Part I

Administration and Course Overview
Section 1

Administration
Important Details

1. Iftach Haitner. Schriber 20, email iftachh at gmail.com
 Reception: Sundays 9:00-10:00 (please coordinate via email in advance)

2. Who are you?

3. Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you’re not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line: subscribe 0368-3500-34 <Real Name>

4. Course website:
 http://www.cs.tau.ac.il/~iftachh/Courses/FOC/Spring14
 (or just Google iftach and follow the link)
Grades

1. Class exam 80
2. Homework 20%: 5-6 exercises.
 - Recommended to use use \texttt{\LaTeX} (see link in course website)
 - Exercises should be sent to ? or put in mailbox ?, in time!
and..

1. Slides
2. English
Course Prerequisites

1. Some prior knowledge of cryptography (such as 0369.3049) might help, but not necessarily.
2. Basic probability.
3. Basic complexity (the classes $\mathcal{P}, \mathcal{NP}, \mathcal{BPP}$)
Books:

Lecture notes
1. 2013 Course.
2. Ran Canetti www.cs.tau.ac.il/~canetti/f08.html
5. Salil Vadhan people.seas.harvard.edu/~salil/cs120/
Section 2

Course Topics
Course Topics

Basic primitives in cryptography (i.e., one-way functions, pseudorandom generators and zero-knowledge proofs).

- Focus on *formal* definitions and *rigorous* proofs.
- The goal is not studying some list, but to understand cryptography.
- Get ready to start researching
Part II

Foundation of Cryptography
What is Cryptography?

Hardness assumptions, why do we need them?

Does $\mathcal{P} \neq \mathcal{NP}$ suffice?

\mathcal{NP}: all (languages) $L \subset \{0, 1\}^*$ for which there exists a polynomial-time algorithm V and (a polynomial) $p \in \text{poly}$ such that the following hold:

1. $V(x, w) = 0$ for any $x \notin L$ and $w \in \{0, 1\}^*$
2. for any $x \in L$, $\exists w \in \{0, 1\}^*$ with $|w| \leq p(|x|)$ and $V(x, w) = 1$

\mathcal{NP}: i.e., $\exists L \in \mathcal{NP}$, such that for any polynomial-time algorithm A, $\exists x \in \{0, 1\}^*$ with $A(x) \neq 1_L(x)$

Polynomial-time algorithms: an algorithm A runs in polynomial-time, if $\exists p \in \text{poly}$ such that the running time of $A(x)$ is bounded by $p(|x|)$ for any $x \in \{0, 1\}^*$

Problems: hard on the average. No known solution

One-way functions: an efficiently computable function that no efficient algorithm can invert.
Part III

Notation
Notation I

- For $t \in \mathbb{N}$, let $[t] := \{1, \ldots, t\}$.
- Given a string $x \in \{0, 1\}^*$ and $0 \leq i < j \leq |x|$, let $x_{i,\ldots,j}$ stands for the substring induced by taking the i, \ldots, j bit of x (i.e., $x[i] \ldots, x[j]$).
- Given a function f defined over a set U, and a set $S \subseteq U$, let $f(S) := \{f(x): x \in S\}$, and for $y \in f(U)$ let $f^{-1}(y) := \{x \in U: f(x) = y\}$.
- poly stands for the set of all polynomials.
- The worst-case running-time of a polynomial-time algorithm on input x, is bounded by $p(|x|)$ for some $p \in \text{poly}$.
- A function is polynomial-time computable, if there exists a polynomial-time algorithm to compute it.
- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu: \mathbb{N} \mapsto [0, 1]$ is negligible, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly}$ there exists $n' \in \mathbb{N}$ with $\mu(n) \leq 1/p(n)$ for any $n > n'$.
The support of a distribution P over a finite set U, denoted $\text{Supp}(P)$, is defined as $\{u \in U : P(u) > 0\}$.

Given a distribution P and an event E with $\Pr_P[E] > 0$, we let $(P | E)$ denote the conditional distribution P given E (i.e., $(P | E)(x) = \frac{D(x)^E}{\Pr_P[E]}$).

For $t \in \mathbb{N}$, let let U_t denote a random variable uniformly distributed over $\{0, 1\}^t$.

Given a random variable X, we let $x \leftarrow X$ denote that x is distributed according to X (e.g., $\Pr_{x \leftarrow X}[x = 7]$).

Given a final set S, we let $x \leftarrow S$ denote that x is uniformly distributed in S.

We use the convention that when a random variable appears twice in the same expression, it refers to a single instance of this random variable. For instance, $\Pr[X = X] = 1$ (regardless of the definition of X).
Given distribution P over \mathcal{U} and $t \in \mathbb{N}$, we let P^t over \mathcal{U}^t be defined by $D^t(x_1, \ldots, x_t) = \prod_{i \in [t]} D(x_i)$.

Similarly, given a random variable X, we let X^t denote the random variable induced by t independent samples from X.