Natural Language Processing

Neural semantic parsing

Slides adapted from Richard Socher, Chris Manning, Ofir Press
סקר שביעות רצון הוראות
Projects

• Send me by next week an e-mail with
 • Whether you are doing a research or default project
 • Who are the team members
 • If you are doing a research project an up to 1 page description of the project so I can comment on this
Plan

- Sequence to sequence models
- Attention
- Pointer networks
- Weak supervision
Sequence to sequence
Semantic parsing

- We saw methods for translating natural language to logical form by constructing trees.
- This works both when we have logical forms as well as denotations for supervision.
- If we have logical forms as supervision, we can use an extremely popular neural architecture called sequence to sequence.
Sequence to sequence

How tall is Lebron James?
HeightOf.LebronJames

[How, tall, is, Lebron, James, ?]
[HeightOf, ., LebronJames]

How tall is Lebron James?
¿Que tan alto es Lebron James?

What do we gain? What do we lose?
High level

• We will build a complex, heavily-parameterized but differentiable function that maps a natural language statement x to a logical form y (or translation, or summary, or answer to a question…)

• We will define a loss (often cross entropy) that tells us how good is our prediction w.r.t the ground truth

• We will search for parameters that minimize the loss over the training set with SGD.

• We will compute gradients with auto-differentiation packages
Applications

- Machine translation
- Semantic parsing
- Question answering
- Summarization
- Dialogue
- ...

Sequence to sequence

[How, tall, is, Lebron, James, ?]

[HeightOf, ., LebronJames]
Recurrent neural networks

Input: $w_1, \ldots, w_{t-1}, w_t, w_{t+1}, \ldots, w_T$, $w_i \in \mathbb{R}^V$

Model: $x_t = W^{(e)} \cdot w_t$, $W^{(e)} \in \mathbb{R}^{d \times V}$

$$h_t = \sigma(W^{(hh)} \cdot h_{t-1} + W^{(hx)} \cdot x_t), W^{(hh)} \in \mathbb{R}^{D_h \times D_h}, W^{(hx)} \in \mathbb{R}^{D_h \times d}$$

$$\hat{y}_t = \text{softmax}(W^{(s)} \cdot h_t), W^{(s)} \in \mathbb{R}^{V \times D_h}$$
Encoder

An RNN without the output layer

How → tall → is → Lebron → James → ? → Vector
Decoder (v1.0)

An RNN without the input layer

HeightOf (0.7) \cdot (0.99)
WeightOf (0.2) LebronJames(0.001)

?
Seq2seq (v1.0)

Encoder:
\[h_0^e = 0, h_t^e = \text{RNN}_e(h_{t-1}^e, x_t) \]

Decoder:
\[h_0^d = \text{RNN}_d(h_e), h_t^d = \text{RNN}_d(h_{t-1}^d) \]
\[y_t = \text{softmax}(W^{(s)}h_t^d) \]

Model:
\[p(y \mid x) = \prod_t p(y_t \mid y_1, \ldots, y_{t-1}, x) = \prod_t p(y_t \mid h_t^d) \]

Training is finding parameters that minimize cross entropy over tokens:
\[\sum_i \log p_\theta(y^{(i)} \mid x^{(i)}) \]
Seq2seq (v1.0)

- Training is done with SGD on top of standard auto-diff packages.
- At training time decoding is done as many steps as the training example (with a stopping symbol).
- At test time we output the argmax token of every time step and stop when we output the stopping symbol.
Seq2seq (v2.0)

WeightOf (0.7)
HeightOf (0.2)
... (0.99)
LebronJames(0.001)
... LebronJames(0.9)
...

<s> HeightOf .
Seq2seq (v2.0)

Encoder:
\[h_0^e = 0, h_t^e = \text{RNN}_e(h_{t-1}^e, x_t) \]

Decoder:
\[h_t^d = \text{RNN}_d(h_{t-1}^d, h_{|x|}^e, y_{t-1}) \]
\[y_t = \text{softmax}(W^{(s)} h_t^d) \]

Model:
\[p(y \mid x) = \prod_t p(y_t \mid y_1, \ldots, y_{t-1}, x) = \prod_t p(y_t \mid h_t^d) \]

Training is finding parameters that minimize cross entropy over tokens:
\[\sum_i \log p_{\theta}(y^{(i)} \mid x^{(i)}) \]
How tall is Lebron James?
Bidirectional encoder

Encoder:

\[h^f_0 = 0, h^f_t = \text{RNN}_f(h_{t-1}, x_t) \]
\[h^b_{|x|} = 0, h^b_t = \text{RNN}_b(h_{t+1}, x_t) \]

Decoder:

\[h^d_t = \text{RNN}_d(h^d_{t-1}, h^f_{|x|}, h^b_0, y_{t-1}) \]

An extremely successful model (state-of-the-art), when using more sophisticated cells (LSTMs, GRUs).
Stacked RNNs

- For encoder or decoder

How tall is Lebron James?
Stacked RNN

• For stacked RNN, we need to have an output to each state, usually the hidden state itself is used as the input to the next layer.

• Empirically stacking RNNs is often better than just increasing the dimensionality.

• For example, Google’s NMT system uses 8 layers at both encoding and decoding time.

Wu et al, 2016
Efficiency

- RNNs are not very efficient in terms of parallelization.
- You cannot compute h_t before computing h_{t-1} (compared to bag of words or convolutional neural networks).
- This becomes a problem for tasks where one needs to read long documents (summarization).
Beam search

• At test time, decoding is greedy - we output the symbol that has highest probability. **Not** guaranteed to produce the highest probability sequence

• Improved substantially with a small beam.

• At decoding step t, we consider K most probable sequence prefixes, and compute all possible continuations, score them, and keep the *top-*K

• Burden shift from search to learning again
Advantages of seq2seq

• Simplicity

• Distributed representations of words and phrases

• Better use of context (history) at encoding and decoding time

• Neural networks seem to be very good at generating text (for MT, summarization, QA, etc.)
• Sequence to sequence models map a sequence of symbols to another sequence of symbols - very common in NLP!

• LSTMs and GRUs allow this to work for long sequences (~100 steps)

• Results in state-of-the-art performance in many cases

• But not always! Attention!
Attention
The problem

What if the source is very long? “
how tall is the NBA player that has won the most NBA titles before he reached the age of 28?”

This is fixed size!

[How, tall, is, …]

[HeightOf, ., …]
Attention

Treat source representations as memory

How tall is Lebron James?

Decide what to read from memory when decoding
Alignment

- What are the important words when we decide on the next symbol at decoding time?
- Alignments are heavily used in traditional MT

[HeightOf, ., LebronJames]

[How, tall, is, Lebron, James, ?]

- We will learn to perform the alignment as we decode
Learning alignment in MT

Replace a fixed vector with a time-variable vector

Intuition: before generating a word we softly align to the relevant words in the source!
Attention

To compute c_t:

$$\forall i, s_i = \text{score}(h_{d-1}^t, h_e^i)$$

$$\alpha = \text{softmax}(s)$$

Diagram:

```
tall  Lebron  James  ?  <s>  HeightOf
```

HeightOf
Attention

To compute c_t:

$$\forall i, s_i = \text{score}(h_d^{t-1}, h_e^i)$$

$$\alpha = \text{softmax}(s)$$
Attention

To compute c_t:

$$\forall i, s_i = \text{score}(h_{d-1}^t, h_e^i)$$

$$\alpha = \text{softmax}(s)$$

Diagram:

```
  tall -> Lebron -> James -> ? -> <s> -> HeightOf
```

```
Attention

To compute $c_t$: 

$$\forall i, s_i = \text{score}(h_{d}^{t-1}, h_{e}^{i})$$

$$\alpha = \text{softmax}(s)$$

Diagram:

```
4 2 3 HeightOf ? <s> HeightOf
```

- tall
- Lebron
- James
- ?
Attention

To compute $c_t$:

$$\forall i, s_i = \text{score}(h_d^{t-1}, h_e^i)$$
$$\alpha = \text{softmax}(s)$$

`<s>` HeightOf
Attention

To compute $c_t$: $\forall i, s_i = \text{score}(h_{d-1}^i, h_e^i)$

$\alpha = \text{softmax}(s)$

4 .644
2 .087
3 .237
1 .032

HeightOf
Attention

To compute $c_t$:

\[ \forall i, s_i = \text{score}(h^{t-1}_d, h^i_e) \]

$\alpha = \text{softmax}(s)$

soft alignment!

\[
\begin{align*}
4 & \quad 2 & \quad 3 & \quad 1 \\
.644 & \quad .087 & \quad .237 & \quad .032
\end{align*}
\]

HeightOf

tall \quad Lebron \quad James \quad ? \quad <s> \quad \text{HeightOf}
Attention

To compute $c_t$:

$$c_t = \sum_i \alpha_i h^i_e$$
Attention

To compute $c_t$:

$$c_t = \sum_i \alpha_i h^i_e$$
Attention

To compute $c_t$: 

$$\forall i, s_i = \text{score}(h_{d-1}^t, h_e^i)$$
$$\alpha = \text{softmax}(s)$$

```
.024 .476 .476 .024
1 4 4 1
```

 attentions

```
tall Lebron James ? <s> HeightOf .
```

soft alignment!
Attention example

(b) what’s first class fare round trip from ci0 to ci1

(c) what is the earliest flight from ci0 to ci1 tomorrow
Attention scoring function

- Options for scoring function:
  - Dot-product
  - Bilinear map
  - Single layer neural net
  - Multiple layer neural net

\[
\begin{align*}
\text{score}(h_d^{t-1}, h_e^i) &= h_d^{t-1\top} h_e^i \\
\text{score}(h_d^{t-1}, h_e^i) &= h_d^{t-1\top} W h_e^i \\
\text{score}(h_d^{t-1}, h_e^i) &= v^\top \tanh(W_1 h_d^{t-1} + W_2 h_e^i)
\end{align*}
\]
Semantic parsing

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCISSOR (Ge and Mooney, 2005)</td>
<td>72.3</td>
</tr>
<tr>
<td>KRISSP (Kate and Mooney, 2006)</td>
<td>71.7</td>
</tr>
<tr>
<td>WASP (Wong and Mooney, 2006)</td>
<td>74.3</td>
</tr>
<tr>
<td>λ-WASP (Wong and Mooney, 2007)</td>
<td>86.6</td>
</tr>
<tr>
<td>LNL/S (Liu et al., 2008)</td>
<td>81.3</td>
</tr>
<tr>
<td>ZCO5 (Zettlemoyer and Collins, 2005)</td>
<td>79.3</td>
</tr>
<tr>
<td>ZCO7 (Zettlemoyer and Collins, 2007)</td>
<td>86.1</td>
</tr>
<tr>
<td>UHL (Kwiatkowski et al., 2010)</td>
<td>87.9</td>
</tr>
<tr>
<td>FUBL (Kwiatkowski et al., 2011)</td>
<td>88.6</td>
</tr>
<tr>
<td>KCAL (Kwiatkowski et al., 2013)</td>
<td>89.0</td>
</tr>
<tr>
<td>DCS+1 (Liang et al., 2013)</td>
<td>87.9</td>
</tr>
<tr>
<td>TISP (Zhao and Huang, 2015)</td>
<td>88.9</td>
</tr>
</tbody>
</table>

SEQ2SEQ: 84.6
- attention 72.9
- argument 68.6

SEQ2TREE: 87.1
- attention 76.8

Table 3: Evaluation results on GEO. 10-fold cross-validation is used for the systems shown in the top half of the table. The standard split of ZCO5 is used for all other systems.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCISSOR (Ge and Mooney, 2005)</td>
<td>72.3</td>
</tr>
<tr>
<td>KRISSP (Kate and Mooney, 2006)</td>
<td>71.7</td>
</tr>
<tr>
<td>WASP (Wong and Mooney, 2006)</td>
<td>74.3</td>
</tr>
<tr>
<td>λ-WASP (Wong and Mooney, 2007)</td>
<td>86.6</td>
</tr>
<tr>
<td>LNL/S (Liu et al., 2008)</td>
<td>81.3</td>
</tr>
<tr>
<td>ZCO5 (Zettlemoyer and Collins, 2005)</td>
<td>79.3</td>
</tr>
<tr>
<td>ZCO7 (Zettlemoyer and Collins, 2007)</td>
<td>86.1</td>
</tr>
<tr>
<td>UHL (Kwiatkowski et al., 2010)</td>
<td>87.9</td>
</tr>
<tr>
<td>FUBL (Kwiatkowski et al., 2011)</td>
<td>88.6</td>
</tr>
<tr>
<td>KCAL (Kwiatkowski et al., 2013)</td>
<td>89.0</td>
</tr>
<tr>
<td>DCS+1 (Liang et al., 2013)</td>
<td>87.9</td>
</tr>
<tr>
<td>TISP (Zhao and Huang, 2015)</td>
<td>88.9</td>
</tr>
</tbody>
</table>

SEQ2SEQ: 84.2
- attention 75.7
- argument 72.3

SEQ2TREE: 84.6
- attention 77.5

Table 4: Evaluation results on ATIS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Channel</th>
<th>tFunc</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieval</td>
<td>28.9</td>
<td>20.2</td>
<td>41.7</td>
</tr>
<tr>
<td>phrasal</td>
<td>19.3</td>
<td>11.3</td>
<td>35.3</td>
</tr>
<tr>
<td>sync</td>
<td>18.1</td>
<td>10.6</td>
<td>35.1</td>
</tr>
<tr>
<td>classifier</td>
<td>48.5</td>
<td>35.2</td>
<td>53.8</td>
</tr>
<tr>
<td>posclass</td>
<td>50.0</td>
<td>36.9</td>
<td>49.3</td>
</tr>
<tr>
<td>SEQ2SEQ</td>
<td>54.3</td>
<td>39.2</td>
<td>50.1</td>
</tr>
<tr>
<td>- attention</td>
<td>54.0</td>
<td>37.9</td>
<td>49.8</td>
</tr>
<tr>
<td>- argument</td>
<td>53.9</td>
<td>38.6</td>
<td>49.7</td>
</tr>
<tr>
<td>SEQ2TREE</td>
<td>55.2</td>
<td>40.1</td>
<td>50.4</td>
</tr>
<tr>
<td>- attention</td>
<td>54.3</td>
<td>38.2</td>
<td>50.0</td>
</tr>
</tbody>
</table>

(a) Omit non-English.

<table>
<thead>
<tr>
<th>Method</th>
<th>Channel</th>
<th>tFunc</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieval</td>
<td>36.8</td>
<td>25.4</td>
<td>49.0</td>
</tr>
<tr>
<td>phrasal</td>
<td>27.8</td>
<td>16.4</td>
<td>39.9</td>
</tr>
<tr>
<td>sync</td>
<td>26.7</td>
<td>15.5</td>
<td>37.6</td>
</tr>
<tr>
<td>classifier</td>
<td>64.8</td>
<td>42.2</td>
<td>56.5</td>
</tr>
<tr>
<td>posclass</td>
<td>67.2</td>
<td>50.4</td>
<td>57.7</td>
</tr>
<tr>
<td>SEQ2SEQ</td>
<td>68.8</td>
<td>50.5</td>
<td>60.3</td>
</tr>
<tr>
<td>- attention</td>
<td>68.7</td>
<td>48.9</td>
<td>59.5</td>
</tr>
<tr>
<td>- argument</td>
<td>68.8</td>
<td>50.4</td>
<td>59.7</td>
</tr>
<tr>
<td>SEQ2TREE</td>
<td>69.6</td>
<td>51.4</td>
<td>60.4</td>
</tr>
<tr>
<td>- attention</td>
<td>68.7</td>
<td>49.5</td>
<td>60.2</td>
</tr>
</tbody>
</table>

(b) Omit non-English & unintelligible.

<table>
<thead>
<tr>
<th>Method</th>
<th>Channel</th>
<th>tFunc</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieval</td>
<td>43.3</td>
<td>32.3</td>
<td>56.2</td>
</tr>
<tr>
<td>phrasal</td>
<td>57.2</td>
<td>23.5</td>
<td>45.5</td>
</tr>
<tr>
<td>sync</td>
<td>36.5</td>
<td>24.4</td>
<td>42.8</td>
</tr>
<tr>
<td>classifier</td>
<td>79.3</td>
<td>66.2</td>
<td>65.0</td>
</tr>
<tr>
<td>posclass</td>
<td>81.4</td>
<td>71.0</td>
<td>66.5</td>
</tr>
<tr>
<td>SEQ2SEQ</td>
<td>87.8</td>
<td>75.2</td>
<td>73.7</td>
</tr>
<tr>
<td>- attention</td>
<td>88.3</td>
<td>75.8</td>
<td>72.9</td>
</tr>
<tr>
<td>- argument</td>
<td>86.8</td>
<td>74.9</td>
<td>70.8</td>
</tr>
<tr>
<td>SEQ2TREE</td>
<td>89.7</td>
<td>78.4</td>
<td>74.2</td>
</tr>
<tr>
<td>- attention</td>
<td>87.6</td>
<td>74.9</td>
<td>73.5</td>
</tr>
</tbody>
</table>

(c) > 3 turkers agree with gold.

Table 5: Evaluation results on TIPIT.
Machine translation

![Graph showing BLEU scores for different attention models.]

- **Attention**: Various models with different types of attention mechanisms.
- **No Attention**: A baseline model without attention.

Legend:
- Ours, no attn (BLEU 13.9)
- Ours, local-p attn (BLEU 20.9)
- Ours, best system (BLEU 23.0)
- WMT'14 best (BLEU 20.7)
- Jeans et al., 2015 (BLEU 21.6)
Coverage

• Caption generation

• How do we make sure we cover the source? (also relevant for summarization)
  
  • Penalize for source patches/words that are not aligned to any target word

\[ \sum_{\text{patch}} \left( 1 - \sum_{\text{word}} \alpha_{\text{patch,word}} \right)^2 \]
Attention variants

• Feed attention vectors as input at decoding time to try to learn coverage

• Add some term for preferring alignments that are monotonic

• Prefer limited fertility

• Use it for aligning pairs of text like (q,a) or paraphrase pairs
Summary

• Attention has enabled getting state-of-the-art performance for transduction scenarios

• Allows to softly align each token in a sequence of text to another sequence
Pointer networks
Problem

• Often at test time you need to translate entities you have never seen

• If we define the target vocabulary with the training set, we will never get it right

• In addition, translation for those entities is often simply copying

How tall is Dreymond Green?
HeightOf.DreymondGreen
Solution 1

• Mask entities
• Translate
• Bring back entities
  • But if there are many entities
  • How do you identify entities?

How tall is <e>?
HeightOf.<e>
Idea

• When we translate a sentence, the probability of a word increases once we see it.

• $P(\text{“pokemen”})$ is low

• $P(\text{“pokemon”} | \text{“the pokemon company”})$ is high

• Let’s allow outputting either words from a fixed target vocabulary or any word from the source sentence
Regular model

\[ p(y_t = w \mid x, y_1, \ldots, y_{t-1}) \propto \exp(U_w h_t) \]
Copying model

\[ p(y_t = w \mid x, y_1, \ldots, y_{t-1}) \propto \exp(U_w h_t) \]
\[ p(y_t = x_i \mid x, y_1, \ldots, y_{t-1}) \propto \exp(s_{ti}) \]

How tall is Dreymond Green?

HeightOf [3]
WeightOf [-1]
NumAssists [40]
( [9]
) [5.8]
. [3.7]
and [13]
How [5]
tall [1]
is [-2]
Dreymond [100]
Green [100]
? [0]
Copying model

• Need to marginalize over the words since there could be repetitions

• At training this means that the true distribution is uniform over all correct tokens

• At test time we choose the highest probability token, but marginalize over the same instances of a token
Slight improvement

\[ p(y_t = w \mid x, y_1, \ldots, y_{t-1}) \propto \exp(U_w h_t) \]
\[ p(y_t = x_i \mid x, y_1, \ldots, y_{t-1}) \propto \exp(s_{ti}) \]

- These scores need to be calibrated
- We can just interpolate two distributions after normalization

\[ p_{vocab}(y_t \mid x, y_1, \ldots, y_{t-1}) = \text{softmax}(U h_t) \]
\[ p_{copy}(y_t \mid x, y_1, \ldots, y_{t-1}) = \text{softmax}(s_t) \]
\[ p(y_t \mid x, y_1, \ldots, y_{t-1}) = p_{gen} \cdot p_{vocab} + (1 - p_{gen}) \cdot p_{copy} \]
\[ p_{gen} = \sigma(w_1^\top h_t + w_2^\top c_t + w_3^\top y_{t-1}) \]
Illustration
Summary

• Neural network for semantic parsing are based on sequence to sequence models

• These models are useful also for summarization, dialogue, question answering, paraphrasing, and other transduction tasks

• Attention added memory to circumvent the constant representation problem

• Pointer networks help in handling new words at test time

• Together you can often get models that are comparable to state-of-the-art without a grammar
Weak supervision
Weak supervision

• We have assumed that we have as input pairs of natural language and logical form

• In practice those are hard to collect and we usually have (language, denotation) pairs

<table>
<thead>
<tr>
<th>Heavy supervision</th>
<th>Light supervision</th>
</tr>
</thead>
</table>
| *How tall is Lebron James?*  
HeightOf.Lebron.James  
*What is Steph Curry's daughter called?*  
ChildrenOf.Steph.Curry □ Gender.Female  
*Youngest player of the Cavaliers*  
arg min (PlayerOf.Cavaliers, BirthDateOf)  
... | *How tall is Lebron James?*  
203cm  
*What is Steph Curry's daughter called?*  
Riley.Curry  
*Youngest player of the Cavaliers*  
Kyrie.Irving  
... |
The problem

• In sequence to sequence we trained end-to-end with SGD, minimizing the cross entropy loss of every token.

• Here we don’t have tokens.

• **Suggestion**: generate the program token by token, execute, and minimize cross entropy over denotations.

• **Problem**: The loss is not a differentiable function of the input because we don’t input gold tokens.

```
softmax

WeightOf (0.7)
HeightOf (0.2)
...

argmax

WeightOf
```

```
t

softmax

WeightOf (0.7)
HeightOf (0.2)
...

argmax

WeightOf

t+1
```
This looks familiar

Search with CKY

Can we do something similar with a seq2seq model?
Markov Decision Process

• Sequence of states, actions and rewards
  • $s_0, s_1, s_2, \ldots, s_T$ from a set $S$
  • $a_0, a_1, a_2, \ldots, a_T$ from a set $A$
    • Let’s assume a deterministic transition function $f: S \times A \rightarrow S$
  • $r_0, r_1, r_2, \ldots, r_T$ given by a reward function $r(s,a)$
• We want a policy $\pi(a \mid s)$ providing a distribution over actions that will maximize future reward
Seq2seq as MDP

- $s_t$: $h_t$
- $a_t$ is in $A(s_t)$
  - Either all symbols in the target vocabulary
  - All valid symbols if we check grammaticality
- $r_t$ is zero in all steps except the last. Then, it is 1 if execution results in a correct answer and 0 otherwise.

Liang et al, 2017, Guu et al., 2017
Seq2seq as MDP: policy

\[
p(z \mid x) = \prod_t p(z_t \mid x, z_0, \ldots, z_{t-1}) \\
= \prod_t p(a_t \mid x, a_0, \ldots, a_{t-1}) \\
= \prod_t \pi(a_t \mid s_t) \\
\pi(a_t \mid s_t) = \text{softmax}(W^{(s)} h_t)
\]
Seq2seq as MDP: policy

\[
p(z \mid x) = \prod_t p(z_t \mid x, z_0, \ldots, z_{t-1}) \\
= \prod_t p(a_t \mid x, a_0, \ldots, a_{t-1}) \\
= \prod_t \pi(a_t \mid s_t) \\
\pi(a_t \mid s_t) = \text{softmax}(W^{(s)} h_t)
\]

How do we learn?
Option 1: Maximum marginal likelihood

- Our data is language-dentation pairs \((x,y)\)
- We obtain \(y\) by constructing a logical form \(z\)
- We can use maximum marginal likelihood like before
- Interleave search and learning
  - Apply search to get candidate logical forms
  - Apply learning on these candidate
- Difference from before:
  - Search was done with CKY and learning was a globally-normalized model
  - Search can be done with beam search and we have a locally-normalized model
Maximum marginal likelihood

- $z$ is independent of $x$ conditioned on $y$

$$p_\theta(y \mid x) = \sum_z p_\theta(z \mid x) \cdot p(y \mid z)$$

$$= \sum_z p_\theta(z \mid x) R(z) = E_{p_\theta(z \mid x)}[R(z)]$$

$$\mathcal{L}_{\text{MML}}(\theta) = \log \prod_{(x,y)} p_\theta(y \mid x) = \log \prod_{(x,y)} E_{p_\theta(z \mid x)}[R(z)]$$

$$= \sum_{(x,y)} \log \sum_z p_\theta(z \mid x) \cdot R(z)$$
Gradient of MML

- Gradient has similar form to what we have seen in the past, except that we are not in a log-linear model. Let's assume a binary reward:

\[ \nabla_{\theta} \log \sum_{z} p_{\theta}(z \mid x) \cdot R(z) = \sum_{z} \frac{p_{\theta}(z) R(z) \nabla \log p_{\theta}(z \mid x)}{\sum_{z'} p_{\theta}(z' \mid x) \cdot R(z')} \]

\[ = \sum_{z} p(z \mid x, R(z) = 1) \nabla \log p_{\theta}(z \mid x) \]

- Compute the gradient of the log probability for every logical form, and weight the gradient using the reward.
Computing the gradient

- We can not enumerate all of the logical forms.
- Instead we perform beam search as usual and get a beam $Z$ containing $K$ logical forms.
- We imagine that this beam is the entire set of possible logical forms.

$$\sum_{z \in Z} p(z \mid x, R(z) = 1) \nabla \log p_\theta(z \mid x)$$

- For every $z$ we can compute the gradient of $\log p(z \mid x)$ since this is now the usual seq2seq setup.
Option 2: policy gradient

- We would like to simply maximize our expected reward

\[ E_{p_\theta(z|x)}[R(z)] = \sum_z p_\theta(z \mid x)R(z) \]

\[ \mathcal{L}_{RL}(\theta) = \sum_{(x,y)} \sum_z p_\theta(z \mid x)R(z) = \sum_{(x,y)} E_{p_\theta(z|x)}[R(z)] \]

\[ \nabla \mathcal{L}_{RL}(\theta) = \sum_{(x,y)} \sum_z p_\theta(z \mid x)R(z) \nabla \log p_\theta(z \mid x) \]

\[ = \sum_{(x,y)} E_{p_\theta(z|x)}[R(z) \nabla \log p_\theta(z \mid x)] \]

- Weight the gradient by the product of the reward and the model probability
Computing the gradient

• Again, we can not sum over all logical forms.

• But the gradient for every example is an expectation over a distribution we can sample from!

• So we can sample many logical forms, compute the gradient and sum them weighted by the product of the model probability and reward.

• Again, for every sample this is regular seq2seq and we can compute an approximate gradient.
Some differences

• Using MML with beam search is a biased estimator and has less exploration - we only observe the approximate top-K logical forms

• Using RL could be harder to train. If we have a correct logical form $z^*$ that has low probability at the beginning of training, then the contribution to the gradient would be very smaller and it would be hard to bootstrap.
Summary

• Training with a seq2seq model with weak supervision is problematic because the loss function is not a differentiable function of the input

• We saw both MML and RL approaches for getting around that

• In both we find a set of logical forms, compute the gradient for them like in supervised learning, and weight them in some way to form a final gradient

• This let's us train with SGD

• It is still often hard to train - more next time