Foundation of Cryptography, Spring 2013	Iftach Haitner
Problem set 1	
March 19, 2013	Due: April 9

- Please submit the handout in class.
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In case you work in (small) groups, please write the id list of your partners in the solution file. I stress that each student should write his solution by himself (joint effort is only allowed in the "thinking phase")
- The notation we use appear in the first lecture (www.cs.tau.ac.il/~iftachh/Courses/FOC/Fall11/Slides/OWF.pdf), section "Notation"

Exe 1 one way functions and P vs. NP (10 points). Prove that the existence of oneway functions implies $\mathrm{P} \neq \mathrm{NP}$.
Guideline: for any poly-time computable function f define a set $L_{f} \in$ NP such that if $L_{f} \in \mathrm{P}$ then f in insertable (by poly-time algorithm)

Exe 2 (10 points). Refute the following conjecture:
For every length-preserving one-way function f, the function $f^{\prime}(x)=f(x) \oplus x$ is oneway.

Exe 3 (10 points). Let f be a one-way function. Prove that for any PPT A, it holds that

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}[\mathrm{A}(f(x), i)=x[i]] \leq 1-\frac{1}{2 n},
$$

for large enough $n \in \mathbb{N}$, where $x[i]$ is the i 'th bit of x.
Bonus* : prove the above when replacing $1-\frac{1}{2 n}$ with $1-\frac{1}{n}$.
Exe 4 (basic probability). Let P and Q be distributions over a finite set \mathcal{U}.
a. (2 points) Prove that $\operatorname{SD}(P, Q)=\max _{\mathcal{S} \subseteq \mathcal{U}}(P(\mathcal{S})-Q(\mathcal{S})$) (recall that $\operatorname{SD}(P, Q):=$ $\left.\left.\frac{1}{2} \sum_{u \in \mathcal{U}}|P(u)-Q(u)|\right)\right)$.
b. (3 points) Prove that $\mathrm{SD}\left(P^{2}, Q^{2}\right) \leq 2 \cdot \mathrm{SD}(P, Q)$ (see "Notation" in the first class slides for the definition of $\left.P^{2}, Q^{2}\right)$.

Let $\mathcal{Q}=\left\{Q_{n}\right\}_{n \in \mathbb{N}}, \mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$ and $\mathcal{R}=\left\{R_{n}\right\}_{n \in \mathbb{N}}$ be distribution ensembles.
c. (2 points) Given that $\mathcal{Q} \xlongequal{\equiv} \mathcal{P}$ (i.e., \mathcal{Q} is computationally indistinguishable from \mathcal{P}) and $\mathcal{P} \xlongequal{\equiv} \mathcal{R}$, prove that $\mathcal{Q} \xlongequal{\equiv} \mathcal{R}$.
d. (3 points) Give an example for ensemble \mathcal{Q} and \mathcal{P} such that: (1) $\operatorname{Supp}\left(Q_{n}\right)=$ $\operatorname{Supp}\left(P_{n}\right)$ for every $n \in \mathbb{N}$, and (2) $\operatorname{SD}\left(Q_{n}, P_{n}\right)=1-\operatorname{neg}(n)$ (i.e., for every $p \in$ poly, exists $n^{\prime} \in \mathbb{N}$ with $\operatorname{SD}\left(Q_{n}, P_{n}\right)>1-\frac{1}{p(n)}$ for every $\left.n>n^{\prime}\right)$

