Problem Set 2

December 26, 2010
Due: Jan. 3, in class

1. (a) [10 points] Show that if there exist "not trivial" pseudorandom functions ensemble $\mathbb{F}=\left\{\mathbb{F}_{n}\right\}$ (i.e., the domain of $f \in \mathbb{F}_{n}$, is $\{0,1\}^{\ell(n)}$ for a polynomial-time computable $\ell(n) \in \omega(\log n))$, then there exist pseudorandom generators.
Note that there are no assumptions on the output length of the functions. Also don't go through one-way functions, unless you like to fully prove that one-way functions imply pseudorandom generators...
(b) [10 points] Show that if there exist pseudorandom permutations, then there exist pseudorandom permutations that are not strong pseudorandom permutations.
2. The GGM construction was presented in class as a construction of an efficient ensemble of function families $\mathbb{F}=\left\{\mathbb{F}_{n}\right\}$, where each $f \in \mathbb{F}_{n}$ is from $\{0,1\}^{n}$ to $\{0,1\}^{n}$.
We wish to construct an efficient ensemble $\mathbb{F}^{\prime}=\left\{\mathbb{F}_{n}^{\prime}\right\}$, where each $f \in \mathbb{F}_{n}$ is from $\{0,1\}^{*}$ to $\{0,1\}^{n}$, and the ensemble should be computational indistinguishable form the ensemble of random functions with the same domain/range.
(a) [20 points] The GGM construction naturally works for inputs of any length (i.e., on input $x, F_{s}(x)$ outputs $f_{x}(s)$, where f is as defined in class). Is the resulting ensemble pseudorandom? If not, suggest a construction that works.
(b) [10 points] How can we extend the range of the functions in the families in the GGM construction, say double the length?
3. Recall that a family of functions $\mathcal{H}=\left\{h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right\}$ is pairwise independent, if for any for any $x \neq x^{\prime} \in\{0,1\}^{n}$ it holds that

$$
\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h(x)=h\left(x^{\prime}\right)\right]=2^{-m}
$$

(That is, the probability that two fixed points in the domain collide under h is exactly the same as if h were a truly random function from $\{0,1\}^{n}$ to $\{0,1\}^{m}$.)
(a) [10 points] There are many combinatorial constructions of efficient ensembles of pairwise independent hash functions with short description, in the following we consider one such a family.

Let $\mathcal{A}_{n \times m}$ be the set of all $n \times m$ binary matrices. Show that the family $\mathcal{H}:=$ $\left\{h_{A, b}: A \in \mathcal{A}_{n \times m}, b \in\{0,1\}^{m}\right\}$, where $h_{A, b}(x) \equiv A x+b \bmod 2$, is pairwise independent.
(b) [20 points] Let $\ell(n) \in \omega(\log n)$ be a polynomial-time computable function. Show how to modify the GGM construction of pseudorandom function families so that an evaluation of $f \in \mathbb{F}_{n}$ on $x \in\{0,1\}^{n}$, would involve only $\ell(n)$ applications of the underlying length-doubling pseudorandom. generator.
Hint: Use pairwise independent ensembles.
4. Recall that a MAC is a trippet of PPT (Gen, Mac, Ver) such that
(a) Gen $\left(1^{n}\right)$ outputs a key $k \in\{0,1\}^{*}$
(b) $\operatorname{Mac}(k, m)$ where $m \in\{0,1\}^{*}$ and k generated by Gen, outputs a tag t. We sometimes write $\operatorname{Mac}_{k}(m)$
(c) $\operatorname{Ver}(k, m, t)$ outputs 1 (YES) or $0(\mathrm{NO})$. We sometimes write $\operatorname{Ver}_{k}(m, t)$

We require
Consistency: $\operatorname{Ver}_{k}(m, t)=1$ for any $k \in \operatorname{Supp}\left(\operatorname{Gen}\left(1^{n}\right)\right), m \in\{0,1\}^{*}$ and $t=$ $\operatorname{Mac}_{k}(m)$
Unforgability: No PPT wins the MAC game against (Gen, Mac, Ver) with more than negligible probability.
where the MAC game is defined as
Definition 1 (MAC game). Let $K_{n}=\operatorname{Gen}\left(1^{n}\right)$. An oracle-aided algorithm A wins the MAC game against (Gen, Mac, Ver), if the following holds:

$$
(m, t) \leftarrow A^{\operatorname{Mac}_{K_{n}}, \operatorname{Ver}_{K_{n}}}\left(1^{n}\right): \operatorname{Ver}_{K_{n}}(m, t)=1 \wedge \operatorname{Mac}_{K_{n}} \text { was not asked on } m
$$

(a) [10 points] The strong MAC game is defined as:

Definition 2 (Strong MAC game). Let $K_{n}=\operatorname{Gen}\left(1^{n}\right)$. An oracle-aided algorithm A wins the MAC game against (Gen, Mac, Ver), if the following holds:

$$
\begin{gathered}
(m, t) \leftarrow A^{\operatorname{Mac}_{K_{n}}, \operatorname{Ver}_{K_{n}}}\left(1^{n}\right): \operatorname{Ver}_{K_{n}}(m, t)=1 \wedge \operatorname{Mac}_{K_{n}} \text { was not asked on } m \\
\text { and replied with } t
\end{gathered}
$$

That is, A wins the game even if it creates a different tag for a message on which it did queried $\mathrm{Mac}_{K_{n}}$.
Let A be an algorithm that on security parameter n, makes at most $q(n)$ queries to Ver and wins the strong MAC game against (Gen, Mac, Ver) with probability $\varepsilon(n)$.
Assuming that $q(n)$ is polynomial-time computable, construct an algorithm A^{\prime}, whose running time is essentially the same as of A, that makes no queries to Ver, and breaks the same MAC game with probability at least $\varepsilon(n) /(q(n)+1)$.
(b) [10 points] Let $\ell(n) \in \omega(\log n)$ be a polynomial-time computable function. Show how to construct a zero-time MAC (i.e., the adversary is not allowed to make any Mac-queries) whose key length (on security parameter n) is $\ell(n)$.
Restriction: use no assumptions (e.g., PRG exist).
5. [Bonus: 20 points] An efficient function family ensemble $\mathbb{F}=\left\{\mathbb{F}_{n}\right\}_{n \in \mathbb{N}}, \mathbb{F}_{n}=$ $\left\{f:\{0,1\}^{*} \mapsto\{0,1\}^{l(n)}\right\}$, is called weakly collision resistant, if the following holds for any PPT A and large enough n

$$
\operatorname{Pr}_{f \leftarrow \mathbb{F}_{n}}\left[\left(x, x^{\prime}\right) \leftarrow A\left(1^{n}, f\right): x \neq x^{\prime} \wedge f(x)=f\left(x^{\prime}\right)\right] \leq 1 / 2
$$

Show that if there exists such ensemble, then there exists efficient collision resistant function family ensembles in the standard (strong) sense we defined in class.

Hint: in the constructed family, the output will be longer than in the original family. How much larger will it have to be?

