Natural Language Processing

Tagging part II

Based on slides from Michael Collins
Part-of-speech tagging

Input:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

Output:
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/Adv topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/Adj quarter/N results/N ./.

N: noun
V: verb
P: preposition
Adv: adverb
Adj: adjective
...
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.
Globally-normalized models
Globally-normalized models

• Why do we decompose to a sequence of decisions?

• Can we directly estimate the probability of an entire sequence

\[p_\theta(y \mid x) = \frac{\exp(f(x, y)^\top \theta)}{\sum_{y' \in \mathcal{Y}} \exp(f(x, y')^\top \theta)} \]

\(\mathcal{Y} \): all tag sequences for \(x \)
Global linear models

• Motivations:
 • Optimize directly what you care about
 • Flexibility in feature function
 • Avoid the label bias problem
 • Increase expressivity

• Question:
 • How to compute the denominator?
Label Bias Problem

• We are normalizing at each time step

• So a fixed probability mass must be distributed at each step

• So this favors states that have low entropy output distribution

• We are conditioning on the input not generating it, so once we are “stuck” in a low entropy state we ignore the input
Label Bias Problem

- 0 2 2 2 2 “seems” like the right choice
- But 0 1 1 1 1 has higher probability (0.3 vs. $0.7^4=0.24$)
- This is since once you choose state “1” you are stuck there and will predict “1” regardless of the input
Label Bias Problem

• Consider an MEMM model for names with two tokens, that are either PERSON or LOC.

• States
 • B-person
 • I-person
 • B-loc
 • I-loc
 • other
Label bias problem

corpus:

Harvey Ford
 (person 9 times, location 1 time)
Harvey Park
 (location 9 times, person 1 time)
Myrtle Ford
 (person 9 times, location 1 time)
Myrtle Park
 (location 9 times, person 1 time)

Second word provides good information
Label bias problem

Conditional probabilities:

- $p(\text{b-person} \mid \text{other}, w = \text{Harvey}) = 0.5$
- $p(\text{b-locn} \mid \text{other}, w = \text{Harvey}) = 0.5$
- $p(\text{b-person} \mid \text{other}, w = \text{Myrtle}) = 0.5$
- $p(\text{b-locn} \mid \text{other}, w = \text{Myrtle}) = 0.5$
- $p(\text{e-person} \mid \text{b-person}, w = \text{Ford}) = 1$
- $p(\text{e-person} \mid \text{b-person}, w = \text{Park}) = 1$
- $p(\text{e-locn} \mid \text{b-locn}, w = \text{Ford}) = 1$
- $p(\text{e-locn} \mid \text{b-locn}, w = \text{Park}) = 1$

Information from second word is lost
Global linear models

• Main differences:
 • Normalize once over entire space
 • We don’t look at a history of decisions
 • Define features over **full** structure
 • More flexible!
 • We will see this in parsing
 • But we directly consider the exponential space
Global linear models

• Contain three components

 • A feature function f mapping a pair (x,y) to a feature vector $f(x,y)$

 • A generating function GEN enumerating all candidate outputs

 • A parameter vector θ

\[F(x) = \arg \max_y f(x, y)^\top \theta \]
Tagging: GEN

- **Inputs:** sentences $x = w_1 \ldots w_n$

- **Tag set:** T

- $GEN(X) = T^n$

- In other setups:
 - All parse trees
 - Top-K parse trees produced by weaker model
 - All translations
Tagging: feature function

- A **history** h is a 4-tuple $<t_{i-2}, t_{i-1}, w, i>$
- t_{i-2}, t_{i-1}: previous two tags
- w: input sentence
- i: index of word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere.
- t_{i-2}, t_{i-1}: DT JJ
- w: Hispaniola, …, Hemisphere
- i: 6
Local features

- For every history/tag pair \((h, t)\)
 \[g_s(h, t) \] for \(s = 1 \ldots, d\):

 local features for tagging decision \(t\) given history \(h\):

 \[
 \begin{align*}
 g_{100}(h, t) & \begin{cases} 1 & w_i = \text{‘base’} \text{ and } t = \text{VB} \\
 0 & \text{otherwise} \end{cases} \\
 g_{101}(h, t) & \begin{cases} 1 & w_i \text{ ends with ‘ing’} \text{ and } t = \text{VBG} \\
 0 & \text{otherwise} \end{cases} \\
 g_{102}(h, t) & \begin{cases} 1 & (t_{i-2}, t_{i-1}, t) = (\text{DT, JJ, VB}) \\
 0 & \text{otherwise} \end{cases}
 \end{align*}
 \]
Multiple local features

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

<table>
<thead>
<tr>
<th>History</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Hispaniola… 1 NNP</td>
</tr>
<tr>
<td>*</td>
<td>NNP Hispaniola… 2 RB</td>
</tr>
<tr>
<td>NNP</td>
<td>RB Hispaniola… 3 VB</td>
</tr>
<tr>
<td>RB</td>
<td>VB Hispaniola… 4 DT</td>
</tr>
<tr>
<td>VB</td>
<td>DT Hispaniola… 5 JJ</td>
</tr>
<tr>
<td>DT</td>
<td>JJ Hispaniola… 6 NN</td>
</tr>
</tbody>
</table>
Global feature function

• Global feature function

\[f(x, y) = \sum_i g(h_i, t_i) \]

• Features are now counts, rather than binary

• How many times a word ending in ‘ing’ was tagged as VBG
Global log-linear model

\[p_\theta(y \mid x) = \frac{\exp(f(x, y) \,^\top \! \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(f(x, y') \,^\top \! \theta)} \]

\[= \frac{\exp(\sum_i g(x, i, y_{i-2}, y_{i-1}, y_i) \,^\top \! \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(\sum_i g(x, i, y'_{i-2}, y'_{i-1}, y'_i) \,^\top \! \theta)} \]
Decoding

• As long as the feature function decomposes locally we can still apply Viterbi

• Otherwise we can do greedy/beam decoding
Decoding

- Find the structure that maximizes the dot linear score

$$\arg \max_y p_\theta(y \mid x) = \arg \max_y \frac{\exp(f(x, y)\top \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(f(x, y')\top \theta)}$$

$$= \arg \max_y \exp(f(x, y)\top \theta)$$

$$= \arg \max_y f(x, y)\top \theta$$

$$= \arg \max_y \sum_i g(x, i, y_{i-2}, y_{i-1}, y_i)\top \theta$$
Viterbi still works!

• Dependencies did not change

Definition: \(\mathcal{Y}_i \) is the set of possible tags in position \(i \)

Base: \(\pi(1, \ast, y) = g(x, 1, \ast, \ast, y) \top \theta \)

for all \(i \in \{2 \ldots n\} \), for all \(u \in \mathcal{Y}_{i-1}, v \in \mathcal{Y}_i : \)

\[
\pi(i, u, v) = \max_{t \in \mathcal{Y}_{i-2}} \pi(j - 1, t, u) + g(x, i, t, u, v) \top \theta
\]
Learning

\[L(\theta) = \sum_{m=1}^{M} \log p_\theta(y^m|x^m) \]

Gradient for each training point:

\[\nabla \log p_\theta(y^m|x^m) = f(x^m, y^m) - \sum_{y'} p_\theta(y'|x^m) f(x^m, y') \]

How to compute the second term?
Learning

• Let’s look at bigram features only

\[
\sum_y p_\theta(y \mid x) f(x, y) = \sum_y \sum_i p_\theta(y \mid x) g(x, i, y_{i-1}, y_i)
\]

\[
= \sum_i \sum_{a,b} \sum_{y : y_{i-1} = a, y_i = b} p_\theta(y \mid x) g(x, i, y_{i-1}, y_i)
\]

\[
= \sum_i \sum_{a,b} g(x, i, a, b) \sum_{y : y_{i-1} = a, y_i = b} p_\theta(y \mid x)
\]

\[
= \sum_i \sum_{a,b} g(x, i, a, b) q_i(a, b) p_\theta(y_{i-1} = a, y_i = b \mid x)
\]

• q terms are the probability that the tag sequence has \(a\) and \(b\) in positions \(i-1, i\)
Learning

• If we compute the q terms efficiently then we can compute the gradients and learn

• The q terms are computed with a dynamic programming algorithm called \textit{forward-backward}.

• Also used in unsupervised parameter estimation for HMMs

• Similar to Viterbi
Forward-backward

• Definitions

\[\Psi(y', y, j) = \exp(g(x, j, y', y) \top \theta) \]

\[\Psi(y_1, \ldots, y_m) = \prod_{j=1}^{m} \Psi(y_{j-1}, y_j, j) \]

\[= \prod_{j=1}^{m} \exp(g_j(x, j, y_{j-1}, y_j) \top \theta) \]

\[= \exp(\sum_{j=1}^{m} g_j(x, j, y_{j-1}, y_j) \top \theta) \]

\[p(y_1, \ldots y_m \mid x) = \frac{\Psi(y_1, \ldots, y_m)}{\sum_{z_1, \ldots, z_m} \Psi(z_1, \ldots, z_m)} \]
Forward-backward

- What will be computed?

\[Z = \sum_{y_1, \ldots, y_m} \Psi(y_1, \ldots, y_m) \]

\[\mu(j, a) = \sum_{y_1, \ldots, y_m : y_j = a} \Psi(y_1, \ldots, y_m) \]

\[\mu(j, a, b) = \sum_{y_1, \ldots, y_m : y_j = a, y_{j+1} = b} \Psi(y_1, \ldots, y_m) \]

\[q_j(a, b) = \frac{\mu(j, a, b)}{Z} \]
Forward-backward

- What will be computed?

Sum of the scores of all paths that end at tag y in position j

$$
\alpha(j, y) = \sum_{y_1, \ldots, y_j : y_j = y} \prod_{k=1}^{j} \Psi(k, y_{k-1}, y_k)
$$

Sum of the scores of all paths that start at tag y in position j

$$
\beta(j, y) = \sum_{y_j, \ldots, y_m : y_j = y} \prod_{k=j}^{m-1} \Psi(k, y_k, y_{k+1})
$$
\(\alpha\) terms

- Compute with dynamic programming

\[
\alpha(1, y) = \Psi(\ast, y, 1)
\]

for \(j \in \{2 \ldots m\}, y \in \mathcal{Y}\)

\[
\alpha(j, y) = \sum_{y' \in \mathcal{Y}} \alpha(j - 1, y') \times \Psi(y', y, j)
\]
\(\alpha \) terms

- Compute with dynamic programming

\[
\alpha(1, y) = \Psi(\star, y, 1)
\]

for \(j \in \{2 \ldots m\}, y \in \mathcal{Y} \)

\[
\alpha(j, y) = \sum_{y' \in \mathcal{Y}} \alpha(j - 1, y') \times \Psi(y', y, j)
\]

<table>
<thead>
<tr>
<th>(y_1)</th>
<th>(y_2)</th>
<th>(y_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\alpha(1, y_1))</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\alpha(1, y_1) = \Psi(\star, y_1, 1)
\]

\[
\alpha(1, y_2) = \Psi(\star, y_2, 1)
\]

\[
\alpha(1, y_3) = \Psi(\star, y_3, 1)
\]
\[\alpha \text{ terms} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(\alpha(1, y_1))</td>
<td>(\alpha(2, y_1))</td>
<td>(\alpha(3, y_1))</td>
</tr>
<tr>
<td>(y_2)</td>
<td>(\alpha(1, y_2))</td>
<td>(\alpha(2, y_2))</td>
<td>(\alpha(3, y_2))</td>
</tr>
<tr>
<td>(y_3)</td>
<td>(\alpha(1, y_3))</td>
<td>(\alpha(2, y_3))</td>
<td>(\alpha(3, y_3))</td>
</tr>
</tbody>
</table>

\[\alpha(2, y_1) = \alpha(1, y_1) \Psi(y_1, y_1, 2) + \alpha(1, y_2) \Psi(y_2, y_1, 2) + \alpha(1, y_3) \Psi(y_3, y_1, 2) \]

\[= \Psi(*, y_1, 1) \Psi(y_1, y_1, 2) + \Psi(*, y_2, 1) \Psi(y_2, y_1, 2) + \Psi(*, y_3, 1) \Psi(y_3, y_1, 2) \]

\[\alpha(2, y_2) = \Psi(*, y_1, 1) \Psi(y_1, y_2, 2) + \Psi(*, y_2, 1) \Psi(y_2, y_2, 2) + \Psi(*, y_3, 1) \Psi(y_3, y_2, 2) \]

\[\alpha(2, y_3) = \Psi(*, y_1, 1) \Psi(y_1, y_3, 2) + \Psi(*, y_2, 1) \Psi(y_2, y_3, 2) + \Psi(*, y_3, 1) \Psi(y_3, y_3, 2) \]
α terms

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>$\alpha(1, y_1)$</td>
<td>$\alpha(2, y_1)$</td>
<td>$\alpha(3, y_1)$</td>
</tr>
<tr>
<td>y_2</td>
<td>$\alpha(1, y_2)$</td>
<td>$\alpha(2, y_2)$</td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td>$\alpha(1, y_3)$</td>
<td></td>
<td>$\alpha(3, y_3)$</td>
</tr>
</tbody>
</table>

- The distributive law works

\[
\alpha(3, y_1) = \alpha(2, y_1)\Psi(y_1, y_1, 3) + \alpha(2, y_2)\Psi(y_2, y_1, 3) + \alpha(2, y_3)\Psi(y_3, y_1, 3) \\
= \Psi(*, y_1, 1)\Psi(y_1, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_1, 2)\Psi(y_1, y_1, 3) \\
+ \Psi(*, y_1, 1)\Psi(y_1, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_2, 2)\Psi(y_2, y_1, 3) \\
+ \Psi(*, y_1, 1)\Psi(y_1, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_3, 2)\Psi(y_3, y_1, 3)
\]
\[\beta \text{ terms} \]

\[\beta(m, y) = 1 \]

for \(j \in \{m - 1 \ldots 1\} \), \(y \in \mathcal{Y} \)

\[\beta(j, y) = \sum_{y' \in \mathcal{Y}} \beta(j + 1, y') \times \Psi(y, y', j) \]

• Use distributive property again to get final result

\[Z = \sum_{y \in \mathcal{Y}} \alpha(m, y) \]

\[\mu(j, a) = \alpha(j, a) \cdot \beta(j, a) \]

\[\mu(j, a, b) = \alpha(j, a) \cdot \Psi(a, b, j + 1) \cdot \beta(j + 1, b) \]

\[q_j(a, b) = \frac{\mu(j, a, b)}{Z} \]
Complexity

- If length of sentence is \(m \), then \(m|Y|^2 \)
- We can compute the gradient
- We can apply SGD
- We can learn
- **Limitation**: decomposable features
Structured perceptron

- Similar to CRFs, but needs only Viterbi

- For every training example \((x,y)\)
 - Find best \(y'\) according to model (Viterbi)
 - If different from gold \(y\)
 - Update weights: add features of \(y\) and subtract features of \(y'\)

- Regularization is needed (averaged perceptron)
Global vs. Local models

\[p_L(y_i \mid x, y_1 \ldots y_{i-1}) = \frac{\exp(s(x, y_1 \ldots y_i))}{Z_L()} \]

\[Z_L(x, y_1 \ldots, y_{i-1}) = \sum_t \exp(s(x, y_1 \ldots y_{i-1}, t)) \]

\[p_L(y_1 \ldots, y_n \mid x) = \frac{\exp \sum_{i=1}^n s(x, y_1 \ldots y_i)}{\prod_{i=1}^n Z_L(x, y_1 \ldots, y_{i-1})} \]

\[p_G(y_1 \ldots, y_n \mid x) = \frac{\exp \sum_{i=1}^n s(x, y_1 \ldots y_i)}{Z_G(x)} \]

\[Z_G(x) = \sum_{y_1 \ldots y_n} \exp \sum_{i=1}^n s(x, y_1 \ldots, y_i) \]
Training data:

\[\begin{array}{ll}
A & B & C \\
\text{abc} & \text{ade} & \text{abc}
\end{array}\]

\[g(x, y, i, j, k) = ax \prod (y_k, x_k) \in \{AB, BC, AD, DE\} + ax \prod (x_k, y_k) \in \{aA, bB, cC, dD, eE\}\]

\[P_x(ABC|abc) = \frac{\exp(5a)}{\sum \exp(5a) + \exp(4a) + \ldots} = \text{softmax}(5\alpha, \frac{\alpha}{5\alpha}) \equiv 1\]

\[\lim_{\alpha \to \infty} P_x(ABC|abc) = 1\]

For any definition of \(g(x, y, i, j, k) = g(x_k, y_k, i, j, k)\):

\[P_L(ABC|abc) = P_L(A|a) \times P_L(B|A, a, b) \times P_L(C|A, B, a, b, c) \leq P_L(B|A, a, b)\]

\[P_L(ADE|ade) = P_L(A|a) \times P_L(D|A, a, b) \times P_L(E|A, B, a, b, e) \leq P_L(D|A, a, b)\]

\[P_L(ABC|abc) + P_L(ADE|ade) \leq P_L(B|A, a, b) + P_L(D|A, a, b) \leq 1\]

On the other hand for large enough \(\alpha\):

\[P_x(ABC|abc) + P_x(ADE|abe) > 1\] \(\Box\)
Deep learning models for tagging
Deep learning model

- We have a more powerful learning model
- Can we make things
 - better?
 - simpler?
Simple POS-tagging model

\[x_i : \text{one-hot rep. for word } i \]
\[e_i = W^{\text{emb}} x_i : \text{word embedding} \]
\[h^f_i = \text{LSTM}(h_{i-1}, e_i) \]
\[h^b_i = \text{LSTM}(h_{i+1}, e_i) \]
\[c_i = \sigma(W[h^f_i; h^b_i] + b) \]
\[p(y_i \mid x) = \text{softmax}(W^s c_i + b) \]
\[L(\theta) = -\sum_i \log p(y_i = y^* \mid x) \]

- All tag decisions are independent!! Works OK for POS tagging
 - 96.97 acc. compared to 97.32 with a linear CRF
- Works less well for NER tagging. Why?
Deep learning models for tagging

- Independent tagging
 - No feature decomposition: BiLSTM passes information around
- How to neuralize the models we saw?
 - Greedy tagger
 - Viterbi tagger
 - CRF
 - BiLSTM-CRF
Greedy taggers

- A **history** x is a 4-tuple $<t_1...i-1, w, i>$
 - Predict t_i from history
 - $p(y = t_i | x) \propto \exp(f(x,y) \times \theta) = \text{score}(x,y)$
- Just replace the log-linear function with a non-linear neural network
- Need to define a neural network that reads the history and produces a label
Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN
Viterbi tagger

\[s(x, y) = f(x, y)^\top \theta = \sum_i g(x, i, y_{i-1}, y_i)^\top \theta \]

\[= s(x, 1, y_1, y_2) + s(x, 2, y_2, y_3) + s(x, 3, y_3, y_4) \]

• Replace linear score with non-linear neural network

\[s(x, y) = \sum_i \text{NN}(x, i, y_{i-1}, y_i) \]
Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN
Neural structured prediction

• What has changed?

• **Decoding**: As long as the neural network scores decompose we can still apply Viterbi

• **Learning**:

\[
p_\theta(y \mid x) = \frac{\exp(\sum_i \text{NN}_\theta(x, i, y_{i-1}, y_i))}{\sum_{y'} \exp(\sum_i \text{NN}_\theta(x, i, y'_{i-1}, y'_i))}
\]

\[
L^{(i)}(\theta) = - \log p(y^{(i)} \mid x^{(i)})
\]
Neural CRF

He/N eats/V

\[
\log P(N, V | \text{He eats})
\]

\[
\text{score(He eats|NV)}
\]

\[
\alpha(2, N)
\]

\[
\alpha(1, N)\psi(2, N, N)
\]

\[
\alpha(1, V)\psi(2, V, N)
\]

\[
\alpha(1, N)\psi(2, N, V)
\]

\[
\alpha(1, V)\psi(2, V, V)
\]

\[
\alpha(2, V)
\]

\[
\alpha(2, N)
\]

\[
\alpha(1, N)
\]

\[
\alpha(1, V)
\]

He eats|1*N He eats|1*V He eats|2*NN He eats|2*NV He eats|2*VV He eats|2*VN
Neural structured prediction

- How do we compute the denominator (partition function)?
 - Implement dynamic programming as part of the neural network
 - All dynamic programming operations are differentiable (+ and x)
- In structured perceptron things are slightly simpler
 - Compute the best structure (outside of the network)
 - Define the loss: \(\max(0, \text{score}(x, y) - \max_{y'} \text{score}(x, y'))\)
Bi-LSTM CRF for NER

\[x_i : \text{one-hot rep. for word } i \]

\[e_i = W^{\text{emb}} x_i : \text{word embedding} \]

\[l_i = \text{LSTM}(l_{i-1}, e_i) \]

\[r_i = \text{LSTM}(r_{i+1}, e_i) \]

\[c_i = [l_i; r_i] \]

\[p_i = W^{(\text{proj})} \sigma(Wc_i + b) \]

\[s(x, y) = \sum_{i=1}^{n} p_{i,y_i} + \sum_{i=0}^{n} A_{y_i,y_{i+1}} \]

- \(A \) is a learned parameter matrix (\#tags\(^2\)).

- SOTA or close to that on POS tagging, NER, and other tasks
State-of-the-art

• To outperform state-of-the-art
 • Regularization techniques
 • Character-based information
 • Pre-training with a lot of data
Summary

<table>
<thead>
<tr>
<th>Generative</th>
<th>Tagging</th>
<th>Parsing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HMMs</td>
<td>PCFGs</td>
</tr>
<tr>
<td>Greedy</td>
<td></td>
<td>Transition-based parsing</td>
</tr>
<tr>
<td>History-based</td>
<td>Viterbi</td>
<td>CKY</td>
</tr>
<tr>
<td>Global</td>
<td>forward-backward</td>
<td>Inside-outside</td>
</tr>
</tbody>
</table>