td>
<td>264</td>
</tr>
<tr>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
Transformation-based tagger

• Start with most frequent tag per word
• Then apply rules that change it based on context
 • *If VB and DT before change VB to NN*
 • ...
• Learn from data which rules work well
Input:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Output:
Profits soared at [Boeing Co.]org, easily topping forecasts on [Wall Street]loc, as their CEO [Alan Mulally]per announced first quarter results.
NER as tagging

Input:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Output:
Profits/O soared/O at/O Boeing/B-org Co./I-org, /O easily/O topping/O forecasts/O on/O Wall/B-loc Street/I-loc, /O as/O their/O CEO/O Alan/B-per Mulally/I-per announced/O first/O quarter/O results/O.
Chunking

- NER is an example for chunking, which is useful in general information extraction
 - Find companies
 - Diseases
 - Genes
 - ...
Training set

1. Pierre/NNP Vinken/NNP ,/. 61/CD years/NNS old/JJ ,/. will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2. Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/. the/DTD Dutch/NNP publishing/VBG group/NN ./.

3. Rudolph/NNP Agnew/NNP ,/. 55/CD years/NNS old/JJ and/CC former/JJ chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/. was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

...

...

38,219 That/DTD could/MD cost/VB him/PRP the/DTD chance/NN to/TO influence/VB the/DTD outcome/NN and/CC perhaps/RB join/VB the/DTD winning/VBG bidder/NN ./.

Learn a function from sentences to tag sequences
Supervised learning

- Input: sentence-tag sequence pairs
 \[\{x^{(i)}, y^{(i)}\}_{i=1}^m \]

- Output: function \(f \) from sentence \(x \) to tag sequence \(y \)

- Example:
 \[
 x^{(i)} = \text{the dog laughs} \\
 y^{(i)} = \text{DT NN VBZ}
 \]
Structured prediction

- The size of the output space depends on the size of the input
 - Compare to language modeling
 - Not binary nor multi-class

- The size of the output is exponential in the size of the input
 - What is the size of the output space?
Conditional model

• Learn from data a model for $p(y \mid x)$

• Given a sentence x return:

$$\arg \max_{y} p(y \mid x)$$

But how do you define a model $p(y \mid x)$?
Generative model

- Learn a model over $p(x, y)$
 - Express $p(x, y) = p(y)p(x | y)$
 - Generative story: generate tags, and then produce words from tags
 - $p(y)$: prior on tags (generate a sequence of tags)
 - $p(x | y)$: data conditioned on tags (generate words from tags)
 - Use Bayes rule to express $p(y | x)$:
 $$p(y \mid x) = \frac{p(y)p(x \mid y)}{\sum_{y'} p(y')p(x \mid y')}$$

- **Output:** $f(x) = \arg \max_y p(y \mid x) = \arg \max_y \frac{p(y)p(x \mid y)}{\sum_{y'} p(y')p(x \mid y')} = \arg \max_y p(y)p(x \mid y)$
Hidden Markov Models

• Goal: define a tagging model \(p(x, y) = p(y)p(x | y) \)

• \(p(y) \) is a trigram model over tag sequences

 • Model tag transitions

\[
p(y) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}), \quad y_0 = y_{-1} = *, \quad y_{n+1} = \text{STOP}
\]
Hidden Markov Models

- $p(x \mid y)$ models emissions

- Assumption: a word depends only on its tag (is this reasonable?)

$$p(x \mid y) = p(x_1 \mid y) \times p(x_2 \mid x_1, y) \times \ldots \times p(x_n \mid x_1, \ldots, x_{n-1}, y)$$

$$= \prod_{i=1}^{n} p(x_i \mid x_1, \ldots, x_{i-1}, y) \approx \prod_{i=1}^{n} e(x_i \mid y_i)$$
Hidden Markov Models

\[
p(x_1, \ldots, x_n, y_1 \ldots, y_n, \text{STOP}) = \\
q(\text{STOP} \mid y_{n-1}, y_n) \times \prod_{i=1}^{n} q(y_i \mid y_{i-2}, y_{i-1}) \cdot e(x_i \mid y_i)
\]

\[y_0 = y_{-1} = *
\]
Example

\[p(\text{the, dog, laughs, DT, N, V}) = q(\text{DT | *, *} \times q(\text{N | *, DT}) \times q(\text{V | DT, N}) \times q(\text{STOP | N, V}) \times e(\text{the | DT}) \times e(\text{dog | N}) \times e(\text{laughs | V})]

• In practice work in log space
Parameter estimation

• Transition parameters:

 • Get Maximum likelihood (ML) from training data (like language models)

\[
q(y_i \mid y_{i-2}, y_{i-1}) = \frac{c(y_{i-2}, y_{i-1}, y_i)}{c(y_{i-2}, y_{i-1})}
\]

• Smoothing to handle rare tag trigrams and bigrams

\[
q(y_i \mid y_{i-2}, y_{i-1}) = \lambda_1 \cdot \frac{c(y_{i-2}, y_{i-1}, y_i)}{c(y_{i-2}, y_{i-1})} + \lambda_2 \cdot \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} + \lambda_3 \cdot \frac{c(y_i)}{M}
\]

\[
\sum_{i} \lambda_i = 1, \ \lambda_i \geq 0
\]
Parameter estimation

- Emission parameters
 - Again, ML estimates from training data

\[e(x \mid y) = \frac{c(x, y)}{c(y)} \]

- Can we have zero counts in the test?
Rare words problems

*Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan *Mulally* announced first quarter results.*

- We encounter new words frequently in real text
 - Names, rare words, typos, etc. etc.
 - \(p(y \mid x) = 0 \) for all \(y \)
Common solution

- Partition the vocabulary to two sets
 - frequent: occurring more than $K(3\,?\,5\,?)$ times
 - rare: other words
- Cluster rare words to a small number of clusters manually
- Preprocess the training data to replace rare words with their cluster ID.
Example (named entity recognition)

<table>
<thead>
<tr>
<th>Class</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1234</td>
</tr>
<tr>
<td>NumberAndSlash</td>
<td>29/3/2017</td>
</tr>
<tr>
<td>allCaps</td>
<td>NLP</td>
</tr>
<tr>
<td>initCap</td>
<td>Jonathan</td>
</tr>
<tr>
<td>firstWord</td>
<td></td>
</tr>
<tr>
<td>lowercase</td>
<td>table</td>
</tr>
<tr>
<td>other</td>
<td>;</td>
</tr>
</tbody>
</table>
Example (named entity recognition)

Input:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Output:
firstWord/O soared/O at/O initCap/B-org Co./I-org ,/O easily/O lowercase/O forecasts/O on/O initCap/B-loc Street/I-loc ,/O as/O their/O CEO/O Alan/B-per initCap/I-per announced/O first/O quarter/O results/O ./O
Inference/decoding
The problem

• The decoding problem is to compute

 \[\text{argmax}_y p(x, y) = \text{argmax}_y p(y \mid x) \]

• This is necessary in HMMs at test time
Brute force

• Score all possible tag sequences y

• With sequences of length n and a tag set S, this takes exponential time $|S| \times |S| \ldots = |S|^n$
Greedy

• choose y_1 that maximizes $e(x_1 | y_1)q(y_1 | *, *)$

• choose y_2 that maximizes $e(x_2 | y_2)q(y_2 | *, y_1)$

• ...

• choose y_n that maximizes $e(x_n | y_n)q(y_n | y_{n-2}, y_{n-1})$

Complexity: $O(|S| \times n)$ but incorrect!

Exercise: Build an example (with q and e parameters) where the greedy algorithm fails
Viterbi

- Efficient and correct algorithm

- **Intuition**: The HMM model decomposes the probability of the full tag sequence to a product of more local probabilities
Viterbi

• Let n be the length of the sentence, and S be the tag set

• S_k is the tag set for position k, $-1 \leq k \leq n$

\[S_0 = S_{-1} = \{\star\}, \quad S_k = S \]

• Define the probability of a tag prefix:

\[
 r(y_{-1}, y_0, y_1, \ldots, y_k) = \prod_{i=1}^{k} q(y_i \mid y_{i-2}, y_{y-1}) \cdot e(x_i \mid y_i)
\]
Viterbi

• Build a dynamic programming table for the highest tag sequence probability ending in a tag bigram at position k

$$\pi(k, u, v) = \max \left\{ y_1, \ldots, y_k : \begin{array}{c} y_{k-1} = u, y_k = v \\ r(y_{-1}, y_0, y_1, \ldots, y_k) \end{array} \right\}$$

• $\pi(7, P, D)$:

```
V  V  V  V  V  V  V
N  N  N  N  N  N  N
D  D  D  D  D  D  D
P  P  P  P  P  P  P
*  *                               P   D
```

the man saw the dog with the telescope
Viterbi algorithm

• Base:
 • $\pi(0, *, *) = 1$ (all tag sequences begin with those)

• Recursively:

for $k \in \{1 \ldots n\}$, for all $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_k$:

$$
\pi(k, u, v) = \max_{w \in \mathcal{S}_{k-2}} \pi(k-1, w, u) \times q(v \mid w, u) \times e(x_k \mid v)
$$
Correctness: induction on k

Base: $\pi(0, *, *) = 1$

Assume $\pi(t, u, v)$ is correct for all $t < k$ and show it is correct for k

$\pi(k, u, v) = \arg\max_w [\pi(k-1, u, v) q(v | w, u) e(x_k | v)]$

Claim: The highest probability tag sequence of length k that ends with (w,u,v) contains the highest probability tag sequence of length $k-1$ that ends with (w,u).

Proof: Assume the highest probability sequence y^* of length k that ends with (w,u,v) does not contain the highest probability tag sequence of length $k-1$ that ends with (w,u). Then, we can construct a sequence y_{new} that ends with (w,u,v) with higher probability by adding the tag v and then the first term will be higher and the others are unchanged. This contradicts the fact that y^* is the highest probability sequence.

Corollary: $\pi(k, u, v)$ because we go over all possible w's
Example

The man saw the dog with the telescope

\[\pi(7, P, DT) = \max_{w \in \{DT, P, N, V\}} \pi(6, w, P) \times q(DT \mid w, P) \times e(\text{the} \mid DT) \]
Viterbi with back pointers

Input: a sentence x_1, \ldots, x_n, parameters q, e, and tag set S

Base case: $\pi(0, *, *) = 1$

Definition: $S_{-1} = S_0 = \{*\}, S_k = S$ for $k \in \{1 \ldots n\}$

Algorithm:

for $k \in \{1 \ldots n\}, u \in S_{k-1}, v \in S_k$:

$\pi(k, u, v) = \max_{w \in S_{k-2}} \pi(k-1, w, u) \times q(v \mid w, u) \times e(x_k \mid v)$

$bp(k, u, v) = \arg \max_{w \in S_{k-2}} \pi(k-1, w, u) \times q(v \mid w, u) \times e(x_k \mid v)$

$(y_{n-1}, y_n) = \arg \max_{u, v} (\pi(n, u, v) \times q(\text{STOP} \mid u, v))$

for $k = (n - 2) \ldots 1, y_k = bp(k + 2, y_{k+1}, y_{k+2})$

return y_1, \ldots, y_n
Viterbi runtime and memory

• Memory:
 • Dynamic programming table: $O(n|S|^2)$

• Runtime:
 • For every position and tag pair do max over all tags: $O(n|S|^3)$
 • Linear in n as opposed to exponential
 • Correct
Popping up

• Training:
 • estimate parameters q and e from training data

• Test:
 • Apply Viterbi
Summary

• HMMs are simple to train: count stuff
• Reasonable performance for POS tagging
 • 96.46% token accuracy on WSJ (link)
• Unknown words can be troublesome