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1    Introduction 

 
Encryption, or guaranteeing secrecy of information, is perhaps the most basic task in cryptography, yet, it 
is the hardest to capture mathematically. We first deal with symmetric encryption, where the parties have 
a joint secret key. Next lecture will discuss public key encryption, but most of the basic principles and 
notions will be the same or very similar. 
 
A pair of algorithms (ENC, DEC) is a symmetric encryption scheme if it guarantees correct decryption 
(validity): For any m in message domain M, DEC (k, ENC (k, m)) = m (except perhaps for negligible 
probability in say |k|, over the choice of k and the random choices of DEC and ENC). Next, we will want to 
define "secrecy". 
 
How to define secrecy? It is easier to capture "lack of secrecy”, i.e. what must not happen: 

 Adversary should not learn the secret key. 

 Adversary should not learn the message. 

 Adversary should not learn parts of the message (e.g. the first bit of the message). 

 Adversary should not learn any predicate of the message. 

 Adversary should not be able to recognize any relations between encrypted messages (e.g. he 
shouldn’t know if a message was sent twice).  

 Adversary should not be able to do the above even if she has some prior knowledge on the message 
(e.g. she knows that the message is written in English or that it is either "buy" or "sell"). 

Notice that already from these requirements we can conclude that encryption needs to be either stateful 
or probabilistic; otherwise repeated message will have the same cipher texts. 
 
Since the list is too long and we never know when we "get it all" we try a different approach: describe an 
ideal scheme, where security will be obviously guaranteed. We say that an encryption scheme is secure if 
it "behaves like the ideal scheme" in the eyes of any feasible observer. Let’s formalize this definitional 
approach. 



2    Semantic Security 
 
The statement that a symmetric encryption scheme is secure can be made by saying that an encryption 
scheme is indistinguishable from some ideal scheme (which we know to be secure). Our ideal scheme 
will be such that the adversary can’t possibly learn anything about the encrypted message by observing 
the cipher text, except some amount of data that we leak intentionally (this leaked data will be called a 
leakage function; a typical example of a leakage function is the size of the message); we will then say that 
the encryption scheme is secure with respect to the specific leakage function. 
 
We formalize the definition in three steps: 
 

1. Formalize the real-life setting we’re addressing  
2. Formalize the ideal scheme  
3. Formalize the notion of "behaves like the ideal scheme"  

 

2.1 Real Life Scheme  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Real life scheme 
 
Assume a (hostile) environment      that generates messages based on some distribution   and 
attempts to learn something based on their corresponding cipher text. We can model the encryption 
process as follows: 
 
1.     draws m from distribution D and sends it to ENC 
2.     receives              
3.     computes       , where P is a predicate (intuitively,            represents that the 

information learned from c by     on c’s plaintext agrees with m) 

 
[See Figure 1] 
 
2.2    Ideal Scheme 
 
The ideal encryption process is the same as the real life process, except that     doesn’t receive the cipher c. 

Instead, the output of some leakage function      of the plaintext is given to a simulator  , which then outputs 
   based solely on     .      represents the information that the scheme is allowed to leak on a plaintext (a 

common example is l(m) = |m|). More precisely: 

1.     sends   to ENC 
2. Some information       leaks from ENC to the simulator S 
3. S computes    from      and sends    to     
4.     computes        , where P is a predicate 
 
 
[See Figure 2]  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Ideal scheme 
 
2.3    "Behaves Like the Ideal Scheme" 
 
Intuitively, when saying that a scheme "behaves like the ideal scheme", we want to say that from the point 
of view of any external observer the real scheme looks like the ideal scheme. Namely, there is a simulator 
S that simulates the real scheme s.t. any environment     that interacts with either the real scheme or 

with   cannot tell the difference between the two cases. Formally: 
 
Definition 2.1. A symmetric encryption scheme (ENC, DEC) is semantically secure with respect to 

message domain            and leakage function  , if there exists a polytime simulator S s.t. for any 

environment     and for any polytime predicate P : 
 

|          [                             ]

           [              (    )         ]|       

 
where      is some negligible function. 
 
Note the new notation: the experiment is described inside the probability brackets. The probability is 
taken also over the random choices of the relevant algorithms. 
 
 

3    Security by Indistinguishability 

 
Even though semantic security seems like very intuitive notion, it is certainly cumbersome to work with. 
So instead we will see an alternative definition which is considerably simpler, and ends up being 
equivalent to semantic security. The definition involves a simple game where the adversary is tested for 
the ability to guess which message is encrypted in a given cipher text. That is, given an encryption 
scheme (ENC, DEC) for domain M, leakage function l and an adversary B, define the following game: 

1. B chooses two messages         s.t.               
2. A bit         and a key          are chosen at random and               is computed  
3. B receives   
4. B outputs a bit    
 
We say that B wins the game if      ’. 



Definition 3.1.  Security by Indistinguishability 
A symmetric encryption scheme           is secure by indistinguishability with respect to 

message domain            and leakage function   if for any polytime adversary B we have: 
 

  [                                                                         ]

 
 

 
      

 

For some negligible function     . 
 
We add the variable   in the above definition to emphasize that B keeps an internal state 

throughout the whole experiment; here   represents the internal state of B. This definition indeed 
seems much simpler: no simulators and no predicates to learn. 
 
For the following theorem, we assume that   is sampleable (i.e. given a value   in the range of   it 
is possible to find in polytime an     s.t.         ). 

 
Theorem 3.2. A symmetric encryption scheme             is semantically secure with 

respect to domain   and sampleable leakage function   if and only if   is secure by 
indistinguishability for   and  . 
 
Proof. Let’s denote security by indistinguishability IND and semantic security SEM. 
 
IND  SEM 
Intuition: To show that E is also SEM, we need to construct, for each environment     that sees 
an encryption of a message  , a simulator   that generates some cipher test   , that satisfies any 

external predicate P with respect to the encrypted message - without seeing             . The 

idea is that S can simply encrypt some arbitrary dummy message   .     will not be able to say 
something meaningfully different on           than on         , or else     can be used to 

win the indistinguishability game for  . 

 
Let             be secure by indistinguishability with respect to message domain M and sampleable 
leakage function  . 
So, by definition, for any polytime adversary  : 
 

  [                                                                       

    ]  
 

 
      

 
For some negligible function     . 
 
We build S as follows: 
Given input     : 
1. S finds    s.t            
2. S chooses          
3. S outputs                 
 
Assume by contradiction that   is not semantically secure with respect to domain   and  . Then 

there exists an     s.t. for any S (also the S we built): 
 

           [                                      ] (1) 

           [              (    )                   ]    (2) 
 

We’ll get our contradiction by constructing an adversary   that wins the distinguishing game with probability   
 

 
 

 

 
 : 

1. B chooses at random         



2. B chooses two messages       s.t.           ,      is the message chosen by S 
3. B receives               for        ,          

4. B computes         ; if          then B outputs       , else B outputs         

 
The idea here is that if c is an encryption of    then we are in case (1). If c is an encryption of      then 
we are in case (2). More precisely: 
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        (10) 

 
(6) is correct since   [            ]    [              ]   . 

(7) is correct because if B wins when    , then B outputs      and          . 

(8) is correct because if B loses when      , then B outputs      (he lost because       ) and 

         . 
We got a contradiction for E being IND. 
 
SEM  IND 
 
We show that the ability to win the game can be translated to the ability to predict a non-trivial predicate 

of the message, under a certain distribution. That is, we show:          

 
Assume E is not secure by IND. Therefore we have an adversary B that wins the distinguishing game with probability 

   
 
 
. We want to show that E is not secure by SEM, therefore we need to construct       such that no simulator 

S can satisfy (1), (2). (Note that this is slightly stronger than what we need - since     and P won’t depend on S). Let 

      be the messages generated by B. Note that       are fixed since B is w.l.o.g. deterministic. 
 
1.     obtains random        ,                , outputs    and receives cipher text c 
2.   outputs           and passes    to     

3.     outputs 1 iff      

 

By assumption on  ,     outputs 1 with probability    
 
 
.  However, the view of S is completely independent 

of  , thus it can make output 1 with probability at most 
 

 
 Therefore we get, for any simulator S: 
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Therefore, E is not secure by SEM. 
 
 

  



4    Security for Multiple Encryptions, CPA security 

 
The above definitions consider only the case where the adversary sees a single encryption of some 
message. When the adversary sees multiple messages it makes sense to ask how the messages to be 
encrypted are chosen. Two options are: 
 

 Non-adaptively: all messages chosen in advance, before any cipher text is known 
 Fully adaptively: each message is chosen after seeing the previous cipher text 
 
For simplicity, we’ll formulate IND-style definitions for these cases first. For the non-adaptive case, we 
modify the distinguishing game as follows: 
 
Given an encryption scheme for domain   and leakage function   and an adversary  , define the 
following IND-KPA game (for indistinguishability under known plaintext attack): 
1. B chooses p pairs of messages                         s.t. for all i:  (    )          

2. B receives    (      )      (      ) for a random bit   

3. B outputs bit    
 
B is said to win the game if       . 
 
For the adaptive case, the IND-CPA game (for indistinguishability under chosen plaintext attack) is the 
same, except that B generates the next pair of message only after seeing the previous cipher text. 
 
Definition 4.1. Let E = (ENC, DEC) be a symmetric encryption scheme. E is called IND-KPA secure 
(resp., IND-CPA secure) if any polytime adversary wins the IND-KPA (resp., IND-CPA) game with 

probability at most 
 

 
      for some negligible function     . 

 
Now, define the real and ideal schemes for SEM-KPA security: the basic idea is that we allow the 

adversary to output a set of messages      and receive a set of matching cipher texts     , with 
differences between the real and ideal scheme just as in the definition of SEM security for a single 
message. 
 
The real scheme proceeds as follows: let     be an environment that generates messages based on 
some distribution   and attempts to learn something based on their corresponding cipher text. We can 
model the encryption process as follows: 
 
1.     draws                 from distribution D and sends it to ENC 
2.     receives                                      
3.     computes             , where P is a predicate (intuitively,                  represents that the 

information learned from      by     on c’s plaintext agrees with     ) 
 
Ideal scheme 
Similarly to the SEM definition of the ideal scheme, the ideal encryption passes the output of the leakage 
function      to the simulator S, which then fabricates the cipher text; this occurs for each message in the 
set     . More precisely: 

 

1.     sends      to ENC 
2. Some information          leaks from ENC to the simulator S 
3. S computes       from         and sends       to     
4.     computes             , where P is a predicate 
 
 
Definition 4.2. A symmetric encryption scheme (ENC, DEC) is SEM-KPA secure with respect to 

message domain            and leakage function  , if there exists a polytime simulator S s.t. for any 

environment     and for any polytime predicate P : 
 



|          [                                             ]

           [                                            ]|       

 
where      is some negligible function. 
 
 
The definition of SEM-CPA security is similar to that of SEM, except that we allow the adversary to 
repeat steps (1)-(2) (output message and receive its cipher text) as much as they demand. Formally: 
 
Real scheme: 
1.     draws m from distribution D and sends it to ENC 
2.     receives              
3.     may return to step (1) or continue to the next step 

4.     computes       , where P is a predicate,   is the ordered set of all plaintexts and   is the 

ordered set of all cipher texts received by     (intuitively,            represents that the information 
learned from C by     on C’s plaintext agrees with T) 

 
Ideal scheme: 
1.     sends   to ENC 
2. Some information       leaks from ENC to the simulator S 
3. S computes    from      and sends    to     
4.     may return to step (1) or continue 

5.     computes       , where P is a predicate,   is the ordered set of all plaintexts and   is the 
ordered set of all cipher texts received by     

 
Definition 4.3. A symmetric encryption scheme (ENC, DEC) is SEM-CPA secure with respect to 

message domain            and leakage function  , if there exists a polytime simulator S s.t. for any 

environment     and for any polytime predicate P : 
 

|          [                                            ]

           [                                                ]|

      
 
 
where      is some negligible function. 
 
Note the abuse of notation:      stands for              , etc. Also note that     receives the argument   
that stands for the state of the environment as it changes throughout the game. 
 
Fact 4.4.  IND security does not imply IND-KPA security. 
Fact 4.5.  Neither does IND-KPA security imply IND-CPA security. 
Proof left as Homework. 
 
 

  



5    Protection against Active Adversaries and Secure Channels 

 
So far we discussed security against an adversary that only listens to the communication. What about an 
adversary that can also inject or modify messages, as in the case of MACs? 
 
There are many notions in the literature of secrecy against active attacks. Their applicability to practice is 
not always clear in the case of private-key encryption, so we’ll defer treating these notions to the case of 
public-key encryption, where they are better motivated. Instead, we’ll concentrate on the concrete task of 
realizing secure communication channels. Here we have two concerns: 
 

 Maintaining authenticity of messages 
 Maintaining secrecy of messages 
 
In order to formalize the notion of secure-channels scheme we can either extend the game of IND-CPA or 
extend the semantic security approach in a way that captures adversary’s capability to modify messages. 
Since the semantic approach formulation is more convincing and will be useful for us in the future we’ll 
extend the real life and ideal settings to capture the adversary’s new capability. 
 
A secure-channels scheme consists of two algorithms SEND and REC. We’ll proceed to formalize this 
definition in three steps, as we did before: 
 
5.1    Real Life Scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Real secure connection 
 
The real world interaction proceeds as follows: 
1. A key          is chosen and given to SEND and REC 

2. E sends some value   to SEND and receives             
3. E sends some value    to REC and receives              

a. Notice that REC is allowed to return an error code instead of    
 
E repeats this process until at some point it outputs a value. We’ll see that w.l.o.g. this value can be one 
bit. (Intuitively, this bit says whether E thinks it is in the Real or Ideal interaction). See Figure 3. Let 

                  denote the output of E in this game;                denotes the ensemble 

                      . 

 

  
  



5.2    Ideal Scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Ideal secure connection 
 
In the ideal setting the environment E communicates with both the ideal secure channel and a simulator S 
(as described below). Similarly to the case of the symmetric encryption, S receives only the leakage 
function      of the original message, and creates some cipher text based on it, thus assuring secrecy. 
The ideal scheme proceeds as follows: 
 
1. E sends some plaintext m to the ideal channel 

a. S receives      and passes some string c to E 
2. E sends some cipher text c’ to S 

a. S receives c’ and either returns an error or sends a “Send” command to the ideal channel 
(which causes the channel to pass m to E) 

 
E repeats this process until at some point it outputs a value. Notice that the simulator S is allowed to send 
an error code instead of "send" to emulate the case that REC returned an error code in the real-life scheme. See 

Figure 4. 
Let           denote the output of E in this game;        denotes                . 
 
5.3    "Behaves Like the Ideal Scheme" 
 
The definition is formulated as in the case of encryption: 
 
Definition 6.1. A pair of interactive algorithms (SEND, REC) is a secure channel protocol if for any 
environment E there exists a simulator S such that: 
 

                       

 
 
5.3    Alternative definition 
 
As in the case of symmetric encryption, define an equivalent notion of security via a 
game: an environment E plays the following game against a pair of protocols (SEND, 

REC) and a leakage function     : 
 
1. A key          is chosen and given to SEND,REC 

2. E may output a plaintext m and receive             
3. E may output a cipher text    and receive              
4. E may repeat steps (2) and (3) as needed 

5. E outputs a pair of plaintexts        , receives              for random 



(externally set) bit   
6. E may repeat steps (2) and (3) as needed 

7. E outputs a bit    
OR 
8. E outputs a cipher text    
 
E wins the secure channels game if: 

  [                       ]  
 

 
      

for some non-negligible function     , or: 

  [                                                             ]       
for some non-negligible function     . 
 
Theorem 6.1. A secure channel scheme is secure according to the first definition (semantic 
security) if and only if it is secure according to the second. 
 

 


