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The entropy function
X — Discrete random variable (finite number of values) over X with
probability mass p = px. The entropy of X is defined by:

H(X) := = Pr{X = x] - log, Pr[X = x]

XEX
taking 0 - log 0 = 0.
> H(X) = — ¥, p(x)log p(x) = Ex10g %5 = Ev—p(x) 09 ¥

» H(X) was introduced by Shannon as mesure for the uncertainty in X —
number of bits requited to describe X, information we don’t have about
X.

» When using the natural logarithm, the quantity is called nats (“natural™)

» Entropy is a function of p (sometimes refers to as H(p)).
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Examples

1. X~(3.43):
(i.e., for some x; # x> # x3, Px(x1) = 3, Px(x2) = 1,Px(x3) = 1)
H(X)=—-}logl—1logi—1logi=2%+12+1.2=1].

2. H(X)=H(3.3:%).

3. X is uniformly distributed over {0, 1}":
H(X) =~ 3 75 l0g 35 = —log 45 = n.
» n bits are needed to describe X
» n bits are needed to sample X

4. X = Xy,..., X, where X; are iid over {0, 1}, with
Px (1) :=Pr{X; = 1] = 3. H(X) =?
5. X~ (p,q),p+qg=1
» H(X) = H(p,q) = —plogp — qlogq
» H(1,0)=(0,1)=0
> H(2,2) 1
» h(p) := H(p,1 — p) is continuous
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Applications

>

Data compression

Error correction codes

Algorithm Analysis

Protocols Analysis

Cryptography

Counting. Example # of gold coins in a cube

» Projection of Qon xy — 6
» Projection of Qon xz— 8
» Projection of Qon yz — 12

Can we bound |Q|?

and more and more...

And all are rather simple to prove
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Axiomatic derivation of the entropy function

Any other choices for defining entropy?
Shannon function is the only symmetric function (over probability
distributions) satisfying the following three axioms:

A1 Continuity: H(p,1 — p) is continuous function of p.
A2 Normalization: H(3, 3) =1
A3 Grouping axiom:
H(p1, p2; - -, pm) = H(p1 + P2, Ps, - ... pm) + (P1 + ) H(55L5, , 555,
Why A3?

Not hard to prove that Shannon’s entropy function satisfies above axioms,
proving this is the only such function is more challenging.

Let H* be a function that satisfying the above axioms.
We prove (assuming additional axiom) that H* is the Shannon function H.
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Generalization of the grouping axiom

Fix p=(pi,...,pm) and let Sy = Zf.‘:1 b
Grouping axiom: H*(ps, pz, ..., pm) = H*(S2,Ps; .., Pm) + SeH* (&L, &)-

Claim 1 (Generalized grouping axiom)
H*(p1ap27"'apm) = H*(Skapk+17"'7pm)+ Sk : H*(%L77%I;) J
Proof: Let h(q) = H*(q,1 — q).
HPropere o Pm) = H'(Seipas....Pm) + Seh(i) (1)
= H(S3.Pa,- -, Pm) + Ssh(22) + Sph(22)
S3 Sy

H*(Sk, Pk+1s- -, Pm) + Z Sih(*’
—2

Hence, B
p1 Pk Sk-1 Pk P//Sk 1 pi
* =) = — ih(= 2
H(S’ ,Sk) H*( Sk 5 Z S,/Sk SKZ;S, (3/) ()

Claim follows by combining the above equations. [
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Further generalization of the grouping axiom

Let1=ki <hko<...<kg<mandlet C; = Zk’“ ' p; (letting kg1 = m+1).

Claim 2 (Generalized™* grouping axiom)

H*(p1’p27"'7pm) =

H*(Cr,...,Cq) + Ci - H*(&,.... B + .. .+ Cq- H (B, .., &)

Proof: Follow by the extended group axiom and the symmetry of H [

Implication: Let f(m) := H*(%,...,%)
m
> f(3%) =2f(3) =2H"({, 3. 3)
= f(3") = nf(3).
> f(mn) = f(m) + f(n)
= f(m*) = kf(m)
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f(m) =logm
We give a proof under the additional axiom
A4 f(m) < f(m+1)

(you can Google for a proof using only A1—A3)
» ForneN,let k = |log3" = nlog3].
» Since, 2k < 3" < 2k+1 by A4: f(2K) < £(3") < f(2Kk+T).
» By grouping axiom, k < nf(3) < k+ 1.

= %gf(S)gL”Lﬂ“mranyneN

= f(3) =log3.
» Proof extends to any integer (not only 3)

Iftach Haitner (TAU) Application of Information Theory, Lecture 1 October 20, 2015 8/14



H*(p,q) = —plogp — qlog q

» For rational p, g, let p= % and g = ™%, where m is the smallest
common multiplier.

» By grouping axiom, f(m) = H*(p,q) + p- f(k) + g - f(m — k).

» Hence,
H*(p,q) = logm—plogk — glog(m — k)
= p(logm —log k) + q(log m — log(m — k))
— —plog” —qleg™ =¥ _ _olegp— qlo
= —plog - —qlog —— = —plogp —qlogq

» By continuity axiom, holds for every p, q.
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H*(p1. P2, - -, Pm) = = 327" pilog pi
We prove for m = 3. Proof for arbitrary m follows the same lines.

» For rational py, p2, ps, let pr = &, g = % and p; = %, where
m = ki + ko + k3 is the smallest common multiplier.

> f(m) = H*(p1, P2, ps) + p1f(k1) + p2f(kz) + psf(ks)
» Hence,

H*(p1, P2, p3) logm — pylog ki — pz2log k2 — p3 log ks
= —pylo k_ lo ke _p ke
= p1109 m p2109 m Psm

= —pilogpi — pzlogps — pslog ps

» By continuity axiom, holds for every p;, p2, ps.

O
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Section 1

Basic Properties
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0 < H(p1,...,pm) < logm

» Tight bounds

>H(ID17'-'7pm):Ofor(p17~--apm):( a 70)
> H(p17"'7pm):Iogmfor(ph"-vpm)*(1’“'7

» Non negativity is clear.

)

» A function f is concave (“keura”) if V t;, &, A € [0,1] <1
M)+ (1= Nf(k) < f(AH+ (1 = Mb)

= (by induction) V' t;,..., t, A1,..., A € [0, 1] with >, \j =1
i Aif(l) < 12 Aith)
= (Jensen inequality): E f(X) < f(E X) for any random variable X.

> log(x) is (strictly) concave for x > 0, since its second derivative (—%) is
always negative.

» Hence, H(ps,...,Pm) = >, Pi Iog% < log Z,p,-% =logm
> Alternatively, for X over {1,. m},
H(X) = ExlogF> <IogExF> =logm
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H(9(X)) < H(X)
Let X be a random variable, and let g be over Supp(X) := {x: Px(x) > 0}.
> H(Y = g(X)) < H(X).
Proof:
HX) = —ZPX )logPx(x) ==Y > Px(x)logPx(x)
Y ox:g(x)=y

>~ Py(y)- log P
> Z v(y) - max_logPx(x)

z—ZPy -logPy(y) = H(Y)

v

Or use the group axiom...

If g is injective, then H(Y) = H(X).

Proof: px(X) = Py(Y).

If g is non-injective (over Supp(X)), then H(Y) < H(X). Proof: ?
H(X) = H(2X).

H(sin(X)) < H(X), if 0,7 € Supp(X).

v

v

v

v
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Historical background

» Shannon (1948) H = — >, pilog p;
» But the notion of entropy already existed in statistical physics
» There, entropy — energy that cannot used, statistical disorder

» Clausius (1865), who coined the name entropy, based on Carnot (1824),
H= [ th (Qis heatand T is temperature)

» Boltzmann (1877) H = log S, for S being the number of states a system
can be in (after measuring the macro parameters: pressure,
temperature)

» log # of states is Shannon entropy of the uniform distribution

» Shannon looked for a name for his measure, von Neumann pointed out
the relation to physics and suggested the name entropy.

» Today it is accepted that Shannon’s entropy is the right notion also in
statistical mechanic. Measures the uncertainty of a system — energy
that cannot be used.

» Carnot was also an engineer...
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Notation

> [nj={1,...,n}

Px(x) = Pr[X = x]

Supp(X) := {x: Px(x) > 0}

For random variable X over X, let p(x) be its density function:
p(x) = Px(x).

In other words, X ~ p(x).

For random variable Y over Y, let p(y) be its density function:
p(y) =Py(y)...

v

v

v

v
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