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The entropy function

X — Discrete random variable (finite number of values) over X with
probability mass p = pX . The entropy of X is defined by:

H(X ) := −
∑
x∈X

Pr[X = x ] · log2 Pr[X = x ]

taking 0 · log 0 = 0.

I H(X ) = −
∑

x p(x) log p(x) = EX log 1
p(X) = EY=p(X) log 1

Y

I H(X ) was introduced by Shannon as mesure for the uncertainty in X —
number of bits requited to describe X , information we don’t have about
X .

I When using the natural logarithm, the quantity is called nats (“natural")

I Entropy is a function of p (sometimes refers to as H(p)).
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Examples

1. X ∼ ( 1
2 ,

1
4 ,

1
4 ):

(i.e., for some x1 6= x2 6= x3, PX (x1) =
1
2 ,PX (x2) =

1
4 ,PX (x3) =

1
4 )

H(X ) = − 1
2 log 1

2 −
1
4 log 1

4 −
1
4 log 1

4 = 1
2 + 1

4 · 2 + 1
4 · 2 = 1 1

2 .

2. H(X ) = H( 1
2 ,

1
4 ,

1
4 ).

3. X is uniformly distributed over {0,1}n:

H(X ) = −
∑2n

i=1
1
2n log 1

2n = − log 1
2n = n.

I n bits are needed to describe X
I n bits are needed to sample X

4. X = X1, . . . ,Xn where Xi are iid over {0,1}, with
PXi (1) := Pr[Xi = 1] = 1

3 . H(X ) =?

5. X ∼ (p,q), p + q = 1
I H(X ) = H(p,q) = −p log p − q log q

I H(1,0) = (0,1) = 0

I H( 1
2 ,

1
2 ) = 1

I h(p) := H(p,1− p) is continuous
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Applications

I Data compression

I Error correction codes

I Algorithm Analysis

I Protocols Analysis

I Cryptography

I Counting. Example # of gold coins in a cube

I Projection of Q on xy — 6
I Projection of Q on xz — 8
I Projection of Q on yz — 12

Can we bound |Q|?
I and more and more. . .

And all are rather simple to prove
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Axiomatic derivation of the entropy function

Any other choices for defining entropy?
Shannon function is the only symmetric function (over probability
distributions) satisfying the following three axioms:

A1 Continuity: H(p,1− p) is continuous function of p.

A2 Normalization: H( 1
2 ,

1
2 ) = 1

A3 Grouping axiom:
H(p1,p2, . . . ,pm) = H(p1 + p2,p3, . . . ,pm) + (p1 + p2)H( p1

p1+p2
, p2

p1+p2
)

Why A3?
Not hard to prove that Shannon’s entropy function satisfies above axioms,
proving this is the only such function is more challenging.

Let H∗ be a function that satisfying the above axioms.
We prove (assuming additional axiom) that H∗ is the Shannon function H.
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Generalization of the grouping axiom

Fix p = (p1, . . . ,pm) and let Sk =
∑k

i=1 pi .
Grouping axiom: H∗(p1,p2, . . . ,pm) = H∗(S2,p3, . . . ,pm) + S2H∗( p1

S2
, p2

S2
).

Claim 1 (Generalized grouping axiom)

H∗(p1,p2, . . . ,pm) = H∗(Sk ,pk+1, . . . ,pm) + Sk · H∗( p1
Sk
, . . . , pk

Sk
)

Proof: Let h(q) = H∗(q,1− q).
H∗(p1,p2, . . . ,pm) = H∗(S2,p3, . . . ,pm) + S2h(

p2

S2
) (1)

= H∗(S3,p4, . . . ,pm) + S3h(
p3

S3
) + S2h(

p2

S2
)

...
= H∗(Sk ,pk+1, . . . ,pm) +

k∑
i=2

Sih(
pi

Si
)

Hence,

H∗(
p1

Sk
, . . . ,

pk

Sk
) = H∗(

Sk−1

Sk
,

pk

Sk
) +

k−1∑
i=2

Si

Sk
h(

pi/Sk

Si/Sk
) =

1
Sk

k∑
i=2

Sih(
pi

Si
) (2)

Claim follows by combining the above equations.
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Further generalization of the grouping axiom

Let 1 = k1 < k2 < . . . < kq < m and let Ct =
∑kt+1−1

i=kt
pi (letting kq+1 = m + 1).

Claim 2 (Generalized++ grouping axiom)

H∗(p1,p2, . . . ,pm) =

H∗(C1, . . . ,Cq) + C1 · H∗( p1
C1
, . . . ,

pk2−1

C1
) + . . .+ Cq · H∗(

pkq+1

Cq
, . . . , pm

Cq
)

Proof: Follow by the extended group axiom and the symmetry of H

Implication: Let f (m) := H∗(
1
m
, . . . ,

1
m︸ ︷︷ ︸

m

)

I f (32) = 2f (3) = 2H∗( 1
3 ,

1
3 ,

1
3 )

=⇒ f (3n) = nf (3).

I f (mn) = f (m) + f (n)

=⇒ f (mk ) = kf (m)
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f (m) = log m

We give a proof under the additional axiom

A4 f (m) ≤ f (m + 1)

(you can Google for a proof using only A1–A3)

I For n ∈ N, let k = blog 3n = n log 3c.
I Since, 2k ≤ 3n ≤ 2k+1, by A4: f (2k ) ≤ f (3n) ≤ f (2k+1).

I By grouping axiom, k < nf (3) < k + 1.

=⇒ bn log 3c
n ≤ f (3) ≤ bn log 3c+1

n for any n ∈ N

=⇒ f (3) = log 3.

I Proof extends to any integer (not only 3)
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H∗(p,q) = −p log p − q log q

I For rational p,q, let p = k
m and q = m−k

m , where m is the smallest
common multiplier.

I By grouping axiom, f (m) = H∗(p,q) + p · f (k) + q · f (m − k).

I Hence,

H∗(p,q) = log m − p log k − q log(m − k)
= p(log m − log k) + q(log m − log(m − k))

= −p log
m
k
− q log

m − k
m

= −p log p − q log q

I By continuity axiom, holds for every p,q.
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H∗(p1,p2, . . . ,pm) = −
∑m

i pi log pi

We prove for m = 3. Proof for arbitrary m follows the same lines.

I For rational p1,p2,p3, let p1 = k1
m , q = k2

m and p3 = k3
m , where

m = k1 + k2 + k3 is the smallest common multiplier.

I f (m) = H∗(p1,p2,p3) + p1f (k1) + p2f (k2) + p3f (k3)

I Hence,

H∗(p1,p2,p3) = log m − p1 log k1 − p2 log k2 − p3 log k3

= −p1 log
k1

m
− p2 log

k2

m
− p3

k3

m
= −p1 log p1 − p2 log p2 − p3 log p3

I By continuity axiom, holds for every p1,p2,p3.
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Section 1

Basic Properties
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0 ≤ H(p1, . . . ,pm) ≤ log m

I Tight bounds
I H(p1, . . . ,pm) = 0 for (p1, . . . ,pm) = (1,0, . . . ,0).
I H(p1, . . . ,pm) = log m for (p1, . . . ,pm) = ( 1

m , . . . ,
1
m ).

I Non negativity is clear.

I A function f is concave (“keura”) if ∀ t1, t2, λ ∈ [0,1] ≤ 1
λf (t1) + (1− λ)f (t2) ≤ f (λt1 + (1− λ)t2)

=⇒ (by induction) ∀ t1, . . . , tk , λ1, . . . , λk ∈ [0,1] with
∑

i λi = 1∑
i λi f (ti) ≤ f (

∑
i λi ti)

=⇒ (Jensen inequality): E f (X ) ≤ f (E X ) for any random variable X .

I log(x) is (strictly) concave for x > 0, since its second derivative (− 1
x2 ) is

always negative.

I Hence, H(p1, . . . ,pm) =
∑

i pi log 1
pi
≤ log

∑
i pi

1
pi
= log m

I Alternatively, for X over {1, . . . ,m},
H(X ) = EX log 1

PX (X) ≤ log EX
1

PX (X) = log m
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H(g(X )) ≤ H(X )

Let X be a random variable, and let g be over Supp(X ) := {x : PX (x) > 0}.
I H(Y = g(X )) ≤ H(X ).

Proof:

H(X ) = −
∑

x

PX (x) log PX (x) = −
∑

y

∑
x : g(x)=y

PX (x) log PX (x)

≥ −
∑

y

PY (y) · max
x : g(x)=y

log PX (x)

≥ −
∑

y

PY (y) · log PY (y) = H(Y )

I Or use the group axiom...
I If g is injective, then H(Y ) = H(X ).

Proof: pX (X ) = PY (Y ).
I If g is non-injective (over Supp(X )), then H(Y ) < H(X ). Proof: ?
I H(X ) = H(2X ).
I H(sin(X )) < H(X ), if 0, π ∈ Supp(X ).
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Historical background

I Shannon (1948) H = −
∑

i pi log pi

I But the notion of entropy already existed in statistical physics
I There, entropy — energy that cannot used, statistical disorder
I Clausius (1865), who coined the name entropy, based on Carnot (1824),

H =
∫

t
δQ
T dt (Q is heat and T is temperature)

I Boltzmann (1877) H = log S, for S being the number of states a system
can be in (after measuring the macro parameters: pressure,
temperature)

I log # of states is Shannon entropy of the uniform distribution
I Shannon looked for a name for his measure, von Neumann pointed out

the relation to physics and suggested the name entropy.
I Today it is accepted that Shannon’s entropy is the right notion also in

statistical mechanic. Measures the uncertainty of a system — energy
that cannot be used.

I Carnot was also an engineer...
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Notation

I [n] = {1, . . . ,n}
I PX (x) = Pr[X = x ]

I Supp(X ) := {x : PX (x) > 0}
I For random variable X over X , let p(x) be its density function:

p(x) = PX (x).

In other words, X ∼ p(x).

I For random variable Y over Y, let p(y) be its density function:
p(y) = PY (y). . .
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