
Advanced Methods in NLP Lecturer: Jonathan Berant

Home Assignment 3: Tagging

Due Date: May 8, 2018

In this home assignment we will implement POS taggers. Please copy the data and sup-
porting code from ~omrikosh/advanced_nlp/assignment3/code. Note that the Penn
Treebank dataset is licensed! It is illegal to make it public in any way!

Your code should run properly on Python 2.7 on linux (it doesn’t have to run on Python 3
and above). It must run on nova.cs.tau.ac.il using /usr/bin/python.

To submit your solution, create a directory at ~omrikosh/advanced_nlp/assignment3/

submissions/<id1>_<id2> (where id1 refers to the ID of the first student) and put all rel-
evant files in this directory. The submission directory should include the code necessary for
running the tests provided out-of-the-box, as well as a written solution, and a text file includ-
ing an e-mail of one of the students. Fill the submitters info also in submitters details.py.
Don’t copy the dataset to your directory! Instead, add a soft link to the data from your
submission directory:
cd <your submission directory>

ln -s ~/advanced_nlp/assignment3/code/data/Penn_Treebank/./

1 Data preprocessing

(a) As we saw in class, a common solution to the rare words problem is to pre-process the
data and replace rare words with a category, or signature (e.g., numbers, dates, capi-
talization, prefixes, suffixes, etc. . . .). Come up with good word categories/sigatures
and implement replace word in data.py. The following paper, where this was
done for named entity recognition, can be helpful: http://people.csail.mit.edu/

mcollins/6864/slides/bikel.pdf. You can test the efficacy of your implementation
by evaluating your “most frequent tag” baseline (next problem).

2 Most frequent tag baseline

(a) The most frequent tag baseline tags each word with its most frequent tag, as seen in
the training set. Implement the most frequent tag baseline in most frequent.py.

(b) Implement the evaluation procedure in most frequent.py that measures the accuracy
of the most frequent tag baseline on some dataset. Evaluate your tagger against the
development set. What is your accuracy on the development set?

1

http://people.csail.mit.edu/mcollins/6864/slides/bikel.pdf
http://people.csail.mit.edu/mcollins/6864/slides/bikel.pdf

3 HMM tagger

(a) MLE estimators: Use the training data to estimate the transition probabilities q
and emission probabilities e. Fill the implementation of the training algorithm in the
function hmm train.py in hmm.py.

(b) Viterbi: Implement the Viterbi algorithm (as described in slide 48 in Tagging presen-
tation) in hmm viterbi function in hmm.py. The algorithm receives a sentence to tag
as input, the counts computed by the training procedure. The algorithm returns the
highest probability sequence of tags according to q and e. Recall that the estimates for
q should be based on a weighted linear interpolation of p(ti|ti−1, ti−2), p(ti|ti−1) and
p(ti). Tune the hyper-parameters on the development set, and document the optimal
λi values in your written solution.

Note: a straight-forward implementation of the Viterbi algorithm can be slow, so you
should add some tag pruning (eliminating some tags for specific words). Training and
evaluation (on dev set) should take up to few minutes. Document your pruning policy
in your written solution.

(c) Implement the evaluation procedure hmm eval in hmm.py that measures the accuracy
of the HMM tagger with Viterbi algorithm on some dataset. What is your accuracy
on the development set?

4 Maximum Entropy Markov Model (MEMM) tagger

In this part you will implement the MEMM tagger (a locally-normalized log-linear model).
The learning part is already given in the skeleton code using scikit-learn, but you can
use any learning package you are comfortable with that implements multi-class logistic
regression.

(a) Feature engineering: Implement features for your model. You should implement
the features from Ratnaparkhi (1996) mentioned in class (nlp loglinear.pdf file
slide 51), but you can add more feature templates if you want.

(b) Greedy inference: Implement a greedy inference algorithm, where you tag a sen-
tence from left to right with your trained model. If you choose to use scikit-learn,
you can use the function logreg.predict(·). Fill your implementation in the func-
tion memm greedy in memm.py.

(c) Viterbi: Implement the Viterbi algorithm for MEMMs. The tag distribution should
be inferred from the trained model. If you chose to use the sklearn solver, you can
use the function logreg.predict proba. Fill your implementation in the function
memm viterbi in memm.py.

Note: prediction in this model is likely to be much slower than in the HMM model.
You should consider optimizing your implementation by caching predictions, avoid-
ing unnecessary feature extraction, etc. Training and evaluation (on dev set) should

2

take up to 6 hours. Document any optimization you have performed in the written
solution.

(d) Implement the evaluation procedure in memm.py, that measures the accuracy of the
MEMM tagger with Viterbi/greedy inference on some dataset. What is your accuracy
on the development set?

(e) Sample errors from your best model and analyze them. What are common failure
cases for your model. Where does it struggle? Summarize the results of your analysis
in the written solution.

3

	Data preprocessing
	Most frequent tag baseline
	HMM tagger
	Maximum Entropy Markov Model (MEMM) tagger

