Foundation of Cryptography, Fall 2010	Ran Canetti and Iftach Haitner
Problem Set $\mathbf{4}$	
January 27, 2011	
Due: February 17	

January 27, 2011
Due: February 17

Section 4.4.2 in Goldreich's book (Volume I) and the following two scribe notes could be a useful read towards solving this problem set.
http://www.cs.tau.ac.il/~ canetti/f09-materials/f09-scribe3.pdf
http://www.cs.tau.ac.il/~ canetti/f08-materials/scribe11.pdf

1. (a) [30 points] Prove that no commitment scheme can be both perfectly binding and perfectly hiding.
(b) [Bonus: 30 points] Extend the proof in 1(a) to show impossiblity of commitment schemes that are both statistically binding and statistically hiding.
2. Consider the basic Blum protocol for Graph Hamiltonicity (Section 3.4 in the second notes), where the commitments are instantiated with Pedersen commitments (see first scribe notes, Section 2.4.2).
(a) [30 points] Show that this protocol is statistical zero knowledge. (Bonus 10 points: Show that this protocol is in fact perfect zero knowledge.)
(b) [40 points] Show that the protocol is computationally sound with soundness error $1 / 2+\nu(n)$, where $\nu()$ is a negligible function, under the Discrete Log assumption in the group G used for the Pedersen commitments.
(c) [Bonus: 50 points] Let n be the input length, and consider the n-fold sequential composition of the basic Blum protocol. That is, the basic three-message protocol is repeated sequentially n times, where the verifier uses fresh random coins for each instance of the basic protocol, and accepts only if all n instances accept. Show that this protocol is a proof of knowledge (see Section 3.6 of the second scribe notes), under the Discrete Log assumption in G.
