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Projects

¥ Send me by next week an e-mail with 

¥ Whether you are doing a research or default 
project 

¥ Who are the team members 

¥ If you are doing a research project an up to 1 
page description of the project so I can comment 
on this



Plan

¥ Sequence to sequence models 

¥ Attention 

¥ Pointer networks 

¥ Weak supervision



Sequence to 
sequence



Semantic parsing

¥ We saw methods for translating natural language to 
logical form by constructing trees 

¥ This works both when we have logical forms as well 
as denotations for supervision 

¥ If we have logical forms as supervision, we can use 
an extremely popular neural architecture called 
sequence to sequence



Sequence to sequence
How tall is Lebron James?.

HeightOf.LebronJames

[How, tall, is, Lebron, James, ?] .
[HeightOf, ., LebronJames]

How tall is Lebron James?.
ÀQue tan alto es Lebron James?

What do we gain? What do we lose?



High level
¥ We will build a complex, heavily-parameterized but 

differentiable function that maps a natural language 
statement x to a logical form y (or translation, or summary, 
or answer to a questionÉ) 

¥ We will deÞne a loss (often cross entropy) that tells us how 
good is our prediction w.r.t the ground truth 

¥ We will search for parameters that minimize the loss over 
the training set with SGD. 

¥ We will compute gradients with auto-differentiation 
packages



Applications
¥ Machine translation 

¥ Semantic parsing 

¥ Question answering 

¥ Summarization 

¥ Dialogue 

¥ É



Sequence to sequence

Encoder Decoder

[How, tall, is, Lebron, James, ?]

[HeightOf, ., LebronJames]

Vector



Recurrent neural networks

the dog

 11

laughed

Input: w1, . . . , wt! 1, wt, wt+1 , . . . , wT , wi 2 RV

Model: xt = W (e) áwt , W (e) 2 Rd" V

ht = �(W (hh) áht! 1 + W (hx) áxt), W (hh) 2 RDh" Dh , W (hx) 2 RDh" d

öyt = softmax( W (s) áht) , W (s) 2 RV" Dh



Encoder
An RNN without the output layer

How tall is Lebron James ?

Vector



Decoder (v1.0)

?

An RNN without the input layer

HeightOf (0.7).
WeightOf (0.2).

É

. (0.99).
LebronJames(0.001) 

É



Seq2seq (v1.0)
Encoder:

he
0 = 0 , he

t = RNN e(he
t ! 1, xt )

Decoder:

hd
0 = RNN d(he

|x | ), hd
t = RNN d(hd

t ! 1)

yt = softmax( W (s) hd
t )

Model:

p(y | x) =
!

t

p(yt | y1, . . . , yt ! 1, x) =
!

t

p(yt | hd
t )

Training is Þnding parameters that minimize cross entropy over tokens:
"

i

logp! (y( i ) | x( i ) )



Seq2seq (v1.0)

¥ Training is done with SGD on top of standard auto-
diff packages 

¥ At training time decoding is done as many steps as 
the training example (with a stopping symbol) 

¥ At test time we output the argmax token of every 
time step and stop when we output the stopping 
symbol. 



Seq2seq (v2.0)

?

WeightOf (0.7).
HeightOf (0.2).

É

. (0.99).
LebronJames(0.001) 

É

<s> HeightOf .

LebronJames(0.9) 
É



Seq2seq (v2.0)
Encoder:

he
0 = 0 , he

t = RNN e(he
t�1, xt )

Decoder:

hd
t = RNN d(hd

t�1,he
|x|,yt�1)

yt = softmax( W (s) hd
t )

Model:

p(y | x) =
Y

t

p(yt | y1, . . . , yt�1, x) =
Y

t

p(yt | hd
t )

Training is Þnding parameters that minimize cross entropy over tokens:
X

i

logp✓(y( i ) | x( i ) )



Bidirectional encoder

How tall is Lebron James ?

0

0

Vector



Bidirectional encoder
Encoder:

hf
0 = 0 , hf

t = RNN f (ht ! 1, xt )

hb
|x | = 0 , hb

t = RNN b(ht +1 , xt )

Decoder:

hd
t = RNN d(hd

t ! 1, hf
|x | , hb

0, yt ! 1)

An extremely successful model (state-of-the-art), when .
using more sophisticated cells (LSTMs, GRUs).



Stacked RNNs
¥ For encoder or decoder

How tall is Lebron James ?

0

0 Vector



Stacked RNN

¥ For stacked RNN, we need to have an output to 
each state, usually the hidden state itself is used as 
the input to the next layer 

¥ Empirically stacking RNNs is often better than just 
increasing the dimensionality 

¥ For example, GoogleÕs NMT system uses 8 layers 
at both encoding and decoding time.

Wu et al, 2016



EfÞciency

¥ RNNs are not very efÞcient in terms of 
parallelization 

¥ You can not compute ht before computing ht-1 
(compared to bag of words or convolutional neural 
networks) 

¥ This becomes a problem for tasks where one 
needs to read long documents (summarization).



Beam search
¥ At test time, decoding is greedy - we 

output the symbol that has highest 
probability. Not  guaranteed to  produce 
the highest probability sequence 

¥ Improved substantially with a small beam. 

¥ At decoding step t, we consider K most 
probable sequence preÞxes, and 
compute all possible continuations, score 
them, and keep the top-K 

¥ Burden shift from search to learning 
again

?

HeightOf (0.7).
WeightOf (0.2).

É



Advantages of seq2seq

¥ Simplicity 

¥ Distributed representations of words and phrases 

¥ Better use of context (history) at encoding and 
decoding time 

¥ Neural networks seem to be very good at 
generating text (for MT, summarization, QA, etc.)



Summary
¥ Sequence to sequence models map a sequence of 

symbols to another sequence of symbols - very 
common in NLP! 

¥ LSTMs and GRUs allow this to work for long 
sequences  (~100 steps) 

¥ Results in state-of-the-art performance in many 
cases 

¥ But not always! Attention!



Attention



The problem

Encoder Decoder

[How, tall, is, É]

[HeightOf, ., É

Vector

This is Þxed size!

What if the source is very long? Ò.
how tall is the NBA player that has won the most 
NBA titles before he reached the age of 28?Ó



Attention
Treat source representations as memory

How tall is Lebron James ?

Decide what to read from memory when decoding



Alignment
¥ What are the important words when we decide on 

the next symbol at decoding time? 

¥ Alignments are heavily used in traditional MT

[How, tall, is, Lebron, James, ?]

[HeightOf, ., LebronJames]

¥ We will learn to perform the alignment as we decode



Learning alignment in MT



Decoding 

ht-1 ht

c

yt

yt-1

ht-1 ht

ct

yt

yt-1

Replace a Þxed vector with a time-variable vector

Intuition: before generating a word we softly align to the !
relevant words in the source!



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t: ! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

4

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

24

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

24 3

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

24 3 1

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

24 3 1

.032.087 .237.644

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s)

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t:

24 3 1

.032.087 .237.644

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s) soft 
alignment!

HeightOf



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t: ct =
!

i

! i hi
e



Attention

tall Lebron James ? <s> HeightOf

?

To compute c t: ct =
!

i

! i hi
e



Attention

tall Lebron James ? <s> HeightOf

To compute c t:

41 4 1

.024.024 .476.476

! i, s i = score(ht ! 1
d , hi

e)

! = softmax( s) soft 
alignment!

.

HeightOf .



Attention example



Attention scoring function
¥ Options for scoring function: 

¥ Dot-product 

¥ Bilinear map 

¥ Single layer neural net 

¥ Multiple layer neural net

score(ht ! 1
d , hi

e) = ht ! 1!

d hi
e

score(ht ! 1
d , hi

e) = ht ! 1!

d W hi
e

score(ht ! 1
d , hi

e) = v" tanh(W1ht ! 1
d + W2hi

e)



Semantic parsing

Dong and Lapata, 2016



Machine translation



Coverage
¥ Caption generation

¥ How do we make sure we cover the source? (also relevant for summarization) 

¥ Penalize for source patches/words that are not aligned to any target word

Xu et al., 2015

!

patch

(1 !
!

word

! patch ,word )2



Attention variants

¥ Feed attention vectors as input at decoding time to 
try to learn coverage 

¥ Add some term for preferring alignments that are 
monotonic 

¥ Prefer limited fertility 

¥ Use it for aligning pairs of text like (q,a) or 
paraphrase pairs



Summary

¥ Attention has enabled getting state-of-the-art 
performance for transduction scenarios 

¥ Allows to softly align each token in a sequence of 
text to another sequence



Pointer networks



Problem
¥ Often at test time you need to translate entities you 

have never seen 

¥ If we deÞne the target vocabulary with the training 
set, we will never get it right 

¥ In addition, translation for those entities is often 
simply copying

How tall is Dreymond Green?.
HeightOf.DreymondGreen



Solution 1
¥ Mask entities 

¥ Translate 

¥ Bring back entities 

¥ But if there are many entities 

¥ How do you identify entities?

How tall is <e>?.
HeightOf.<e>



Idea

¥ When we translate a sentence, the probability of a 
word increases once we see it. 

¥ P(Òpokemen") is low 

¥ P(Òpokemon" | Òthe pokemon companyÓ) is high 

¥ LetÕs allow outputting either words from a Þxed 
target vocabulary or any word from the source 
sentence



Regular model
p(yt = w | x, y1, . . . , yt ! 1) ! exp(Uw ht )

ht-1 ht

ct

yt

yt-1

HeightOf [3] .
WeightOf [-1] 

NumAssists [40] 
( [9] 

) [5.8] 
. [3.7] 

and [13]

Vinyals, et al, 2015, Jia and Liang, 2016



Copying model

ht-1 ht

ct

yt

yt-1

HeightOf [3] .
WeightOf [-1] 

NumAssists [40] 
( [9] 

) [5.8] 
. [3.7] 

and [13] 
How [5] 
tall [1] 
is  [-2] 

Dreymond [100] 
Green [100] 

? [0]

p(yt = w | x, y1, . . . , yt ! 1) ! exp(Uw ht )

p(yt = xi | x, y1, . . . , yt ! 1) ! exp(sti )

How tall is Dreymond Green ?

Vinyals, et al, 2015, Jia and Liang, 2016



Copying model

¥ Need to marginalize over the words since there 
could be repetitions 

¥ At training this means that the true distribution is 
uniform over all correct tokens 

¥ At test time we choose the highest probability 
token, but marginalize over the same instances of a 
token



Slight improvement
p(yt = w | x, y1, . . . , yt ! 1) ! exp(Uw ht )

p(yt = xi | x, y1, . . . , yt ! 1) ! exp(sti )

¥ These scores need to be calibrated 
¥ We can just interpolate two distributions after .

normalization
pvocab (yt | x, y1, . . . , yt ! 1) = softmax( Uht )

pcopy (yt | x, y1, . . . , yt ! 1) = softmax( st )

p(yt | x, y1, . . . , yt ! 1) = pgen ápvocab + (1 ! pgen) ápcopy

pgen = ! (w"
1 ht + w"

2 ct + w"
3 yt ! 1)



Illustration

See et al., 2016



Summary
¥ Neural network for semantic parsing are based on sequence to 

sequence models 

¥ These models are useful also for summarization, dialogue, 
question answering, paraphrasing, and other transduction tasks 

¥ Attention added memory to circumvent the constant 
representation problem 

¥ Pointer networks help in handling new words at test time 

¥ Together you can often get models that are comparable to state-
of-the-art without a grammar



Weak supervision



Weak supervision
¥ We have assumed that we have as input pairs of natural 

language and logical form 

¥ In practice those are hard to collect and we usually have 
(language, denotation) pairs



The problem
¥ In sequence to sequence we trained end-to-end with SGD, 

minimizing the cross entropy loss of every token 

¥ Here we donÕt have tokens 

¥ Suggestion: generate the program token by token, 
execute, and minimize cross entropy over denotations  

¥ Problem: The loss is not a differentiable function of the 
input because we donÕt input gold tokens

WeightOf (0.7).
HeightOf (0.2).

É

t t+1

softmax argmax
WeightOf



This looks familiar
Search with!

CKY

Can we do something similar with a seq2seq model?



Markov Decision Process
¥ Sequence of states, actions and rewards 

¥ s0, s1, s2, É, s T from a set S 
¥ a0, a1, a2, É, a T from a set A 

¥ LetÕs assume a deterministic transition function f:SxA->S 
¥ r0, r1, r2, É, r T given by a reward function r(s,a) 

¥ We want a policy ! (a | s)  providing a distribution over actions 
that will maximize future reward 

s0 s1 s2 sTÉa0 a1 a2 aT-1



Seq2seq as MDP

tall Lebron James ? <s> HeightOf

¥ st: ht 

¥ at is in A(st) 
¥ Either all symbols in the target vocabulary 
¥ All valid symbols if we check grammaticality 

¥ rt is zero in all steps except the last. Then, it is 1 if execution 
results in a correct answer and 0 otherwise.

Liang et al, 2017, Guu et al., 2017



Seq2seq as MDP: policy

tall Lebron James ? <s> HeightOf

p(z | x) =
!

t

p(zt | x, z0, . . . , zt ! 1)

=
!

t

p(at | x, a0, . . . , at ! 1)

=
!

t

! (at | st )

! (at | st ) = softmax( W (s) ht )



Seq2seq as MDP: policy

tall Lebron James ? <s> HeightOf

p(z | x) =
!

t

p(zt | x, z0, . . . , zt ! 1)

=
!

t

p(at | x, a0, . . . , at ! 1)

=
!

t

! (at | st )

! (at | st ) = softmax( W (s) ht )

How do we learn?



Option 1: Maximum 
marginal likelihood 

¥ Our data is language-dentation pairs (x,y) 

¥ We obtain y by constructing a logical form z 

¥ We can use maximum marginal likelihood like before 

¥ Interleave search and learning 

¥ Apply search to get candidate logical forms 

¥ Apply learning on these candidate 

¥ Difference from before: 

¥ Search was done with CKY and learning was a globally-normalized model 

¥ Search can be done with beam search and we have a locally-normalized model



Maximum marginal 
likelihood

¥ z is independent of x conditioned on y

p! (y | x) =
!

z

p! (z | x) áp(y | z)

=
!

z

p! (z | x)R(z) = Ep! (z|x ) [R(z)]

L MML (! ) = log
"

(x,y )

p! (y | x) = log
"

(x,y )

Ep! (z|x ) [R(z)]

=
!

(x,y )

log
!

z

p! (z | x) áR(z)



Gradient of MML
¥ Gradient has similar form to what we have seen in 

the past, except that we are not in a log-linear 
model. LetÕs assume a binary reward:

! ! log
!

z

p! (z | x) áR(z) =
!

z

p! (z)R(z)! logp! (z | x)
" !

z p! (z! | x) áR(z!)

=
!

z

p(z | x, R(z) = 1) ! logp! (z | x)

¥ Compute the gradient of the log probability for every 
logical form, and weight the gradient using the reward.



Computing the gradient
¥ We can not enumerate all of the logical forms 

¥ Instead we perform beam search as usual and get 
a beam Z containing K logical forms. 

¥ We imagine that this beam is the entire set of 
possible logical forms

!

z! Z

p(z | x, R(z) = 1) ! logp! (z | x)

¥ For every z we can compute the gradient of log p(z | x) 
since this is now the usual seq2seq setup.



Option 2: policy gradient
¥ We would like to simply maximize our expected 

reward

¥ Weight the gradient by the product of the reward 
and the model probability

Ep! (z|x ) [R(z)] =
!

z

p! (z | x)R(z)

L RL (! ) =
!

(x,y )

!

z

p! (z | x)R(z) =
!

(x,y )

Ep! (z|x ) [R(z)]

rL RL (! ) =
!

(x,y )

!

z

p! (z | x)R(z)r logp! (z | x)

=
!

(x,y )

Ep! (z|x ) [R(z)r logp! (z | x)]



Computing the gradient
¥ Again, we can not sum over all logical forms 

¥ But the gradient for every example is an 
expectation over a distribution we can sample from! 

¥ So we can sample many logical forms, compute the 
gradient and sum them weighted by the product of 
the model probability and reward 

¥ Again, for every sample this is regular seq2seq and 
we can compute an approximate gradient



Some differences

¥ Using MML with beam search is a biased estimator 
and has less exploration - we only observe the 
approximate top-K logical forms 

¥ Using RL could be harder to train. If we have a 
correct logical form z* that has low probability at 
the beginning of training, then the contribution to 
the gradient would be very smaller and it would be 
hard to boostrap.



Summary
¥ Training with a seq2seq model with weak supervision is 

problematic because the loss function is not a differentiable 
function of the input 

¥ We saw both MML and RL approaches for getting around that 

¥ In both we Þnd a set of logical forms, compute the gradient 
for them like in supervised learning, and weight them in some 
way to form a Þnal gradient 

¥ This letÕs us train with SGD 

¥ It is still often hard to train - more next time


