Natural Language Processing

Global linear models

Based on slides from Michael Collins
Globally-normalized models

- Why do we decompose to a sequence of decisions?
- Can we directly estimate the probability of an entire sequence

\[
p_\theta(y \mid x) = \frac{\exp(f(x, y)\,^\top\theta)}{\sum_{y' \in \mathcal{Y}} \exp(f(x, y')\,^\top\theta)}
\]

\(\mathcal{Y}:\) all tag sequences for \(x\)
Global linear models

- **Motivations:**
 - Optimize directly what you care about
 - Flexibility in feature function
 - Avoid the label bias problem

- **Question:**
 - How to compute the denominator?
Label Bias Problem

• We are normalizing at each time step

• So a fixed probability mass must be distributed at each step

• So this favors states that have low entropy output distribution

• We are conditioning on the input not generating it, so once we are “stuck” in a low entropy state we ignore the input
Label Bias Problem

• 0 2 2 2 2 2 “seems” like the right choice

• But 0 1 1 1 1 1 has higher probability (0.3 vs. 0.24)

• This is since once you choose state “1” you are stuck there and will predict “1” regardless of the input
Label bias problem

• Consider a history-based model for names with two tokens, that are either PERSON or LOC.

• States
 • b-person
 • e-person
 • b-loc
 • e-loc
 • other
Label bias problem

corpus:

Harvey Ford
(person 9 times, location 1 time)

Harvey Park
(location 9 times, person 1 time)

Myrtle Ford
(person 9 times, location 1 time)

Myrtle Park
(location 9 times, person 1 time)

Second word provides good information
Conditional probabilities:

\[p(\text{b-person} \mid \text{other}, w = \text{Harvey}) = 0.5 \]
\[p(\text{b-locn} \mid \text{other}, w = \text{Harvey}) = 0.5 \]
\[p(\text{b-person} \mid \text{other}, w = \text{Myrtle}) = 0.5 \]
\[p(\text{b-locn} \mid \text{other}, w = \text{Myrtle}) = 0.5 \]
\[p(\text{e-person} \mid \text{b-person}, w = \text{Ford}) = 1 \]
\[p(\text{e-person} \mid \text{b-person}, w = \text{Park}) = 1 \]
\[p(\text{e-locn} \mid \text{b-locn}, w = \text{Ford}) = 1 \]
\[p(\text{e-locn} \mid \text{b-locn}, w = \text{Park}) = 1 \]

Information from second word is lost
Label bias problem

- Prefer states that have low entropy next-state distributions
Global linear models

• Main differences:
 • Normalize once over entire space
 • We don’t look at a history of decisions
 • Define features over **full** structure
 • More flexible!
 • We will see this in parsing
 • But we directly consider the exponential space
Global linear models

• Contain three components

 • A feature function f mapping a pair (x,y) to a feature vector $f(x,y)$

 • A generating function GEN enumerating all candidate outputs

 • A parameter vector θ

\[
F(x) = \arg \max_y f(x, y)^\top \theta
\]
Tagging: GEN

- Inputs: sentences $x = w_1 \ldots w_n$
- Tag set: T
- $\text{GEN}(X) = T^n$
- In other setups:
 - All parse trees
 - Top-K parse trees produced by weaker model
 - All translations
Tagging: feature function

- A **history** h is a 4-tuple $<t_{i-2}, t_{i-1}, w, i>$
- t_{i-2}, t_{i-1}: previous two tags
- w: input sentence
- i: index of word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/??? from which Spain expanded its empire into the rest of the Western Hemisphere.

- t_{i-2}, t_{i-1}: DT JJ
- w: Hispaniola, ..., Hemisphere
- i: 6
Local features

• For every history/tag pair \((h, i, t)\)

\[g_s(h, i, t) \text{ for } s = 1 \ldots, d : \]

local features for tagging decision \(t\) in position \(i\) given history \(h\):

\[
\begin{align*}
g_{100}(h, t) & \quad \begin{cases} 1 & w_i = \text{‘base’} \text{ and } t = \text{VB} \\ 0 & \text{otherwise} \end{cases} \\
g_{101}(h, t) & \quad \begin{cases} 1 & w_i \text{ ends with ‘ing’} \text{ and } t = \text{VBG} \\ 0 & \text{otherwise} \end{cases} \\
g_{102}(h, t) & \quad \begin{cases} 1 & (t_{i-2}, t_{i-1}, t) = (\text{DT, JJ, VB}) \\ 0 & \text{otherwise} \end{cases}
\end{align*}
\]
Multiple local features

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

<table>
<thead>
<tr>
<th>History</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{-2}</td>
<td></td>
</tr>
<tr>
<td>t_{-1}</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>*</th>
<th>Hispaniola…</th>
<th>1</th>
<th>NNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>NNP</td>
<td>Hispaniola…</td>
<td>2</td>
<td>RB</td>
</tr>
<tr>
<td>NNP</td>
<td>RB</td>
<td>Hispaniola…</td>
<td>3</td>
<td>VB</td>
</tr>
<tr>
<td>RB</td>
<td>VB</td>
<td>Hispaniola…</td>
<td>4</td>
<td>DT</td>
</tr>
<tr>
<td>VB</td>
<td>DT</td>
<td>Hispaniola…</td>
<td>5</td>
<td>JJ</td>
</tr>
<tr>
<td>DT</td>
<td>JJ</td>
<td>Hispaniola…</td>
<td>6</td>
<td>NN</td>
</tr>
</tbody>
</table>
Global feature function

• Global feature function

\[f(x, y) = \sum_{i,j} g_j(h, i, t) = \sum_i g(h, i, t) \]

• Features are now counts, rather than binary

• How many times a word ending in ‘ing’ was tagged as VBG
Global log-linear model

\[p_\theta(y \mid x) = \frac{\exp(f(x, y)^\top \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(f(x, y')^\top \theta)} \]

\[= \frac{\exp(\sum_i g(x, i, y_{i-2}, y_{i-1}, y_i)^\top \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(\sum_i g(x, i, y'_{i-2}, y'_{i-1}, y'_i)^\top \theta)} \]
Decoding

• As long as the feature function decomposes locally we can still apply Viterbi

• Otherwise we can do greedy/beam decoding
Decoding

- Find the structure that maximizes the dot linear score

\[
\begin{align*}
\arg \max_y p_\theta(y \mid x) &= \arg \max_y \frac{\exp(f(x, y) \top \theta)}{\sum_{y' \in \text{GEN}(x)} \exp(f(x, y') \top \theta)} \\
&= \arg \max_y \exp(f(x, y) \top \theta) \\
&= \arg \max_y f(x, y) \top \theta \\
&= \arg \max_y \sum_i g(x, i, y_{i-2}, y_{i-1}, y_i) \top \theta
\end{align*}
\]
Viterbi still works!

• Dependencies did not change

Definition: \(\mathcal{Y}_i \) is the set of possible tags in position \(i \)

Base: \(\pi(1, *, y) = g(x, 1, *, *, y)^\top \theta \)

for all \(i \in \{2 \ldots n\} \), for all \(u \in \mathcal{Y}_{i-1}, v \in \mathcal{Y}_i : \)

\[
\pi(i, u, v) = \max_{t \in \mathcal{Y}_{i-2}} \pi(j - 1, t, u) + g(x, i, t, u, v)^\top \theta
\]
$L(\theta) = \sum_i \log p_\theta(y_i \mid x_i)$

$\nabla L(\theta)_i = f(x_i, y_i) - \sum_{y'} p_\theta(y' \mid x) f(x, y')$

How to compute the second term?
Learning

• Let's look at bigram features only

\[
\sum_y p_\theta(y \mid x) f(x, y) = \sum_y \sum_i p_\theta(y \mid x) g(x, i, y_{i-1}, y_i)
\]

\[
= \sum_i \sum_{a,b} \sum_{y:y_{i-1}=a, y_i=b} p_\theta(y \mid x) g(x, i, y_{i-1}, y_i)
\]

\[
= \sum_i \sum_{a,b} g(x, i, a, b) \sum_{y:y_{i-1}=a, y_i=b} p_\theta(y \mid x)
\]

\[
= \sum_i \sum_{a,b} g(x, i, a, b) q_i(a, b)
\]

• \(q \) terms are the probability that the tag sequence has \(a \) and \(b \) in positions \(i-1, i \)
Learning

• If we compute the q terms efficiently then we can compute the gradients and learn

• The q terms are computed with a dynamic programming algorithm called *forward-backward*.

• Also used in unsupervised parameter estimation for HMMs

• Similar to Viterbi
Forward-backward

• Definitions

\[\Psi(y', y, j) = \exp(g(x, j, y', y)\top \theta) \]

\[\Psi(y_1, \ldots, y_m) = \prod_{j=1}^{m} \Psi(y_{j-1}, y_j, j) \]

\[= \prod_{j=1}^{m} \exp(g_j(x, j, y_{j-1}, y_j)\top \theta) \]

\[= \exp\left(\sum_{j=1}^{m} g_j(x, j, y_{j-1}, y_j)\top \theta\right) \]

\[p(y_1, \ldots, y_m \mid x) = \frac{\Psi(y_1, \ldots, y_m)}{\sum_{z_1, \ldots, z_m} \Psi(z_1, \ldots, z_m)} \]
Forward-backward

• What will be computed?

\[Z = \sum_{y_1, \ldots, y_m} \Psi(y_1, \ldots, y_m) \]

\[\mu(j, a) = \sum_{y_1, \ldots, y_m: y_j = a} \Psi(y_1, \ldots, y_m) \]

\[\mu(j, a, b) = \sum_{y_1, \ldots, y_m: y_j = a, y_{j+1} = b} \Psi(y_1, \ldots, y_m) \]

\[q_j(a, b) = \frac{\mu(j, a, b)}{Z} \]
Forward-backward

• What will be computed?

Sum of the scores of all paths that end at tag y in position j

$$\alpha(j, y) = \sum_{y_1, \ldots, y_j: y_j = y} \prod_{k=1}^{j} \Psi(y_{k-1}, y_k, k)$$

Sum of the scores of all paths start at tag y in position j

$$\beta(j, y) = \sum_{y_j, \ldots, y_m: y_j = y} \prod_{k=j}^{m} \Psi(y_k, y_{k+1}, k)$$
• Compute with dynamic programming

\[
\alpha(1, y) = \Psi(*, y, 1)
\]

for \(j \in \{2 \ldots m\}, y \in \mathcal{Y} \)

\[
\alpha(j, y) = \sum_{y' \in \mathcal{Y}} \alpha(j - 1, y') \times \Psi(y', y, j)
\]
\(\alpha \) terms

- Compute with dynamic programming

\[
\alpha(1, y) = \Psi(\ast, y, 1)
\]

for \(j \in \{2 \ldots m\}, y \in \mathcal{Y} \)

\[
\alpha(j, y) = \sum_{y' \in \mathcal{Y}} \alpha(j - 1, y') \times \Psi(y', y, j)
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(\alpha(1, y_1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_2)</td>
<td>(\alpha(1, y_2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_3)</td>
<td>(\alpha(1, y_3))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\alpha(1, y_1) = \Psi(\ast, y_1, 1)
\]

\[
\alpha(1, y_2) = \Psi(\ast, y_2, 1)
\]

\[
\alpha(1, y_3) = \Psi(\ast, y_3, 1)
\]
\[\alpha(2, y_1) = \alpha(1, y_1)\Psi(y_1, y_1, 2) + \alpha(1, y_2)\Psi(y_2, y_1, 2) + \alpha(1, y_3)\Psi(y_3, y_1, 2) \]
\[= \Psi(*, y_1, 1)\Psi(y_1, y_1, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_1, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_1, 2) \]
\[\alpha(2, y_2) = \Psi(*, y_1, 1)\Psi(y_1, y_2, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_2, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_2, 2) \]
\[\alpha(2, y_3) = \Psi(*, y_1, 1)\Psi(y_1, y_3, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_3, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_3, 2) \]
\[\alpha \text{ terms} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>(\alpha(1, y_1))</td>
<td>(\alpha(2, y_1))</td>
<td></td>
</tr>
<tr>
<td>(y_2)</td>
<td>(\alpha(1, y_2))</td>
<td>(\alpha(2, y_2))</td>
<td></td>
</tr>
<tr>
<td>(y_3)</td>
<td>(\alpha(1, y_3))</td>
<td>(\alpha(3, y_3))</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha(2, y_1) = \alpha(1, y_1)\Psi(y_1, y_1, 2) + \alpha(1, y_2)\Psi(y_2, y_1, 2) + \alpha(1, y_3)\Psi(y_3, y_1, 2) \]
\[= \Psi(*, y_1, 1)\Psi(y_1, y_1, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_1, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_1, 2) \]
\[\alpha(2, y_2) = \Psi(*, y_1, 1)\Psi(y_1, y_2, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_2, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_2, 2) \]
\[\alpha(2, y_3) = \Psi(*, y_1, 1)\Psi(y_1, y_3, 2) + \Psi(*, y_2, 1)\Psi(y_2, y_3, 2) + \Psi(*, y_3, 1)\Psi(y_3, y_3, 2) \]
The distributive law works

\[\alpha(3, y_1) = \alpha(2, y_1)\Psi(y_1, y_1, 3) + \alpha(2, y_2)\Psi(y_2, y_1, 3) + \alpha(2, y_3)\Psi(y_3, y_1, 3) \]

\[= \Psi(*, y_1, 1)\Psi(y_1, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_1, 2)\Psi(y_1, y_1, 3) \]

\[+ \Psi(*, y_1, 1)\Psi(y_1, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_2, 2)\Psi(y_2, y_1, 3) \]

\[+ \Psi(*, y_1, 1)\Psi(y_1, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_3, 2)\Psi(y_3, y_1, 3) \]
The distributive law works

\[
\alpha(3, y_1) = \alpha(2, y_1)\Psi(y_1, y_1, 3) + \alpha(2, y_2)\Psi(y_2, y_1, 3) + \alpha(2, y_3)\Psi(y_3, y_1, 3) \\
= \Psi(*, y_1, 1)\Psi(y_1, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_1, 2)\Psi(y_1, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_1, 2)\Psi(y_1, y_1, 3) \\
+ \Psi(*, y_1, 1)\Psi(y_1, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_2, 2)\Psi(y_2, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_2, 2)\Psi(y_2, y_1, 3) \\
+ \Psi(*, y_1, 1)\Psi(y_1, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_2, 1)\Psi(y_2, y_3, 2)\Psi(y_3, y_1, 3) + \Psi(*, y_3, 1)\Psi(y_3, y_3, 2)\Psi(y_3, y_1, 3)
\]
\[\beta \text{ terms} \]

\[\beta(m, y) = 1 \]

for \(j \in \{m - 1 \ldots 1\}, y \in \mathcal{Y} \)

\[\beta(j, y) = \sum_{y' \in \mathcal{Y}} \beta(j + 1, y') \times \Psi(y, y', j) \]

- Use distributive property again to get final result

\[Z = \sum_{y \in \mathcal{Y}} \alpha(m, y) \]

\[\mu(j, a) = \alpha(j, a) \cdot \beta(j, a) \]

\[\mu(j, a, b) = \alpha(j, a) \cdot \Psi(a, b, j + 1) \cdot \beta(j + 1, a) \]

\[q_j(a, b) = \frac{\mu(j, a, b)}{Z} \]
Complexity

• If length of sentence is m, then $m|Y|^2$
• We can compute the gradient
• We can apply SGD
• We can learn
• **Limitation**: decomposable features
Structured perceptron

• Similar to CRFs, but needs only Viterbi

• For every training example (x,y)
 • Find best y’ according to model (Viterbi)
 • If different from gold y
 • Update weights: add features of y and subtract features of y’

• Regularization is needed (averaged perceptron)
Global vs. Local models

\[p_L(y_i \mid x, y_1 \ldots y_{i-1} \mid x) = \frac{\exp(s(x, y_1 \ldots y_i)}{Z_L()} \]

\[Z_L(x, y_1 \ldots, y_{i-1}) = \sum_t \exp(s(x, y_1 \ldots y_{i-1}, t)) \]

\[p_L(y_1 \ldots, y_n \mid x) = \frac{\exp \sum_{i=1}^n s(x, y_1 \ldots y_i)}{\prod_{i=1}^n Z_L(x, y_1 \ldots, y_{i-1})} \]

\[p_G(y_1 \ldots, y_n \mid x) = \frac{\exp \sum_{i=1}^n s(x, y_1 \ldots y_i)}{Z_G(x)} \]

\[Z_G(x) = \sum_{{y_1 \ldots y_n}} \exp \sum_{i=1}^n s(x, y_1 \ldots, y_i) \]

It can be shown that some distribution can only be expressed with \(p_G \)
Training data:

\[
\begin{array}{ccc}
A & B & C \\
\text{abc} & \text{ade} & \text{abe}
\end{array}
\]

\[
\mathbb{g}(x, y_{i-1}, y_i) = \alpha \times \prod_{i=1}^{I} (y_{i-1}, y_i) \in \{AB, BC, AD, DE\} + \alpha \times \sum_{i=1}^{I} (x_i, y_i) \in \{aA, bB, cC, dD, eE\}
\]

\[
P_L(ABC|abc) = \frac{\exp(\alpha d)}{\sum \exp(\alpha d) + \exp(\alpha c) + \ldots} = \text{softmax}(\alpha d)
\]

\[
\lim_{\alpha \to \infty} P_L(ABC|abc) = 1
\]

- For any definition of \(g(x, y_{i-1}, y_i) = g(x, y_{i-1}, y_i, i)\):

\[
P_L(ABC|abc) = P_L(A|a) \times P_L(B|A, a, b) \times P_L(C|A, B, a, b, c) \leq P_L(B|A, a, b)
\]

\[
P_L(ABC|abc) = P_L(A|a) \times P_L(D|A, a, b) \times P_L(C|A, B, a, b, e) \leq P_L(D|A, a, b)
\]

\[
P_L(ABC|abc) + P_L(ABC|abc) \leq P_L(B|A, a, b) + P_L(D|A, a, b) \leq 1
\]

On the other hand, for large enough \(\alpha\): \(P_L(ABC|abc) + P_L(ABC|abc) > 1\)
Graphical models

- Viterbi and forward-backward are instances of max-product and sum-product algorithms for inference in graphical models

- Advanced ML class

\[
p(y) = \frac{1}{Z} \prod_{i=1}^{n} \Psi(x, y_{i-1}, y_i)
\]

HMM

MEMM

CRF
Deep learning models for tagging
Deep learning model

- We have a more powerful learning model
- Can we make things
 - better?
 - simpler?
Simple POS-tagging model

\[x_i : \text{one-hot rep. for word } i \]
\[e_i = W^{\text{emb}} x_i : \text{word embedding} \]
\[h_i^f = \text{LSTM}(h_{i-1}, e_i) \]
\[h_i^b = \text{LSTM}(h_{i+1}, e_i) \]
\[c_i = \sigma(W[h_i^f; h_i^b] + b) \]
\[p(y_i \mid x) = \text{softmax}(W^s c_i + b) \]
\[L(\theta) = -\sum_i \log p(y_i = y^* \mid x) \]

- All tag decisions are independent!! Works OK for POS tagging
 - 96.97 acc. compared to 97.32 with a linear CRF
 - Doesn’t work for NER tagging. Why?

Ling et al., 2015
Bi-RNNs (Bi-LSTMs)

- Provide a representation of a word in context
- Have become the de-facto standard for word representation in context for NLP tasks
Stacked bi-RNNs
Class 7
Final projects

• Probably will do something very lightweight for presenting final projects: 1-3 min. per group to say what topic was chosen in the last class

• Decide on project in the last 2-3 weeks of class
Deep learning models for tagging

• Independent tagging (saw last class)
 • No feature decomposition: BiLSTM passes information around

• How to neutralize the models we saw?
 • Greedy tagger
 • Viterbi tagger
 • CRF
 • BiLSTM-CRF
Greedy taggers

• A **history** x is a 4-tuple $<t_1...i-1, w, i>$

 • Predict t_i from history

• $p(t_i | x) \propto \exp(f(x,t_i) \times \theta) = \text{score}(x,t_i)$

• Just replace the log-linear function with a non-linear neural network

• Need to define a neural network that reads the history and produces a label

Lample et al., 2016
Greedy tagger

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

softmax
Viterbi tagger

\[s(x, y) = f(x, y)\top \theta = \sum_i g(x, i, y_{i-1}, y_i)\top \theta \]

\[= s(x, 1, y_1, y_2) + s(x, 2, y_2, y_3) + s(x, 3, y_3, y_4) \]

- Replace linear score with non-linear neural network

\[s(x, y) = \sum_i \text{NN}(x, i, y_{i-1}, y_i) \]
Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN
Neural structured prediction

• What has changed?

 • **Decoding**: As long as the neural network scores decompose we can still apply Viterbi

 • **Learning**:

 \[
 p_\theta(y \mid x) = \frac{\exp(\sum_i \text{NN}_\theta(x, i, y_{i-1}, y_i))}{\sum_{y'} \exp(\sum_i \text{NN}_\theta(x, i, y'_{i-1}, y'_i))}
 \]

 \[
 L^{(i)}(\theta) = -\log p(y^{(i)} \mid x^{(i)})
 \]
Neural CRF

He/N eats/V

log P(N V | He eats)

score(He eats|NV)

\(\alpha(1, N)\psi(2, N, N)\)

\(\alpha(1, V)\psi(2, V, N)\)

\(\alpha(1, N)\psi(2, N, V)\)

\(\alpha(1, V)\psi(2, V, V)\)

\(\alpha(2, N)\)

\(\alpha(2, V)\)

z

\(\alpha(1, N)\)

\(\alpha(1, V)\)

He eats|1|N
He eats|1|V
He eats|2|NN
He eats|2|NV
He eats|2|VV
He eats|2|VN
Neural structured prediction

• How do we compute the denominator (partition function)?
 • Implement dynamic programming as part of the neural network
 • All dynamic programming operations are differentiable (+ and x)
• In structured perceptron things are slightly simpler
 • Compute the best structure (outside of the network)
 • Define the loss: \(\max(0, \text{score}(x, y) - \max_{y'} \text{score}(x, y')) \)
Bi-LSTM CRF for NER

\(x_i\) : one-hot rep. for word \(i\)

\(e_i = W^{\text{emb}} x_i\) : word embedding

\(l_i = \text{LSTM}(l_{i-1}, e_i)\)

\(r_i = \text{LSTM}(r_{i+1}, e_i)\)

\(c_i = [l_i; r_i]\)

\(p_i = W^{(\text{proj})} \sigma(W c_i + b)\)

\(s(x, y) = \sum_{i=1}^{n} p_{i,y_i} + \sum_{i=0}^{n} A_{y_i,y_{i+1}}\)

- \(A\) is a learned parameter matrix (\#tags\(^2\)).

- SOTA or close to that on POS tagging, NER, and other tasks
State-of-the-art

• To outperform state-of-the-art
 • Regularization techniques
 • Character-based information
 • Pre-training with a lot of data
More?

• Interactions in this Bi-LSTM CRF are pretty weak. Can we make them stronger?

 • A network that predicts a distribution over the tag space (latent) and then reads those distributions and computes a new distribution

 • Loss is over both distributions

• Most general: A network that reads (x,y) and produces a score s(x,y)

 • But then unclear how to find the best y
Summary

<table>
<thead>
<tr>
<th></th>
<th>Tagging</th>
<th>Parsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generative</td>
<td>HMMs</td>
<td>PCFGs</td>
</tr>
<tr>
<td>Greedy</td>
<td></td>
<td>Transition-based parsing</td>
</tr>
<tr>
<td>History-based</td>
<td>Viterbi</td>
<td>CKY</td>
</tr>
<tr>
<td>Global</td>
<td>forward-backward</td>
<td>Inside-outside</td>
</tr>
</tbody>
</table>