Natural Language Processing

Language models

Based on slides from Michael Collins, Chris Manning, Richard Soccer, Dan Jurafsky
Plan

• Problem definition

• Trigram models

• Evaluation

• Estimation

• Interpolation

• Discounting
Motivations

• Define a probability distribution over sentences

• Why? \[p(01010 \mid \sim) \propto p(\sim \mid 01010) \cdot p(01010) \]

 • Machine translation

 • \(P(\text{“high winds”}) > P(\text{“large winds”}) \)

 • Spelling correction

 • \(P(\text{“The office is fifteen minutes from here”}) > P(\text{“The office is fifteen minuets from here”}) \)

 • Speech recognition (that’s where it started!)

 • \(P(\text{“recognize speech”}) > P(\text{“wreck a nice beach”}) \)

• And more!
Motivations

• Philosophical: a model that is good at predicting the next word, must know something about language and the world

• A good representation for any NLP task
 • paper 1
 • paper 2
Motivations

- Techniques will be useful later
Problem definition

• Given a finite vocabulary

\[\mathcal{V} = \{ \text{the, a, man, telescope, Beckham, two, \ldots } \} \]

• We have an infinite language L, which is \(\mathcal{V}^* \) concatenated with the special symbol STOP

 the STOP
 a STOP
 the fan STOP
 the fan saw Beckham STOP
 the fan saw saw STOP
 the fan saw Beckham play for Real Madrid STOP
Problem definition

- **Input**: a training set of example sentences
 - Currently: roughly one trillion words.
- **Output**: a probability distribution \(p \) over \(L \)

\[
\sum_{x \in L} p(x) = 1, \quad p(x) \geq 0 \text{ for all } x \in L
\]

\[
p(\text{"the STOP"}) = 10^{-12}
\]

\[
p(\text{"the fan saw Beckham STOP"}) = 2 \times 10^{-8}
\]

\[
p(\text{"the fan saw saw STOP"}) = 10^{-15}
\]
A naive method

• Assume we have N training sentences

• Let x_1, x_2, \ldots, x_n be a sentence, and $c(x_1, x_2, \ldots, x_n)$ be the number of times it appeared in the training data.

• Define a language model:

$$p(x_1, \ldots, x_n) = \frac{c(x_1, \ldots, x_n)}{N}$$
A naive method

• Assume we have N training sentences

• Let x_1, x_2, \ldots, x_n be a sentence, and $c(x_1, x_2, \ldots, x_n)$ be the number of times it appeared in the training data.

• Define a language model:

$$p(x_1, \ldots, x_n) = \frac{c(x_1, \ldots, x_n)}{N}$$

• No generalization!
Markov processes

• Markov processes:
 • Given a sequence of n random variables:
 • We want a sequence probability model

 $X_1, X_2, \ldots, X_n, \; n = 100, \; X_i \in \mathcal{V}$

 $p(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n)$

• There are $|\mathcal{V}|^n$ possible sequences
First-order Markov process

Chain rule

\[p(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \]
\[p(X_1 = x_1) \prod_{i=2}^{n} p(X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}) \]
First-order Markov process

Chain rule

\[p(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \]
\[p(X_1 = x_1) \prod_{i=2}^{n} p(X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}) \]

Markov assumption

\[p(X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}) = p(X_i = x_i \mid X_{i-1} = x_{i-1}) \]
Second-order Markov process

Relax independence assumption:

\[p(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \]
\[p(X_1 = x_1) \times p(X_2 = x_2 | X_1 = x_1) \]
\[\times \prod_{i=3}^{n} p(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1}) \]

Simplify notation

\[x_0 = *, x_{-1} = * \]
Second-order Markov process

Relax independence assumption:

\[p(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \]
\[p(X_1 = x_1) \times p(X_2 = x_2 \mid X_1 = x_1) \]
\[\times \prod_{i=3}^{n} p(X_i = x_i \mid X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1}) \]

Simplify notation

\[x_0 = *, x_{-1} = * \]

Is this reasonable?
Detail: variable length

• Probability distribution over sequences of any length

• Define always $X_n=$STOP, and obtain a probability distribution over all sequences

• Intuition: at every step you have probability α_h to stop (conditioned on history) and $(1-\alpha_h)$ to keep going

$$p(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \prod_{i=1}^{n} p(X_i = x_i \mid X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$
Trigram language model

• A trigram language model contains
 • A vocabulary V
 • Non-negative parameters $q(w|u,v)$ for every trigram, such that
 \[w \in V \cup \{STOP\}, \ u, v \in V \cup \{\ast\} \]

• The probability of a sentence x_1, \ldots, x_n, where $x_n=\text{STOP}$ is
 \[p(x_1, \ldots, x_n) = \prod_{i=1}^{n} q(x_i \mid x_{i-1}, x_{i-2}) \]
Example

\[p(\text{the dog barks STOP}) = q(\text{the} \mid *,*) \times \]
\[q(\text{dog} \mid *, \text{the}) \times \]
\[q(\text{barks} \mid \text{the}, \text{dog}) \times \]
\[q(\text{STOP} \mid \text{dog}, \text{barks}) \times \]
Limitation

- Markovian assumption is false

He is from France, so it makes sense that his first language is…

- We would want to model longer dependencies
Sparseness

- Maximum likelihood for estimating \(q \)

- Let \(c(w_1, \ldots, w_n) \) be the number of times that \(n \)-gram appears in a corpus

\[
q(w_i \mid w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})}
\]
Sparseness

• Maximum likelihood for estimating q

• Let $c(w_1, \ldots, w_n)$ be the number of times that n-gram appears in a corpus

$$ q(w_i \mid w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})} $$

• If vocabulary has 20,000 words —> Number of parameters is 8×10^{12}!

• Most sentences will have zero or undefined probabilities
Berkeley restaurant project sentences

• can you tell me about any good cantonese restaurants close by

• mid priced that food is what i’m looking for

• tell me about chez pansies

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day
Bigram counts

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bigram probabilities

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00079</td>
</tr>
<tr>
<td>want</td>
<td>0.0022</td>
<td>0</td>
<td>0.66</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0054</td>
<td>0.0011</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0</td>
<td>0.0017</td>
<td>0.28</td>
<td>0.00083</td>
<td>0.0027</td>
<td>0.0025</td>
<td>0.087</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0</td>
<td>0.021</td>
<td>0.0027</td>
<td>0.056</td>
<td>0.0</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0063</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.52</td>
<td>0.0063</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.0037</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
What did we learn

• $p(\text{English} \mid \text{want}) < p(\text{Chinese} \mid \text{want})$ - people like Chinese stuff more when it comes to this corpus

• $p(\text{to} \mid \text{want}) = 0.66$ - English behaves in a certain way

• $p(\text{eat} \mid \text{to}) = 0.28$ - English behaves in a certain way
Evaluation: perplexity

- Test data: \(S = \{s_1, s_2, \ldots, s_M\} \)
 - Parameters are not estimated from \(S \)
 - A good language model has high \(p(S) \) and low perplexity
 - Perplexity is the normalized inverse probability of \(S \)
 \[
 p(S) = \prod_{i=1}^{M} p(s_i)
 \]
 \[
 \log_2 p(S) = \sum_{i=1}^{M} \log_2 p(s_i)
 \]
 \[
 \text{perplexity} = 2^{-l}, \quad l = \frac{1}{M} \sum_{i=1}^{M} \log_2 p(s_i)
 \]
- \(M \) is the number of words in the corpus
Evaluation: perplexity

- Say we have a vocabulary V and $N = |V| + 1$ and a trigram model with uniform distribution

 - $q(w | u, v) = 1/N$.

 $$l = \frac{1}{M} \sum_{i=1}^{M} \log_2 p(s_i)$$

 $$= \frac{1}{M} \log \left(\frac{1}{N} \right)^M = \log \frac{1}{N}$$

 perplexity $= 2^{-l} = 2^{\log N} = N$

- Perplexity is the “effective” vocabulary size.
Typical values of perplexity

- When $|V| = 50,000$
 - trigram model perplexity: 74 ($<< 50000$)
 - bigram model: 137
 - unigram model: 955
Evaluation

• Extrinsic evaluations: MT, speech, spelling correction, …
• Shannon (1950) estimated the perplexity score that humans get for printed English (we are good!)

• Test your perplexity
Estimating parameters

• Recall that the number of parameters for a trigram model with \(|V| = 20,000\) is \(8 \times 10^{12}\), leading to zeros and undefined probabilities

\[
q(w_i \mid w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})}
\]
Bias-variance tradeoff

• Given a corpus of length M

 • Trigram model:
 $$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-1}, w_i)}$$

 • Bigram model:
 $$q(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

 • Unigram model:
 $$q(w_i) = \frac{c(w_i)}{M}$$
Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of. Sleep knave we. near; vile like

Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, ’tis done.

Quadrigram
King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, ’tis a noble Lepidus.
Linear interpolation

\[q_{LI}(w_i \mid w_{i-2}, w_{i-1}) = \lambda_1 \times q(w_i \mid w_{i-2}, w_{i-1}) + \lambda_2 \times q(w_i \mid w_{i-1}) + \lambda_3 \times q(w_i) \]

\[\lambda_i \geq 0, \ \lambda_1 + \lambda_2 + \lambda_3 = 1 \]

- Combine the three models to get all benefits
Linear interpolation

• Need to verify the parameters define a probability distribution

\[
\sum_{w \in \mathcal{V}} q_{LI}(w \mid u, v) \\
= \sum_{w \in \mathcal{V}} \lambda_1 \times q(w \mid u, v) + \lambda_2 \times q(w \mid v) + \lambda_3 \times q(w) \\
= \lambda_1 \sum_{w \in \mathcal{V}} q(w \mid u, v) + \lambda_2 \sum_{w \in \mathcal{V}} q(w \mid v) + \lambda_3 \sum_{w \in \mathcal{V}} \times q(w) \\
= \lambda_1 + \lambda_2 + \lambda_3 = 1
\]
Estimating coefficients

- Use validation/development set (intro to ML!)
 - Partition training data to training (90%?) and dev (10%?) data and optimize the coefficient to minimize the perplexity (the measure we care about!) on the development data
Linear interpolation

\[q_{LI}(w_i | w_{i-2}, w_{i-1}) = \lambda_1 \times q(w_i | w_{i-2}, w_{i-1}) \]
\[+ \lambda_2 \times q(w_i | w_{i-1}) \]
\[+ \lambda_3 \times q(w_i) \]
\[\lambda_i \geq 0, \ \lambda_1 + \lambda_2 + \lambda_3 = 1 \]
Linear interpolation

$$\Pi(w_{i-2}, w_{i-1}) = \begin{cases}
1 & c(w_{i-2}, w_{i-1}) = 0 \\
2 & 1 \leq c(w_{i-2}, w_{i-1}) \leq 2 \\
3 & 3 \leq c(w_{i-2}, w_{i-1}) \leq 10 \\
4 & \text{otherwise}
\end{cases}$$

$$q_{LI}(w_i \mid w_{i-2}, w_{i-1}) = \lambda_1^{\Pi(w_{i-2}, w_{i-1})} \times q(w_i \mid w_{i-2}, w_{i-1}) + \lambda_2^{\Pi(w_{i-2}, w_{i-1})} \times q(w_i \mid w_{i-1}) + \lambda_3^{\Pi(w_{i-2}, w_{i-1})} \times q(w_i)$$

$$\lambda_i^{\Pi(w_{i-2}, w_{i-1})} \geq 0$$

$$\lambda_1^{\Pi(w_{i-2}, w_{i-1})} + \lambda_2^{\Pi(w_{i-2}, w_{i-1})} + \lambda_3^{\Pi(w_{i-2}, w_{i-1})} = 1$$
Discounting methods

<table>
<thead>
<tr>
<th>x</th>
<th>(c(x))</th>
<th>(q(w_i \mid w_{i-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>the, dog</td>
<td>15</td>
<td>15/48</td>
</tr>
<tr>
<td>the, woman</td>
<td>11</td>
<td>11/48</td>
</tr>
<tr>
<td>the, man</td>
<td>10</td>
<td>10/48</td>
</tr>
<tr>
<td>the, park</td>
<td>5</td>
<td>5/48</td>
</tr>
<tr>
<td>the, job</td>
<td>2</td>
<td>2/48</td>
</tr>
<tr>
<td>the, telescope</td>
<td>1</td>
<td>1/48</td>
</tr>
<tr>
<td>the, manual</td>
<td>1</td>
<td>1/48</td>
</tr>
<tr>
<td>the, afternoon</td>
<td>1</td>
<td>1/48</td>
</tr>
<tr>
<td>the, country</td>
<td>1</td>
<td>1/48</td>
</tr>
<tr>
<td>the, street</td>
<td>1</td>
<td>1/48</td>
</tr>
</tbody>
</table>

Low count bigrams have high estimates.
Discounting methods

\[c^*(x) = c(x) - 0.5 \]

| x | c(x) | c*(x) | q(w_i | w_{i-1}) |
|-----------------|------|-------|------------|
| the | 48 | | 14.5/48 |
| the, dog | 15 | 14.5 | 14.5/48 |
| the, woman | 11 | 10.5 | 10.5/48 |
| the, man | 10 | 9.5 | 9.5/48 |
| the, park | 5 | 4.5 | 4.5/48 |
| the, job | 2 | 1.5 | 1.5/48 |
| the, telescope | 1 | 0.5 | 0.5/48 |
| the, manual | 1 | 0.5 | 0.5/48 |
| the, afternoon | 1 | 0.5 | 0.5/48 |
| the, country | 1 | 0.5 | 0.5/48 |
| the, street | 1 | 0.5 | 0.5/48 |
Katz back-off

In a bigram model

\[\mathcal{A}(w_{i-1}) = \{ w : c(w_{i-1}, w) > 0 \} \]
\[\mathcal{B}(w_{i-1}) = \{ w : c(w_{i-1}, w) = 0 \} \]

\[q_{BO}(w_i | w_{i-1}) = \begin{cases} \frac{c^*(w_{i-1}, w_i)}{c(w_{i-1})} & w_i \in \mathcal{A}(w_{i-1}) \\ \alpha(w_{i-1}) \frac{q(w_i)}{\sum_{w \in \mathcal{B}(w_{i-1})} q(w)} & w_i \in \mathcal{B}(w_{i-1}) \end{cases} \]

\[\alpha(w_{i-1}) = 1 - \sum_{w \in \mathcal{A}(w_{i-1})} \frac{c^*(w_{i-1}, w)}{c(w_{i-1})} \]
Katz back-off

In a trigram model

\[A(w_{i-2}, w_{i-1}) = \{ w : c(w_{i-2}, w_{i-1}, w) > 0 \} \]

\[B(w_{i-2}, w_{i-1}) = \{ w : c(w_{i-2}, w_{i-1}, w) = 0 \} \]

\[q_{BO}(w_i \mid w_{i-2}, w_{i-1}) = \begin{cases}
\frac{c^*(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})} & w_i \in A(w_{i-2}, w_{i-1}) \\
\alpha(w_{i-2}, w_{i-1}) \frac{q_{BO}(w_i \mid w_{i-1})}{\sum_{w \in B(w_{i-2}, w_{i-1})} q_{BO}(w \mid w_{i-1})} & w_i \in B(w_{i-2}, w_{i-1})
\end{cases} \]

\[\alpha(w_{i-2}, w_{i-1}) = 1 - \sum_{w \in A(w_{i-2}, w_{i-1})} \frac{c^*(w_{i-2}, w_{i-1}, w)}{c(w_{i-2}, w_{i-1})} \]
Advanced Smoothing

- Good-Turing
- Kneser-Ney
Advanced Smoothing

- **Principles**

 - **Good-Turing**: Take probability mass from things you have seen \(n \) times and spread this probability mass over things you have seen \(n-1 \) times (specifically move mass from things you have seen once to things you have never seen).

 - **Kneser-Ney**: The probability of a unigram is not its frequency in the data, but how frequently it appears after other things ("francisco" vs. "glasses").
Unknown words

• What if we see a completely new word at test time?
 • \(p(s) = p(S) = 0 \rightarrow \) infinite perplexity

• Solution: create a special token \(<unk>\)
 • Fix vocabulary \(V \) and replace any word in the training set not in \(V \) with \(<unk>\)

• Train

• At test time, use \(p(<unk>) \) for words not in the training set
Summary and re-cap

• **Sentence probability**: decompose with the chain rule

• Use a Markov independence assumption

• Smooth estimates to do better on rare events

• Many attempts to improve LMs using syntax but not easy

• More complex smoothing methods exist for handling rare events (Kneser-Ney, Good-Turing…)
Problem

- Our estimator $q(w \mid u, v)$ is based on a one-hot representation. There is no relation between words.
 - $p(\text{played} \mid \text{the, actress})$
 - $p(\text{played} \mid \text{the actor})$
- Can we use distributed representations?

Neural networks
Plan for today

- Feed-forward neural networks for language modeling
- Recurrent neural networks for language modeling
- Vanishing/exploding gradients
Neural networks: history

• Proposed in the mid-20th century

 • Criticism from Minsky ("Perceptrons")

• Back-propagation appeared in the 1980s

 • In the 1990s SVMs appeared and were more successful

• Since the beginning of this decade show great success in speech, vision, language, robotics…
Motivation 1

Can we learn representations from raw data?
Motivation 2

Can we learn non-linear decision boundaries

Actually very similar to motivation 1
A single neuron

- A neuron is a computational unit of the form

\[f_{w,b}(x) = f(w^T x + b) \]

- \(x \): input vector
- \(w \): weights vector
- \(b \): bias
- \(f \): activation function
A single neuron

• If f is sigmoid, a neuron is logistic regression

• Let x, y be a binary classification training example

\[p(y = 1 \mid x) = \frac{1}{1 + e^{-w^\top x - b}} = \sigma(w^\top x + b) \]

Provides a linear decision boundary
Single layer network

- Perform logistic regression in parallel multiple times (with different parameters)

\[y = \sigma(\hat{\mathbf{w}}^\top \hat{x} + b) = \sigma(\mathbf{w}^\top x) \]
\[x, \mathbf{w} \in \mathbb{R}^{d+1}, x_{d+1} = 1, w_{d+1} = b \]
Single layer network

- L1: input layer
- L2: hidden layer
- L3: output layer
- Output layer provides the prediction
- Hidden layer is the **learned** representation
Multi-layer network

Repeat:
Matrix notation

\[a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1) \]
\[a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2) \]
\[a_3 = f(W_{31}x_1 + W_{32}x_2 + W_{33}x_3 + b_3) \]
\[z = Wx + b, \ a = f(z) \]
\[x \in \mathbb{R}^4, \ z \in \mathbb{R}^3, \ W \in \mathbb{R}^{3 \times 4} \]
Language modeling with NNs

- Keep the Markov assumption
- Learn a probability $q(u \mid v, w)$ with distributed representations
Language modeling with NNs

\[e(w) = W_e \cdot w, \quad W_e \in \mathbb{R}^{d \times |\mathcal{V}|}, w \in \mathbb{R}^{|\mathcal{V}| \times 1} \]

\[h(w_{i-2}, w_{i-1}) = \sigma(W_h[e(w_{i-2}); e(w_{i-1})]), \quad W_h \in \mathbb{R}^{m \times 2d} \]

\[f(z) = \text{softmax}(W_o \cdot z), \quad W_o \in \mathbb{R}^{|\mathcal{V}| \times m}, z \in \mathbb{R}^{m \times 1} \]

\[p(w_i \mid w_{i-2}, w_{i-1}) = f(h(w_{i-2}, w_{i-1}))_i \]

\[p(\text{laughed} \mid \text{the, dog}) \]
Loss function

• Minimize negative log-likelihood

• When we learned word vectors, we were basically training a language model

\[
L(\theta) = -\sum_{i=1}^{T} \log p_{\theta}(w_i \mid w_{i-2}, w_{i-1})
\]
Advantages

• If we see in the training set

 The cat is walking in the bedroom

• We can hope to learn

 A dog was running through a room

• We can use n-grams with n > 3 and pay only a linear price

• Compared to what?
Parameter estimation

• We train with SGD

• How to efficiently compute the gradients?

• **backpropagation** (Rumelhart, Hinton and Williams, 1986)

• Proof in intro to ML, will repeat algorithm only and give an example here
Backpropagation

• Notation:

W_t: weight matrix at the input of layer t

z_t: output vector at layer t

$x = z_0$: input vector

y: gold scalar

$\hat{y} = z_L$: predicted scalar

$l(y, \hat{y})$: loss function

$v_t = W_t \cdot z_{t-1}$: pre-activations

$\delta_t = \frac{\partial l(y, \hat{y})}{\partial z_t}$: gradient vector
Backpropagation

- Run the network forward to obtain all values v_t, z_t

- Base:
 \[
 \delta_L = l'(y, z_L)
 \]

- Recursion:
 \[
 \delta_t = W^\top_{t+1}(\sigma'(v_{t+1}) \circ \delta_{t+1})
 \]
 \[
 \sigma'(v_{t+1}), \delta_{t+1} \in \mathbb{R}^{d_{t+1} \times 1}, W_{t+1} \in \mathbb{R}^{d_{t+1} \times d_t}
 \]

- Gradients:
 \[
 \frac{\partial l}{\partial W_t} = (\delta_t \circ \sigma'(v_t))z^\top_{t-1}
 \]
Bigram LM example

• Forward pass:

\[z_0 \in \mathbb{R}^{|\mathcal{V}| \times 1} : \text{one-hot vector input} \]
\[z_1 = W_1 \cdot z_0, \quad W_1 \in \mathbb{R}^{d_1 \times |\mathcal{V}|}, \quad z_1 \in \mathbb{R}^{d_1 \times 1} \]
\[z_2 = \sigma(W_2 \cdot z_1), \quad W_2 \in \mathbb{R}^{d_2 \times d_1}, \quad z_2 \in \mathbb{R}^{d_2 \times 1} \]
\[z_3 = \text{softmax}(W_3 \cdot z_2), \quad W_3 \in \mathbb{R}^{|\mathcal{V}| \times d_2}, \quad z_3 \in \mathbb{R}^{|\mathcal{V}| \times 1} \]
\[l(y, z_3) = \sum_i y^{(i)} \log z_3^{(i)} \]
Bigram LM example

- Backward pass:

\[\sigma'(v_3) \circ \delta_3 = (z_3 - y) \]

\[\delta_2 = W_3^\top (\sigma'(v_3) \circ \delta_3) = W_3^\top (z_3 - y) \]

\[\delta_1 = W_2^\top (\sigma'(v_2) \circ \delta_2) = W_2^\top (z_2 \circ (1 - z_2) \circ \delta_2) \]

\[\frac{\partial l}{\partial W_3} = (\delta_3 \circ \sigma'(v_3)) z_2^\top = (z_3 - y) z_2^\top \]

\[\frac{\partial l}{\partial W_2} = (\delta_2 \circ \sigma'(v_2)) z_1^\top = (\delta_2 \circ z_2 \circ (1 - z_2)) z_1^\top \]

\[\frac{\partial l}{\partial W_1} = (\delta_1 \circ \sigma'(v_1)) z_0^\top = \delta_1 z_0^\top \]
Summary

- Neural nets can improve language models:
 - better scalability for larger N
 - use of word similarity
 - complex decision boundaries
- Training through backpropagation
Summary

• Neural nets can improve language models:
 • better scalability for larger N
 • use of word similarity
 • complex decision boundaries
• Training through backpropagation

But we still have a Markov assumption

He is from France, so it makes sense that his first language is…
Recurrent neural networks

Input: \(w_1, \ldots, w_{t-1}, w_t, w_{t+1}, \ldots, w_T \), \(w_i \in \mathbb{R}^V \)

Model: \(x_t = W^{(e)} \cdot w_t \), \(W^{(e)} \in \mathbb{R}^{d \times V} \)
\[
h_t = \sigma(W^{(hh)} \cdot h_{t-1} + W^{(hx)} \cdot x_t), \quad W^{(hh)} \in \mathbb{R}^{D_h \times D_h}, \quad W^{(hx)} \in \mathbb{R}^{D_h \times d}
\]
\(\hat{y}_t = \text{softmax}(W^{(s)} \cdot h_t) \), \(W^{(s)} \in \mathbb{R}^{V \times D_h} \)
Recurrent neural networks
Recurrent neural networks

- Can exploit long range dependencies
- Each layer has the same weights (weight sharing/tying)
- What is the loss function?
Recurrent neural networks

- Can exploit long range dependencies
- Each layer has the same weights (weight sharing/tying)
- What is the loss function?

\[J(\theta) = \sum_{t=1}^{T} \text{CE}(y_t, \hat{y}_t) \]
Recurrent neural networks

• Component:
 • model? RNN (saw before)
 • Loss? sum of cross-entropy over time
 • Optimization? SGD
 • Gradient computation? back-propagation through time
Training RNNs

• Capturing long-range dependencies with RNNs is difficult

• Vanishing/exploding gradients

• Small changes in hidden layer value in step k cause huge/minuscule changes to values in hidden layer t for $t >> k$
Consider a simple linear RNN with no input:
\[
h_t = W \cdot h_{t-1}
\]
\[
h_t = W^t \cdot h_0
\]
\[
h_t = (Q \Lambda Q^{-1})^t \cdot h_0
\]
\[
h_t = (Q \Lambda^t Q^{-1}) \cdot h_0
\]
where \(W = Q \Lambda Q^{-1} \) is an eigendecomposition.

- Some eigenvalues will explode and some will shrink to zero.
- Stretch input in the direction of eigenvector with largest eigenvalue.
Explanation

\[h_t = W^{(hh)} \sigma(h_{t-1}) + W^{(hx)} x_t + b \]

\[\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}_t = \sum_{t=1}^{T} \mathcal{L}(h_t) \]
Explanation

\[
\frac{\partial L}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial \theta}
\]

\[
\frac{\partial L_t}{\partial \theta} = \sum_{k=1}^{t} \frac{\partial L_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial \theta}
\]

\[
\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k+1}^{t} W^{(hh)} \text{diag}(\sigma'(h_{i-1}))
\]
Explanation

Assume: $|\sigma'(\cdot)| \leq \gamma, \lambda_1 \leq \frac{1}{\gamma}$.

λ_1 is the absolute value of the largest eigenvalue of $W^{(hh)}$

$\forall k \quad \| \frac{\partial h_k}{\partial h_{k-1}} \| \leq \| W^{(hh)} \| \cdot \| \text{diag}(\sigma'(h_k)) \| < \frac{1}{\gamma} \gamma < 1$

Let η be a constant such that $\forall k \quad \| \frac{\partial h_k}{\partial h_{k-1}} \| \leq \eta < 1$

$\frac{\partial L_t}{\partial h_t} \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \leq \eta^{t-k} \frac{\partial L_t}{\partial h_t}$

so long-term influence vanishes to zero.
Solutions

• Exploding gradient: gradient clipping
 • Re-normalize gradient to be less than C (this is no longer the true gradient in size but it is in direction)
 • Exploding gradients are easy to detect
• The problem is with the model!
 • Change it (LSTMs, GRUs)
Illustration
LSTMs and GRUs
LSTMs and GRUs

• **Bottom line**: use vector addition and not matrix-vector multiplication. Allows for better propagation of gradients to the past
Gated Recurrent Unit (GRU)

• **Main insight**: add learnable gates to the recurrent unit that control the flow of information from the past to the present

• **Vanilla RNN**:

\[h_t = f(W^{(hh)} h_{t-1} + W^{(hx)} x_t) \]

• **Update and reset gates**:

\[z_t = \sigma(W^{(z)} h_{t-1} + U^{(z)} x_t) \]
\[r_t = \sigma(W^{(r)} h_{t-1} + U^{(r)} x_t) \]
Gated Recurrent Unit (GRU)

\[
\begin{align*}
z_t &= \sigma(W^{(z)} x_t + U^{(z)} h_{t-1}) \\
r_t &= \sigma(W^{(r)} x_t + U^{(r)} h_{t-1}) \\
\tilde{h}_t &= \tanh(W x_t + r_t \circ U h_{t-1}) \\
h_t &= z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t
\end{align*}
\]

- Use the gates to control information flow
 - If \(z=1 \), we simply copy the past and ignore the present (note that gradient will be 1)
 - If \(z=0 \), then we have an RNN like update, but we are also free to reset some of the past units, and if \(r=0 \), then we have no memory of the past
 - The + in the last equation is crucial
Illustration
Long short term memory (LSTMs)

- z has been split into i and f
- There is no r
- There is a new gate o that distinguishes between the memory and the output.
- c is like h in GRUs
- h is the output

\[
\begin{align*}
i_t &= \sigma(W^{(i)}x_t + U^{(i)}h_{t-1}) \\
f_t &= \sigma(W^{(f)}x_t + U^{(f)}h_{t-1}) \\
o_t &= \sigma(W^{(o)}x_t + U^{(o)}h_{t-1}) \\
\tilde{c}_t &= \tanh(W^{(c)}x_t + U^{(c)}h_{t-1}) \\
c_t &= f_t \circ c_{t-1} + i_t \circ \tilde{c}_t \\
h_t &= o_t \circ \tanh(c_t)
\end{align*}
\]
Illustration
Illustration

Chris Olah’s blog
More GRU intuition from Stanford

• Go over sequence of slides from Chris Manning
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Perplexity</th>
<th>Number of Params [Billions]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigmoid-RNN-2048 (Ji et al., 2015a)</td>
<td>68.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Interpolated KN 5-gram, 1.1B n-grams (Chelba et al., 2013)</td>
<td>67.6</td>
<td>1.76</td>
</tr>
<tr>
<td>Sparse Non-Negative Matrix LM (Shazeer et al., 2015)</td>
<td>52.9</td>
<td>33</td>
</tr>
<tr>
<td>RNN-1024 + MaxEnt 9-gram features (Chelba et al., 2013)</td>
<td>51.3</td>
<td>20</td>
</tr>
<tr>
<td>LSTM-512-512</td>
<td>54.1</td>
<td>0.82</td>
</tr>
<tr>
<td>LSTM-1024-512</td>
<td>48.2</td>
<td>0.82</td>
</tr>
<tr>
<td>LSTM-2048-512</td>
<td>43.7</td>
<td>0.83</td>
</tr>
<tr>
<td>LSTM-8192-2048 (No Dropout)</td>
<td>37.9</td>
<td>3.3</td>
</tr>
<tr>
<td>LSTM-8192-2048 (50% Dropout)</td>
<td>32.2</td>
<td>3.3</td>
</tr>
<tr>
<td>2-Layer LSTM-8192-1024 (Big LSTM)</td>
<td>30.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Big LSTM+CNN Inputs</td>
<td>30.0</td>
<td>1.04</td>
</tr>
<tr>
<td>Big LSTM+CNN Inputs + CNN Softmax</td>
<td>39.8</td>
<td>0.29</td>
</tr>
<tr>
<td>Big LSTM+CNN Inputs + CNN Softmax + 128-DIM Correction</td>
<td>35.8</td>
<td>0.39</td>
</tr>
<tr>
<td>Big LSTM+CNN Inputs + Char LSTM Predictions</td>
<td>47.9</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Summary

• Language modeling is a fundamental NLP task used in machine translation, spelling correction, speech recognition, etc.

• Traditional models use n-gram counts and smoothing

• Feed-forward take into account word similarity to generalize better

• Recurrent models can potentially learn to exploit long-range interactions

• Neural models dramatically reduced perplexity

• Recurrent networks are now used in many other NLP tasks (bidirectional RNNs, deep RNNs)