Visual Pong

2005

Design Document
[image: image1.emf]+Intersect(in ball : Ball) : bool

«interface»

IObstacle

+Redraw()

«interface»

IDrawble

-SpeedX : bool = 0

-SpeedY : bool = 0

«implementation class»

Force

-CurrrentX : double = 0

-CurrentY : double = 0

-Length : double = 0

-Width : double = 0

-Plasticy : double = 0

«implementation class»

Wall

-CurrrentX : double = 0

-CurrentY : double = 0

-CurrentAngle : double = 0

-Length : double = 0

-Width : double = 0

-PrevX : double = 0

-PrevY : double = 0

-PrevAngle : double = 0

«implementation class»

Racket

-CurrrentX : double = 0

-CurrentY : double = 0

-SpeedX : double = 0

-SpeedY : double = 0

-Radius : double = 0

-Controlled : bool = 0

«implementation class»

Ball

-Name : string = 0

-Score : int = 0

-racket : Racket = 0

«implementation class»

Player

+Run()

+Stop()

#ThreadMethod()

-player : Player

-ball : Ball

Controller

-Socket : Socket

«implementation class»

NetworkController

-Skill : int

«implementation class»

ComputerController

-SampleSpeed : int

«implementation class»

CameraController

+Run()

+Send() : bool

+Win()

+Lose()

+Initialize()

+Finish()

-ball : Ball

-MyController : Controller

-OpController : Controller

-LstWiningObsticales : List

-LstLosingObsticales : List

-LstNormalObsticales : List

Game

Created by:

Tal Efros
Yaron Tanne Andrey Stolyarenko
Instructors:

Porf. Hezi Yeshurun

Gad Kimmel
Table of content

Intro

3
Class Diagram

4
Class Diagram Explanation

5
Racket – Ball intersection algorithm

6
The Game.Run() Function

9
Other Functions

11
Network Protocol

12
Camera and Racket Detection

15
Appendix: Responsibilities and Timetable

17

Intro

· This document is the technical design document of the Visual Pong 2005 project. Visual Pong 2005 is a project of the Computer Science Workshop of Tel-Aviv’s University.
· The goal of the project is to create and interactive Ping-Pong game using a simple Web-Cam camera. The game is designed to be played over the Internet or any TCP/IP network.

· This document was created in order to fulfill three goals:

a. To create a general guidelines for the development of the project

b. To split the project into several parts in order to allow a team of 3 people to work on it separately

c. To serve as the binding layer between the parts of the project

· This is a preliminary document of the project.
Class Diagram

[image: image9.png]Opponents Side

My Side

M

Forces: Gravity

and Friction

~Wining-

w=Losingm=

e=Normalss

[image: image10.jpg]

Class Diagram Explanation
Interfaces:
IObstacles – This interface is implemented by objects that want to effect the behavior of the ball (Walls, Net, etc..)

IDrawable- This interface is implemented by objects that want to show something on the GUI.

Classes:

Wall is a class that represents a simple linear wall which parameters are given in the c’tor. Its intersect function knows to determine whether the ball hit the wall and change the speed according to that. The game court is constructed of 4 walls which represent the boundaries of the board. The net is also a kind of wall and will be represented using the wall class or it’s divertive.
Racket is a class that represents a player’s racket. Its intersect function is a little more complicated because the racket also moves. The intersect function checks whether there was a collision and give the ball speed and angle according to the collision specifics.
Force is a class that represents all the forces working in the air (gravity, air friction, etc…). The intersect function of this class always returns true. Make gravity and air friction also of type IObstacles allows easily making different areas of gravity on the board. Air Friction and gravity are types of Force with different start parameters.
Player is a simple class that holds info about each player. Name, score, racket and other extra parameters are held in this class.
Ball is a class that holds all the balls parameters and know to move according to them. Obstacles change those parameters according to the collision that accrued.

Controller is an abstract class that is in charge of controlling a single racket (and in one case ball). This class has only two public functions. Run is not polymorphic and only start a thread that is in charge of moving the Racket\Ball according to his role. The thread is the protected polymorphic function ThreadMethod(). The Function Stop() simply stops the thread.

There are 3 classes that inherit from this class.

CameraController is in charge of sampling the camera every period of time and moving the racket accordingly.

SocketController is in charge of sampling the socket every period of time and moving the racket and ball accordingly.

ComputerController is in charge of moving the racket using a simple logic according to the passion of the ball.

Game is the main class of the project. It holds all the info about the game. It has the controller of the local player (usually camera) and the controller of the opponent (usually socket). It also has 3 lists of obstacles:

LstNormalObsticales – Obstacles that hitting them simply changes the position of the ball without giving a point to either of the players (Gravity, Air Friction, Up/Bottom Walls)
LstWinningObsticales – Obstacles that hitting them gives a point to the local player.

LstLosingObsticales – Obstacles that hitting them gives a point to the opponent player.

This class has few methods:

Run – method that starts the game.

Win – method that continues the game after the local player won a point.

Lose – method that continues the game after the local player lost a point.

Send – method that sends all the parameter to the opponent if the opponent is a socket.
Racket-Ball Intersection algorithm
Assumptions:

We assume that the ball moves linearly in every time period.

We assume that the racket move and turns also linearly in every time period.

We assume that the time period is more or less the same each time. Racket’s and Ball’s locations will be sampled every X milliseconds.
We do the following to know if and where the Racket hit the Ball.

1. We take the Racket’s and the Ball’s current and previous positions.

2. We create Bounding boxes around them

3. We check for intersection

4. If there was no intersection , the racket didn’t hit the ball (and we can freely allow the racket to be drawn)

[image: image2.emf]End Position

Start

Position

B

o

u

n

d

i

n

g

B

o

x

B

o

u

n

d

i

n

g

B

o

x

5. We check whether the continuation of the balls movement intersects with either one of the rackets bounding lines:

[image: image3.emf]Bounding Lines

Bounding

Lines

B

o

u

n

d

i

n

g

L

i

n

e

s

B

o

u

n

d

i

n

g

L

i

n

e

s

[image: image4.emf]c

o

n

t

i

n

u

a

t

i

o

n

I

n

t

e

r

s

e

c

t

i

o

n

P

o

i

n

t

c

o

n

t

i

n

u

a

t

i

o

n

6. If an intersection doesn’t accrue we can be sure that the Ball didn’t hit the Racket.
The first two checks are very fast and can be done very often without slowing down the system. At this point the probability for a hit is very high.

7. To make sure that the Racket actually hit the Ball we will look mathematically for an intersection point using a 3 dimensional model. The first 2 dimensions are obviously X and Y, the 3rd dimension will be T (time). We will find “t” on the T axes, when t represents the moment that the Racket hit the Ball.

[image: image5.emf]c

o

n

t

i

n

u

a

t

i

o

n

I

n

t

e

r

s

e

c

t

i

o

n

P

o

i

n

t

c

o

n

t

i

n

u

a

t

i

o

n

The controlling function of the game - Game.Run()

[image: image6.emf]TheGame

Initialize()

«implementation class»

MyController

«implementation class»

OpController

Run

Run

«implementation class»

WinningObsticaleList

Intersect:=Intersect(ball)

Result

{if(Result) == true}

Win

«implementation class»

LossingObsticaleList

Intersect

Result

{if(Result) == true}

Lose()

«implementation class»

NormalObsticaleList

Intersect

Result

Send:=Send()

Finish()

Stop()

Stop

ThreadMethod()

ThreadMethod()

While(End())

«implementation class»

TheBall

Move

The Algorithm of this function is really simple and as follows:
Game.Run()

{

Initiale(); // Creates all the obstacles and puts them in the right places, and creates the controllers according to the mode of the game.

MyController.Run(); // Starts My Controller which start a new thread that does the real job

OpController.Run(); // Starts Opponents Controller which start a new thread that does the real job

While(!bEnd)

{

If(ForEach(lstWinningObsticales.Intersect(TheBall)) == 1

Win() // If We hit a winning obstacle we start the win function

If(ForEach(lstLossingObsticales.Intersect(TheBall)) == 1

Lose() // If We hit a Lose obstacle we start the win function

(ForEach(lstNormalObsticales.Intersect(TheBall);

Ball.Move(); // Move the ball according to all changes that were made to him

Send(); // Send all the info to opponnent

}

Finish(); // Stops All threads
}

Other important functions

The Game.Win() & Game.Lose() Function:
{
SetTheBallInPlace; // Sets the ball in the correct starting point (mine if I Won, Opponents if he won)
UpdatePoints; // Updates the Score for Both Players
Notify Second Player; // Send All data the second Player
}
The Game.Intialize() Function:
{

Set Upper Borders as Normal;
Set Net as losing

Set Back Wall As losing

Set Front Wall as Wining

Create Correct Forces (Gravity, Friction);
// this is a picture of the board from my side, this show how the obstacles should be created. Rackets are normal obstacles because hitting them doesn’t give a point to either player.

Create Controllers based on the game mode.

}

Network Protocol for network game

This game will use a TCP/IP network in order to create a two-player match. When starting this game, one side is regarded as the server (waiting for connections) and one is the client (connecting to the server).

The computer acting as the server will determine key game-parameters such as Gravity and Air-friction factors, as well as the net size.

The communication of the client and server computers will be made through messages, each containing 4 bytes of message length, and 4 bytes of message code. After these 8 bytes, the remainder of the message is code-specific.

Message:

[image: image7.png]Message
Size

Message
Code

Message-Specific
Data +..

Whenever messages need to include some string, the first byte holds the size of the string, followed by the string characters.

Example:

[image: image8.png]Size

Types of messages

General:

· Error: Tells the other computer that some error has occurred.

· Ulong Error_Code

· String Error_Description

· Text-Message: Tells the other computer that the local user wants to send a message to the other user. When this message is received, it’s displayed in a dedicated area on the screen.

· String Text_Message
Handshake Phase:

In this phase, the server must send all of the following messages, while the client must send only “Visual-Pong”, “Version” and “Username” messages.

· Visual-Pong: This message identifies the software and is used to verify that indeed the connection is between two Visual-Pong programs.

· String: “Visual Pong 2005”

· Version: Tells the other computer the version of the game. If the version received from the other side is incompatible with the current one, an error message is sent, and the user is informed.

· Ulong Version

· Username: Tells the other computer the name of the local player.

· String username.

· Gravity: This message is sent by the server side and sets the gravity factor in the client side.

· Ulong Gravity_Factor

· Air-Friction: This message is sent by the server side and sets the air-friction factor in the client side.

· Ulong Air_Friction_Factor

· Net-Size: This message is sent by the server side and sets the net size in the client side.

· Ulong Net_Size

Game Phase:

The computer which the ball is in his court-side is in charge of moving the ball, checking for collisions with the racket, net and walls and communicating this information to the other computer. This responsibility is moved back and forth between the two computers just like the ball moves from side to side of the court. This transfer of responsibility is triggered by the “Your-Ball” message.

· Game-Ready: This message is sent by the server side at the end of a successful handshake and lets the client side know the game is starting.
· Racket-Move: This message is sent to update the position and angle of the local racket on the remote screen.
· Ulong X, Y, Angle

· Ball-Move: This message is sent by the computer in charge to update the position of the ball on the remote screen.
· Ulong X, Y

· Your-Ball: This message is sent by the computer in charge in order to transfer the responsibility to the other computer. It let’s the other computer know the position of the ball, and it’s velocity at the time of transfer.
· Ulong X, Y

· Ulong Vx,Vy

· Your-Score++: This message is sent by the computer in charge in order to let the other computer know that his user just scored a point, and therefore he should Score++.

· Game-Finished: This message is sent when any of the sides wants to end the game.

Camera and Racket Detection

C# GUI ((C++ Core DLL Interface

The handling of the webcam, its configuration, getting pictures from it, and extracting the position and angle of the racket from the pictures will be done in a separate DLL, which will be written in C/C++.

The interface of the main program (GUI) with this Core DLL will be done through the following 8 functions that will be exported from the DLL:

PONGVISION_API int pvInit();

Initializes the webcam, and all the DLL internal variables.

PONGVISION_API int pvShutDown();

Shuts down the webcam, and frees all allocated resources.

PONGVISION_API int pvGetScreenSize(ULONG *X, ULONG *Y, ULONG *BPP);

Returns the size(width and height) and the number of bits per pixel of the pictures taken from the webcam.

PONGVISION_API int pvSetRacketColor(ULONG R, ULONG G, ULONG B);

Let's the DLL know what is the color of the racket. This information will be taken from the center pixel in the picture shown to the user at the color calibration phase. This color will be used to identify the racket in the picture when the game starts.

PONGVISION_API int pvSetRacketPosition(ULONG X, ULONG Y, ULONG Margin,bool Lock);
Sets the color and threshold for the racket. get's all the pixels from the picture in the vicinity of (X,Y)

PONGVISION_API int pvSetRacketColorThreshold (double Red,double Green,double Blue);

In order to establish the position and angle of the racket, its pixels must first be separated from the rest of the picture. The method used for separating them is comparing each pixel's color with the predefined racket color (see previous function). If the distance in the colors is under some threshold, then the pixel is considered a part of the racket. If not, it is removed. This function just lets the higher level software set that threshold.

PONGVISION_API int pvSetRacketParams(ULONG MinimumPixels,ULONG MaximumPixels,ULONG Granularity,double Threshold,bool AdaptiveThreshold,ULONG WindowMargin);

PONGVISION_API int pvGetRacketPosition(ULONG *X, ULONG *Y, double *Angle,double *R2,byte*Buffer,bool JustRacket = false);

This function returns a picture, very similar to the GetPicture function, just that this picture is taken after the removal of irrelevant pixels. Therefore, this function returns a black picture, with one line somewhere in it, which is the stripe on the racket.

In each game cycle, the GUI must know the position and angle of the local player's racket. This function takes the picture from the camera, removes all the pixels that are not defined as "A part of the racket" (see previous 2 functions), and tries to statistically find their center, and orientation in the X-Y plane. Pixels that are far from the bulk of the others are probably errors in identification, and are also removed. After this process, the center is found with simple average of X and Y of the pixels and PCA algorithm is used to find the orientation (Angle). These values are returned to the caller of this function via the pre-allocated caller's variables.

Notice that all of these functions return an int. This is used as an error-code. If a function is successful, it returns 0. If not, it returns a positive error code.
Appendix: Responsibilities and Timetable
Responsibilities:
Yaron:
· Getting and processing the input from the camera. Creating the defined dll file with the defined functions.

Tal:

· Creating the user interface and connecting between the input that comes from the camera and network and showing it on the screen.

· Ball Intersection Algorithm.

Andrey:
· Creating the controller of a computer for Players to play against the computer
· Processing the network messages
· The game controlling function.
Timetable:

Parts of the project are already in process.

1.7 – 1.8:

Finishing all the parts that are listed in this document

1.8 – 8.8:

Joining all the parts of the project.

8.8 – Final date:
Testing, Debugging and adding features (

Drawing: Bounding Boxes and an example for No Intersection

Drawing: Bounding Lines and Continuations

Drawing: Intersection

Diagram: UML Sequence Diagram

Diagram: UML Class Diagram

Drawing: Wall classifications

PAGE
17

_1177688281.vsd
Bounding Lines

Bounding Lines

Bounding Lines

Bounding Lines

_1177787061.vsd
TheGame

Initialize()

«implementation class»
MyController

«implementation class»
OpController

Run

Run

Finish()

«implementation class»
WinningObsticaleList

Intersect:=Intersect(ball)

Result

{if(Result) == true}

Win

Stop()

Stop

ThreadMethod()

ThreadMethod()

While(End())

«implementation class»
LossingObsticaleList

Intersect

Result

{if(Result) == true}

Lose()

«implementation class»
NormalObsticaleList

Intersect

Result

Send:=Send()

«implementation class»
TheBall

Move

_1177787257.vsd
+Intersect(in ball : Ball) : bool

«interface»
IObstacle

+Redraw()

«interface»
IDrawble

-SpeedX : bool = 0
-SpeedY : bool = 0

«implementation class»
Force

-CurrrentX : double = 0
-CurrentY : double = 0
-Length : double = 0
-Width : double = 0
-Plasticy : double = 0

«implementation class»
Wall

-CurrrentX : double = 0
-CurrentY : double = 0
-CurrentAngle : double = 0
-Length : double = 0
-Width : double = 0
-PrevX : double = 0
-PrevY : double = 0
-PrevAngle : double = 0

«implementation class»
Racket

-CurrrentX : double = 0
-CurrentY : double = 0
-SpeedX : double = 0
-SpeedY : double = 0
-Radius : double = 0
-Controlled : bool = 0

«implementation class»
Ball

-Name : string = 0
-Score : int = 0
-racket : Racket = 0

«implementation class»
Player

+Run()
+Stop()
#ThreadMethod()

-player : Player
-ball : Ball

Controller

-Socket : Socket

«implementation class»
NetworkController

-Skill : int

«implementation class»
ComputerController

-SampleSpeed : int

«implementation class»
CameraController

+Run()
+Send() : bool
+Win()
+Lose()
+Initialize()
+Finish()

-ball : Ball
-MyController : Controller
-OpController : Controller
-LstWiningObsticales : List
-LstLosingObsticales : List
-LstNormalObsticales : List

Game

_1177688801.vsd
continuation

Intersection Point

continuation

_1177688102.vsd
Bounding Box

Bounding Box

Start Position

End Position

