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Abstract

Detection of feature points in images is an important preprocessing stage for many algo-
rithms in Computer Vision. We address the problem of detection of feature points in video
sequences of 3D scenes, which could be mainly used for obtaining scene correspondence.
The main feature we use is the zero crossing of the intensity gradient argument. We analyti-
cally show that this local feature corresponds to specific constraints on the local 3D geometry
of the scene, thus ensuring that the detected points are based on real 3D features. We present a
robust algorithm that tracks the detected points along a video sequence, and suggest some cri-
teria for quantitative evaluation of such algorithms. These criteria serve in a comparison of the
suggested operator with four other feature trackers. The suggested criteria are generic and
could serve other researchers as well for performance evaluation of stable point detectors.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Context-free detection of specific image points (‘‘features’’) is being addressed in
Computer Vision for a long time, as it is the basis of many higher level algorithms of
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visual information processing. Works in this field divide up into two categories: the
first category is ‘‘Attentional,’’ defining the detected points as those attracting com-
putational resources; this is apparently the case in biological systems. Other names
for this category are detection of ‘‘Interest Points’’ or ‘‘Regions of Interest’’ (RoI).
The second approach defines the task as consistent selection of a subset of image pix-
els, regardless of their ‘‘attentional’’ value. This approach is known also as: ‘‘Anchor
Points’’ or ‘‘Stable Points’’ detection. Such points could either be used for object rec-
ognition [1], or as correspondence points for recovering 3D characteristics of the
scene.

The main goal of this paper is robust detection of scene-consistent feature points in

video sequences, and as such it takes the second approach. By robust we mean that
the algorithm should consistently detect points in noisy images, and by scene-consis-
tent (or: stable), that the algorithm should consistently detect the same 3D point over
multiple video frames, regardless of illumination changes, pose variations, camera
motion, or parallax. This implies that detection should depend merely on local
geometry of scene objects.

The literature of feature detection has a wide variety of detectors based on edges.
Edges in many cases are not intrinsic to one subject, but rather delineate a boundary
between a subject and the background. Therefore, edge-based features in many cases
depend on the background and viewing direction (e.g., silhouette of a person in up-
right position vs. profile). These inherent flaws of edge-based features raise a need for
non-edge-based feature detectors.

This paper presents an operator for non-edge-based feature detection. The fea-
tures are extrema of the intensity function, but only in smooth image domains.
Pay attention, that an edge (e.g., a black line on a white paper) would not yield
a strong response of the suggested operator, because the intensity function is dis-
continuous there (i.e., not a smooth domain). The uniqueness of the suggested
approach lies in its ability to detect local extrema of smooth image domains in
a reliable and robust way, while avoiding local extrema created by edges. As
the paper would present, this robustness has a solid theoretic basis; a large num-
ber of images would demonstrate that the robustness is attained in real-life scenes
as well.

The contribution of this paper divides into two:

1. The theoretic point of view: The paper maps the image domains which the oper-
ator detects, by their differential–geometric features. Using this mapping, we char-
acterize the 3D scene locations projected onto the detected image domains. The
theorems we present explain why the detection of the operator is robust, and
why it consistently follows 3D points in the scene.

2. The practical viewpoint: Our paper focuses on the detection of features in video
sequences. However, when evaluating fitness of features to real-life tasks, it is
highly nontrivial to decouple detection from tracking. Hence, we examine the
detection–tracking system as a whole ([2] takes a similar approach), and define
measures of evaluation of such systems. This approach can thus evaluate how
appropriate a selected group of features is for higher levels of processing. Using
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these measures, we show that our method favorably compares with four other
methods (Kanade-Lucas-Tomasi [2], Junction Detection [3], ImpHarris [4] and
Harris-Laplacian [5]). In our comparison we have used a common tracker for
all detection methods except for that of Kanade-Lucas-Tomasi, where the detec-
tor has a built-in tracker.

The paper is structured as follows: Section 2 surveys the literature of feature
detectors and trackers as well as that of evaluation criteria. Section 3 sketches the
operator for detection of RoI in static images, that was suggested in [6]. Section 4
then analytically characterizes the specific features of the image intensity function
I (x,y) which the suggested method detects, and proves that these image-space fea-
tures correspond to the local 3D geometry of objects in the scene. This section estab-
lishes the theoretical basis explaining why the operator is very robust. Section 5
presents a simple algorithm, based on Kalman filter, that robustly tracks these fea-
tures in video sequences. The usage of video sequences confronts the operator with
new effects which do not exist in static images: parallax, camera motion and 3D ob-
ject transformations. The operator copes well with these effects, because it responds
to intrinsic properties of 3D objects (as is proved in Section 4). In Section 6, we rig-
orously define two measures for evaluating detection–tracking systems: completeness
(with respect to correct tracking of 3D points) and stability. These measures are gen-
eric and could be of use for other researchers as well. The measures serve in a com-
parison between the suggested tracker and four other trackers (Section 7). Section 8
suggests a way to further increase the aptness of evaluation measures to higher level
tasks. Following concluding remarks in Section 9, Appendices A and B supply the
complete proofs of the theorems of Section 4.
2. Literature survey

This section briefly surveys the recent work in the fields of feature point detection,
point tracking, and evaluation of feature points. We do not present a complete sur-
vey of feature point detection or tracking, because the literature of these fields is very
rich and its description is beyond the scope of this paper. In addition, two such sur-
veys were recently published: [4,7].

2.1. Feature detection

Typical examples for the ‘‘Attentional’’ approach to feature detection can be
found in [7–9]. One type of scene-consistent methods is corner detectors: [10–13].
Lowe [14] uses extrema of a Difference of Gaussian function applied to scale space
to detect stable points.

Three other feature detectors are of particular interest for our discussion, as we
compare our method with them. The first is Junction Detection [3], where auto-
matic scale selection associates a Region of Interest with each detected junction.
Junctions are detected according to the curvature of the level curves of the



4 A. Tankus, Y. Yeshurun / Computer Vision and Image Understanding 97 (2005) 1–29
intensity function, multiplied by the gradient magnitude raised to the power of
three. The second is the Harris operator [15] (also known as the Plessey feature
point detector) which is based on the variation of local auto-correlation over dif-
ferent orientations. It is calculated by functions related to the principle curvatures
of the local auto-correlation. Schmid et al. [4] uses an improved version of the
Harris operator (marked: ImpHarris) in an extensive comparison of feature detec-
tors. The improvement is replacement of the method of differentiation from
mask-based to Gaussian-based. The third algorithm is the Harris-Laplacian oper-
ator [5], which combines the Harris function with a scale-space representation. It
first utilizes the Harris detector for 2D localization of interest points at each level
of the scale-space. It then uses the Laplacian to test whether an interest point
forms a maximum in the scale direction.

2.2. Feature tracking

One approach to feature tracking is estimation of motion and deformations of
features in the image [16] or egomotion [17]. A different approach is independent
detection of features in each frame, and association of features in successive frames.
Features used by this approach include color [18] or corners: [19] and [20] use the
SUSAN [21] and Frstner [22] corner detectors, respectively. [23,24] and also [19]
use the Harris [15] corner detector. Feature tracking based on Kalman filter appears
in [19,20,23,24]. Bretzner and Lindeberg [25] presents a view-based image represen-
tation, the qualitative multi-scale feature hierarchy.

The KLT (Kanade-Lucas-Tomasi) tracking algorithm [26] is based on a model of
affine image change. Features are selected to maximize tracking quality. A feature is
present if the eigenvalues of the auto-correlation matrix are significant. Monitoring
tracking quality is based on a measure of dissimilarity that uses the affine motion as
the underlying image change model. Tommasini et al. [27] improves the original
KLT based on an outlier rejection rule.

2.3. Evaluation of feature detectors and trackers

Several different approaches to evaluation of feature detectors and trackers were
suggested. Zheng and Chellapa [17] and Verestóy and Chetverikov [28] use the idea
that the beginning and end of a track should follow the same real-world point, but
they ignore the interior of the tracks. Ground truth information was utilized in
[29,30] and [31]. This approach is more appropriate for laboratory tests than for
real-life sequences.

Schmid et al. [4] introduces two evaluation criteria for interest points: repeat-
ability rate and information content. Repeatability rate is the percentage of total
observed points that are detected in both images. It evaluates the geometric sta-
bility under different transformations. Information content measures the distinc-
tiveness of features. Based on these criteria, six interest point detectors are
compared, finding the improved version of the Harris operator (ImpHarris) supe-
rior to the others.
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3. Operator for feature detection

To accomplish scene-consistent detection of feature points in video sequences, we
first present anoperator that has been suggested [6] for detecting points in static images.

3.1. Intuition

The suggested operator detects local extrema of the intensity function, but only in
domains where the intensity function is smooth. Intuitively, one may think of the de-
tected domains as hilltops (or equivalently, bottoms of valleys) of the intensity
function.

A property of local extrema of a smooth function is that its gradient on local
closed curves containing the extremum, points outward along the whole closed curve.
The operator does not look for these closed curves explicitly, but rather, it takes
advantage of the discontinuity of the 2D arctan function for fast and robust detec-
tion of such domains, as the next subsection would show.

3.2. Definition

The gradient map of an image in Cartesian coordinates is estimated by:

rIðx; yÞ ¼ o

ox
Iðx; yÞ; o

oy
Iðx; yÞ

� �
� ð½DrðxÞGrðyÞ� � Iðx; yÞ; ½GrðxÞDrðyÞ� � Iðx; yÞÞ;

where Gr(t) is a 1D Gaussian with mean 0, and standard deviation r, and
DrðtÞ ¼ d

dt GrðtÞ. We convert to polar coordinates and compute the gradient argument:

hðx; yÞ ¼ argðrIðx; yÞÞ ¼ arctan
o

oy
Iðx; yÞ; o

ox
Iðx; yÞ

� �
;

where the 2D arctan function is defined by:

arctanðy; xÞ ¼

arctanðyxÞ if x > 0

arctanðyxÞ þ p if x < 0; y � 0

arctanðyxÞ � p if x < 0; y < 0

0 if x ¼ 0; y ¼ 0
p
2

if x ¼ 0; y > 0

� p
2

if x ¼ 0; y < 0:

8>>>>>>>><
>>>>>>>>:

ð1Þ

Notice the well known discontinuity at the negative part of the x-axis
(Fig. 1 (Left)), which is the basis for our method.

3.3. Detecting presence of a certain range of directions of intensity normal

The discontinuity of the 2D arctan occurs at the negative x-axis, so it corresponds
to angles of p or �p radians. Because h (x,y) is the azimuth of the normal to the



Fig. 1. (Left) The 2D arctan. Pay attention to the discontinuity at the negative part of the x-axis, which is
the basis of the method. (Middle) The y-derivative of the 2D arctan. (Right) Rotate the 2D arctan by 0�,
90�, 180�, and 270�, differentiate along the y-direction, rotate back, and sum the responses. (An isotropic
operator.) Note that the center has the strongest response, as it is a point surrounded by local closed
curves, where the intensity normal points outward in all directions.
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intensity function, the presence of such a discontinuity implies that the azimuth of
the normal there is p or �p radians. Therefore, the presence of the discontinuity im-
plies that part of our goal, intensity normal which points outward along the whole
closed curve, has been accomplished: we know of the presence of a certain range
of directions of the intensity normal (near p or �p radians).

But how can we detect the discontinuity of the 2D arctan? To do so, we define an
operator:

Yarg ¼def
o

oy
hðx; yÞ � ½GrðxÞDrðyÞ� � hðx; yÞ: ð2Þ

When one differentiates h (x,y) with respect to y, the derivative approaches infinity
ð o
oy hðx; yÞ ! 1Þ at the discontinuity ray. In practice, this appears as a very strong
response at the discontinuity ray, as can be clearly seen in Fig. 1(Middle). Obviously,
it is easy to isolate such a response, e.g., by thresholding. In other words, because of
the strong (theoretically infinite) response of the derivative of h (x,y), we can isolate
the discontinuity of h (x,y), which implies the presence of a certain range of values
(near p or �p) of the angle of the intensity normal.

3.4. Detecting locations surrounded by intensity normals in all orientations

To attain our objective and detect the presence of an outward normal along the
whole closed curve, we have to define an operator whose strongest response occurs
when the closed curve contains an outward normal in every possible orientation (an
isotropic operator). Ideally, to define this operator based on Yarg, one has to rotate
the original image in all possible angles a, operate Yarg, rotate the results back to
their original pose, and integrate the responses over all a.

In practice, we define an isotropic version of the operator, called: Darg, to be the
result of rotating the original image by 0�, 90�, 180�, and 270�, operating Yarg on the
rotated images, rotating back to the original pose, and summing the four responses
(Fig. 1(Right)). The infinite response of Yarg is the reason why only four angles are
enough for the isotropic operator Darg: differentiating h (x,y) in any direction which
is not exactly parallel to the x-axis yields an infinite response at the negative x-axis
due to the discontinuity of the 2D arctan. Consequently, even differentiation in
merely two perpendicular directions would yield an infinite response at the disconti-



Fig. 2. Images with domains of maximal D2
arg marked. Pay attention that domains rich with edges or with

flat objects were not detected (low D2
arg). (A) D2

arg detects all four convex 3D objects, but not edge-dense
regions. (B) D2

arg detects highly convex domains of the duck. The water is not detected, despite sharp
intensity changes. (C) D2

arg detects the three tanks, but not the barn, car or truck, which are flat objects.
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nuity ray for any orientation. Experiments demonstrating the robustness of Darg to
orientation changes were reported in [6].

All in all, the operator locates extrema of smooth intensity patches by first isolat-
ing a certain range of values of the gradient argument h (x,y), and then applying the
method to the rotated images. The specific range of azimuths of the intensity normal
is detected by the discontinuity ray of the 2D arctan, whose presence indicates an
angle near p or �p radians. To detect the discontinuity ray, we differentiate h (x,y)
with respect to y. We then receive infinite responses at locations where the disconti-
nuity ray is crossed. Examples of domains where strong D2

arg responses occur appears
in Fig. 2.

Since we are looking for a qualitative shape description, the Yarg operator is very
robust, in contrast with classic methods of shape-from-shading (e.g., [32]; see a sur-
vey at [33]). Many intensive robustness tests of the operator are described in [6]:
robustness in illumination strength changes, and in variations of orientation or scale.
The robustness of the operator in dominating textures has lead to its usage for cam-
ouflage breaking [34], thus relaxing the original demand of constant albedo of the
subject.
4. Response of Yarg to the intensity surface and scene geometry

This section presents the mathematical basis of our claim that the response of Yarg

is stable. The complete proofs of the theorems are included in Appendices A and B.
By definition, the theorems hold for Darg, too.
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4.1. Response to the intensity surface

First, we qualitatively characterize the behavior of Yarg in continuous (‘‘well-be-
having’’) domains. We analyze the case where, the original intensity function
I (x,y) is twice continuously differentiable. Let (x0,y0) denote an image point, where
o
oy hðx; yÞ approaches infinity. In other words, (x0,y0) is a point of high Yarg response
(recall the strong response ray in Fig. 1 (Middle)). Our basic observation is that at
such a point (x0,y0), h (x,y) has a jump-discontinuity (with respect to the y

direction):

1. Because I (x,y), oIðx;yÞ
ox and oIðx;yÞ

oy are differentiable and continuous, and for all points
(x0,y0) the left- and right-hand limits: limyfiy0

±arctan(y,x0) exist, it follows that
h (x,y) has left- and right-hand limits in the y direction, anywhere.

2. If at point (x0,y0) the left- and right-hand side limits are equal, h (x0,y) is contin-
uous or has a removable singularity.
(a) If h (x,y) is continuous: because oIðx;yÞ

ox and oIðx;yÞ
oy are assumed differentiable any-

where, point (x0,y0) must be a point where arctan(y,x0) is continuous. Since
arctan(y,x0) is differentiable at all points where it is continuous, it follows that
h (x,y) is also differentiable.

(b) If h (x,y) has a removable singularity: the estimation of Yarg is achieved using a
convolution Eq. (2). By definition, the convolution is an integral. The integral
of a function with a removable singularity is identical to that of the fixed func-
tion (i.e., if one sets the value of the function at the singular point to the value
of the left- and right-hand side limits of the function at that point). Therefore,
this case is similar to that of a continuous h (x,y), and o

oy hðx; yÞ does not
approaches infinity in this case, too.

3. If the left- and right-hand limits are different, the derivative would approach infin-
ity. This is the jump-discontinuity case.

We are interested in domains, where Yarg approaches infinity; they are the stable
points of the response. Formally,

Theorem 1. Let I:R · R´ R 2 C2 (i.e., I (x,y) is twice continuously differentiable

w.r.t both x and y) be an intensity function. If (x0,y0) is a point, where:
limy!y0

o
oy hðx; yÞjx¼x0 ¼ �1 (i.e., a point, where Y arg ! �1), then there exists e > 0

so that for all y, for which |y�y0| < e, one of the following cases holds:

1. oIðx;yÞ
oy jx¼x0

¼ 0 for all y and 8y << y0;
oIðx;yÞ
ox jx¼x0

P 0, and 8y > y0;
oIðx;yÞ
ox jx¼x0

< 0.*

2. oIðx;yÞ
oy jx¼x0

> 0 for y < y0 and
oIðx;yÞ
oy jx¼x0

¼ 0 for y > y0, and*
(a) 8y > y0;

oIðx;yÞ
ox jx¼x0

¼ 0 or

(b) 8y < y0;
oIðx;yÞ
ox jx¼x0

¼ 0 or

(c) 8y < y0;
oIðx;yÞ
ox jx¼x0

> 0, and 8y > y0;
oIðx;yÞ
ox jx¼x0

< 0.*

3. oIðx;yÞ
oy jx¼x0

< 0 for y < y0 and
oIðx;yÞ
oy jx¼x0

¼ 0 for y > y0,*
except for the case, where 8y : y 6¼ y0;

oIðx;yÞ
ox jx¼x0

> 0.
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4. (x0,y0) is a local extremum of I (x0,y),
except for the case, where 8y : y 6¼ y0;

oIðx;yÞ
ox jx¼x0

> 0.

* The case where the conditions for y < y0 are swapped with those for y > y0 is also va-

lid; it is an equivalent case and was therefore omitted.

The complete proof of Theorem 1 appears in Appendix A. The rest of this subsec-
tion illustrates the response of Yarg to the different features described by Theorem 1.

Fig. 3 demonstrates Case 1 using the intensity function: I (x,y) = �x Æ y. It follows
that: oIðx;yÞ

ox ¼ �y, oIðx;yÞ
oy ¼ �x. The feature point is (x0,y0) = (0,0). To see that indeed

this intensity surface belongs to Case 1: oIðx;yÞ
oy jx¼x0

¼ x0 ¼ 0. 8y < y0 ¼ 0; oIðx;yÞ
ox ¼

�y > 0, and 8y > y0 ¼ 0; oIðx;yÞ
ox ¼ �y < 0. We can see the strong response of Yarg

at (0,0) in this case (Fig. 3 (Case 1, right)).
Fig. 3 exhibits Case 2 using the intensity function:

Iðx; yÞ ¼ �y2 if y < 0

0 if y P 0

�

whose derivatives are:

o

oy
Iðx; yÞ ¼

�2y if y < 0

0 if y P 0

�

and o
ox Iðx; yÞ ¼ 0 for all x. This is an example of Cases 2a or 2b (it is appropriate for

both), where the feature points are y = 0. The strong negative response (black strip)
can be seen in Fig. 3 (Case 2, right).

Similarly, in Fig. 3 the intensity function:

Iðx; yÞ ¼ y2 if y < 0

0 if y P 0

�
demonstrates Case 3. The response of Yarg in this case is positive.
Fig. 3. Demonstration of Theorem 1: Case 1: I (x,y) = �x Æ y. The feature is at (0,0), and indeed Yarg has a
very strong response there. Case 2: For y > 0, I (x,y) = �y2, for y60, I (x,y) = 0. The features are at y = 0.
Yarg has a very strong negative response there—the black stripe. Case 3: For y > 0, I (x,y) = y2, for y 6 0,
I (x,y) = 0. The features are at y = 0. Yarg has a very strong positive response there. Case 4:

Iðx; yÞ ¼ cosð px
2maxðxÞÞ cosð

py
2maxðyÞÞ. The features are at the positive part of the x-axis, and indeed Yarg

responds to them. The negative part of the x-axis is the case excluded from Case 4.
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The demonstration of Case 4 in Fig. 3 presents a local maximum of the intensity
function in the y direction. The intensity function in the example is:

Iðx; yÞ ¼ cos
px

2maxðxÞ

� �
cos

py
2maxðyÞ

� �

whose maximum w.r.t y is at the x-axis. A strong negative response of Yarg (Yarg ap-
proaches �1) occurs at the positive part of the x-axis. There is no strong response at
the negative part of the x-axis, because there I (x,y) is monotonically increasing as a
function of x, and this is exactly the case excluded from Case 4 (oIðx;yÞ

ox jx¼x0
> 0). As

this example shows, when an intensity function has a local extremum (in the strong
sense), the typical response of Yarg would be to one side of the x-axis, either the neg-
ative or the positive, and to the center (i.e., the local extremum itself). By using the
isotropic operator Darg, one receives a strong response in all axes, but the strongest
response is at the extremum itself (as any orientation of the image contributes to the
center, but not to all other parts of the axes). This enables the isolation of the point
of extremum of the intensity function.

4.2. Response to local 3D scene structure

By now, our analysis related Yarg merely to the intensity function. This sec-
tion would relate the domains, where Yarg approaches infinity to the 3D scene
object.

4.2.1. Basic assumptions

Let us assume an ideal Lambertian surface of constant albedo is illuminated by a
point light source at infinity and is photographed by a projective camera. We assume
a camera model, where the radiance of the surface (L) in the direction of the camera
is proportional to the irradiance of the image (E) at the corresponding patch (i.e.,
E � L). Such a system is described at [35] (a lens system, where the off-axis decay is
compensated).

4.2.2. The detected domains—case 4

Case 4 of Theorem 1 is detection of local intensity extrema in the y direction. This
subsection characterizes the geometry of scenes where these extrema occur.

Assuming a Lambertian surface and an orthographic projection, the intensity
function would be:

Iorthðx; yÞ ¼ qN
!ðx; yÞ � L!¼ q cosðaðx; yÞÞ; ð3Þ

where q is (constant) albedo; N
!ðx; yÞ, normal to the 3D surface z (x,y); L

!
, light

source direction (assumed constant); and aðx; yÞ ¼ \ðN!ðx; yÞ; L!Þ, the angle between
the light source direction and the normal to the scene surface. Obviously,
aðx; yÞ 2 ½0; p

2
�. In this domain, the cosine decreases monotonically. Therefore, if

a (x,y) has a maximum (minimum) at point (x0,y0), then cosðaðx; yÞÞ has a minimum
(maximum) there, and vice versa. It follows that if Iorth (x,y) attains a local extrema
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at (x0,y0), then the angle a (x,y) also attains a local extrema there (but of the oppo-
site type). Thus, local extrema of the intensity function Iorth are local extrema (of the
opposite type) of the angle a (x,y). Appendix B proves that this remains valid under a
perspective projection, too.

Therefore, detections by Yarg in Case 4 (i.e., extrema of the intensity) correspond
to extrema of the angle between light source direction and surface normal. As long as
the light source direction is constant, detection by Yarg (Case 4) depends merely on
scene geometry.

This result explains (to a certain extent) why a locally constant albedo is sufficient
for Yarg to remain stable: If a (x,y) attains an extremum at a certain location in a
vicinity of constant albedo, then Y arg ! 1 there. As Yarg detects no edges, sharp
changes in the albedo yield no additional feature points.

An alternative way to relate the detected extrema points and scene geometry is via
level sets. Several level set methods for Shape from Shading [35–37] use intensity ex-
trema as singular points from which reconstruction begins. Local extrema of a
smooth intensity domain are local extrema of z (x,y) for a vertical light source
( L
!¼ ð0; 0; 1Þ). The case of an oblique light source, can be reduced to the vertical
one by rotation of the coordinate system [38]. Thus, both cases relate detection by
Yarg and scene geometry.

To summarize Case 4: in twice continuously differentiable domains, Yarg detects
intensity extrema, which correspond to extrema of angle a (x,y). Assuming a con-
stant light source direction, the detected points relate to scene geometry. What dis-
tinguishes Yarg (or Darg) from other methods of isolating intensity extrema is its high
robustness, and the consistency with which it detects its features.

4.2.3. The detected domains—Cases 1–3

A common property of Cases 1–3 of Theorem 1 is that a first-order deriva-
tive, either o

ox Iðx; yÞ or o
oy Iðx; yÞ, vanishes at one side of point (x0,y0), but at least

one side of either of them does not. We call this behavior a semi-weak change
of sign.

Under the assumptions of Section 4.2.1, a 3D plane of constant albedo produces a
constant intensity function (i.e., vanishing image derivatives), due to its constant
normal Eq. (3). If this plane turns smoothly into a convex (or concave) surface,
the points where the change begins project onto image points with a semi-weak
change of sign of the derivatives, as in Cases 1–3. Thus, the characterization of these
points relies on the local geometry of the scene surface.

In addition, Cases 1–3 should be considered in a broader context: the complete
mathematical analysis of the behavior of Computer Vision algorithms including ex-
treme cases is highly important, but it must take into account the distribution of
images in a natural environment; even the human vision system may fail on rare
images. In such an analysis, Cases 1–3 may be considered outliers due to their low
frequency. This results from the requirement of a smooth transition between the pla-
nar and convex (concave) parts of an object, whose probability in natural images is
relatively low. Higher level processing (e.g., tracking) can be used to further decrease
the level of noise.
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4.2.4. The stability of the detected intensity extrema

Isolation of extrema of the intensity function is certainly not new, for example
[39]. Local extrema divide into stable and unstable according to the determinant
of the Hessian matrix: critical points with a nonvanishing determinant are generic
(see [39]). Some cases of Theorem 1 (e.g., Case 1) necessarily represent stable extre-
ma, but some cases may include unstable extrema as well. The use of the isotropic
operator Darg, i.e., differentiation in all orientations, reduces the likelihood of
semi-weak derivatives, or in other words, of unstable extrema.

Another explanation for the stability of the detected points lies in their aforemen-
tioned relation to scene geometry. Instability of the intensity extrema implies an
inherent instability of the scene: either a critical lighting direction (cf. [40], there dis-
cussing stability of viewpoints; a similar analysis can be applied to lighting direc-
tions) or an object deformation.

This section shows that under the Lambertian model Yarg responds to certain
properties of the surface normal. This establishes a connection between Yarg and geo-

metric features of the 3D object, leading to stability of the detected points. The dis-
cussion is incomplete without referring to specular reflection: Specular reflection
indeed distracts Yarg, being [to a certain extent] a virtual image of the light source.

4.3. Theoretic basis of feature detectors

The majority of studies of feature point detectors is based on edges or corners
(e.g., Junction Detection [3], ImpHarris [4], Harris-Laplacian [5]). Nevertheless,
edges and corners are not inherent properties of objects and may occur on their
boundaries. As such, they are subjected to effects of the background or neighboring
objects. Consequently, these feature points cannot be related to scene geometry.

The KLT [2] detector is based on monitoring image changes assuming an affine
change model. These changes need not be related to scene geometry.

We see that many existing feature detectors are based on empiric results or a priori
assessment of the informativeness of certain features, but there is no theoretic model
to relate them to the scene. Darg, on the other hand, is related to scene geometry. This
ensures the theoretical correctness of its selected feature with respect to the scene.

Similarly toDarg, there exist other feature detectors which isolate intensity maxima,
and as such their features relate to scene geometry aswell. There, however, caremust be
taken to isolate only those maxima which appear inside smooth intensity domains to
avoid edge detection (as done, for example in [41]). Darg has the advantage of built-
in ignoration of (or low response to) edges, and the robustness of its computation.
5. The algorithm

As stated in the introduction, our method focuses on feature detection. We eval-
uate its fitness to higher level tasks using a complete detection–tracking system. This
section presents the system. As our goal is evaluation of the detection part of the sys-
tem, we use a simple tracker (Fig. 4). Intuitively, if a simple tracker is sufficient for a



Fig. 4. Block diagram of the stable points detection and tracking algorithm. (Upper row blocks:) The
stable-points detector. (Lower row blocks:) The tracking facility. The input to the tracking facility consists
of point locations only (blob centers). The tracking facility has no other knowledge of the image.
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certain detector while other detectors require more sophisticated trackers, then this
detector should be more stable. A more sophisticated tracker may compensate for
instabilities of detectors.

The stable-point detector is based on the Darg operator. As the input is discrete and
bounded, the algorithm isolates maxima of the dynamic range of D2

arg (by threshold-
ing). The stable points are the centers of gravity of the blobs produced by threshold-
ing D2

arg. These stable points are the only input to the point tracker: the tracker has
no knowledge about the mechanism producing its input points, and it obtains no
other knowledge of the image.

The point tracker is a classic multi-target 2D Kalman filter tracker. The Kalman
filter [23,24,42] is used for point tracking, assuming a constant velocity motion mod-
el, and doing the update by setting the position components of the state vector of the
filter to the measurement itself (i.e., to the point produced by the stable-point detec-
tor), each time a point is associated with a track. The velocity components remain
unchanged. This reinforces the claim that stability is due to the stable-point detector,
rather than the filtering process. We remove tracks which are too short, for further
stabilization of tracking.

5.1. Demonstration by video sequences

Let us demonstrate the stability of the algorithm by three video sequences taken
by a hand-held camera. The sequences contain complex camera motion: rotation,
acceleration, changes of motion direction, vibrations, and zooms. In all sequences,
tracking parameters were identical, except for two cases: the maximal idle time
(i.e., time when only Kalman-based approximation is maintained, without any
new measurement associated to that track) and minimal track length. These param-
eters depend on the variability and length of the video sequence, respectively.

In the following examples of video sequences (Figs. 5, 6), only the interior of
the marked black frame participates in the tracking (to avoid boundary conditions).
The tracks resulting from the stable-point extraction algorithm are marked on the
images. The exact feature point is the center of each square (or: center of X mark).
A label to the right of each mark holds its track ID.

Fig. 5 (Left) (‘‘toys’’) contains frames from a video sequence taken in the labora-
tory. The sequence introduces a notable change in viewing angle (pay attention to the
high variation of angle of the shadow of the pen tracked by Track 5). In spite of cam-
era motion, most of the detected points are stable. Track 5, for example, has a short



Fig. 5. (Left) Toys: Video sequence of objects in the laboratory.Note, for example, track 3 which follows the
same object as long as it is in the frame, or track 8 which consistently detects the tennis ball. (Right) Parking-
lot: an outdoors video sequence of a parking lot. Despite the variability and parallax in the scene, tracking is
correctly maintained in the vast majority of the cases. Track 1, for example, correctly tracks the tree in
frames #1–#170. Pay attention to the change of scales of that tree in frames #25 and #150 (top row).
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erroneous detection at the beginning of the sequence (for 4 frames), but for most of
the sequence (37 frames out of 46) it tracks the 3D object (a pen) correctly.

Fig. 5 (Right) (‘‘parking-lot’’) shows a sequence of a parking lot. Frames #25–
#125 demonstrate faithful tracking despite a considerable zoom. In frames #175–
#250, tracks 9 and 10 correctly follow the background building, while track 11
consistently detects a seat inside a parking car. The parallax depicted by the relative
motion of these tracks could be easily used for 3D scene correspondence.



Fig. 6. Traffic: A sight of a highway from a nearby hill. The scene is very dynamic, combining several
effects: camera motion, scene objects motion, and zoom. Results are worse then in the toys or parking-lot
sequences, but are still usable for algorithms requiring correspondence between successive frames. Note
the fast camera motion of tracks 11 and 12 (top row) and the correct tracking despite strong zoom of track
22 (bottom row).
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Fig. 6 (‘‘traffic’’) is a sight of a highway from a nearby hill. The scene is extremely
difficult to track. It combines a fast camera pan, motion of scene objects (cars), and
1:6 zoom out. Due to the substantial zoom, the stability of the hand-held camera be-
comes a significant factor for this sequence. As expected, the results of this sequence
are worse then of the other two (toys and parking-lot), but still, most of the tracks
are correct for most of the time even for this challenging video.
6. Performance evaluation

An important issue in stable point tracking is the method of evaluation of algo-
rithms. Various evaluation techniques appear in the literature, but they suffer from
certain flaws (see Section 2.3). To overcome the aforementioned flaws, this section
defines two different measures: one is more relevant for maximal-time point track-
ing; the other, for correspondence of points in successive frames. These measures
can serve for evaluation of 3D point tracking algorithms in general. Their reference
to tracking of 3D scene points distinguishes them from existing evaluation
measures.

6.1. Definition of a track

We first introduce the basic terminology. Our video sequence has k frames, each of
m · n pixels. The set of detected points, D, is the set of all pixels which a tracker selected.

The track ID function t:D ´ N associates numbers (‘‘track IDs’’) with selected
pixels, as determined by the tracker. In a certain frame, only one pixel may have a
certain track ID. Let Q be the set of all points whose track ID is T:
Q ¼deffqj 2 D j tðqjÞ ¼ Tg.
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The set PT
e of all pixels at distance e pixels from track T is the set of all image points

whose distance to a point with track ID T in their frame is less than or equal to e.

PT
e ¼deffp j 9q 2 Q \ frameðpÞ : kp � qk 6 eg;

where frame(p) is the frame where p lies. In the rest of this section, p will denote an
element from PT

e .

6.2. Selecting the correct scene point of a track

For the formal definition, let us assume we have an ideal function C : PT
e 7! R3

which maps pixels in the video sequence to the 3D scene points from which they orig-
inated. That is,C(p) is the 3D scene point whose projection on frame(p) is p itself. Also,
let projf :R

3
´ R2 be the projection of a 3D scene point onto the plane of frame f.

An automatic tracker may sometimes fail to correctly track the same scene
point, resulting in inconsistent tracking. Namely, a track may follow two differ-
ent 3D points, each of them being tracked in a different part of the sequence.
Such parts may be interleaved, or may involve more than two scene points.
To quantify the level of deviation from ideal tracking, we define which 3D point
in a track is the correct 3D scene point. We say that point C1 is the correct

scene point of track T if C1 obtains the maximal tracking time among all scene
points of pixels in PT

e , and its tracking in track T began earlier than any other
3D scene point with identical tracking time (if more than one scene point attains
maximal tracking time). Formally, C1 is the correct scene point of track T if
"C3 2 R3:

jfp j CðpÞ ¼ C1gj > jfp j CðpÞ ¼ C3gj
or $C22 R3, "C3 2 R3:

jfp j CðpÞ ¼ C1gj P jfp j CðpÞ ¼ C3gj
and jfp j CðpÞ ¼ C1gj ¼ jfp j CðpÞ ¼ C2gj

and C1 begins to be tracked (under track ID T) earlier than C2.
Bear in mind that both C1 and C2 are tracked under track ID T. The case where C1

begins to be tracked earlier than C2 divides up into two cases:

1. There exists a frame f, where the projections of C1 and C2 are distant more than e
pixels from one another: $f: iprojf (C1)�projf (C2)i > e. Under this assumption, we
say that C1 is the correct point iff:

minff j projf ðC1Þ 2 PT
e g < minff j projf ðC2Þ 2 PT

e g:

This definite minimum is assured to exist because in every frame, track T has at
most one detected point.

2. In every frame, the projections of C1 and C2 are distant less than or exactly e pix-
els: "f, iprojf (C1)�projf (C2)i6e. In this case, one may arbitrarily select whether
C1 or C2 is the correct point (as their projections are close enough).
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6.3. Defining completeness

One way to evaluate the performance of the algorithm is to evaluate its complete-
ness. Intuitively, a track is complete, if the same 3D scene point is being tracked, up
to a certain level of noise, in every frame where that 3D point appears.

The completeness measure of track T is the percent of frames where the correct
point C1 has been tracked with track ID T from the set of all frames where C1 ap-
pears (i.e., the potential maximal track time):

CompletenessT ¼ 100�Actual Correct Track Time

Potential Track Time

¼ 100�
jff j projf ðC1Þ 2 PT

e gj
jff j projf ðC1Þ 2 Rjfgj

;

where R|f is the m · n pixels rectangle captured by frame f.
The completeness measure of a tracker for a video sequence is the average com-

pleteness measure over all the tracks it detected for the specific video sequence.
Existing evaluation criteria (cf. Section 2.3) do not attempt to evaluate how per-

sistent a feature tracker is, thus ignoring an important aspect of feature tracking.
To correctly evaluate the position in the following image, the 3D position C and

the projection matrices projf need to be known, but we do not need to have these: as
is the case for almost any measuring scheme, we assume that a ground truth is given
in order to be compared with. In this paper, the real point correlation has been car-
ried out manually. The comparative norms we propose are aimed at comparing the
general ranking of methods, and thus should be used on an accepted set of well de-
fined sequences, for which a ground truth could be calculated. We take two measures
to reduce the effect of subjective judgment. First, a rigorous mathematical definition
is presented, leaving only C and projf for manual extraction. Second, a permissive
noise level e = 3 compensates for possible discrepancies between different manual
calculations.

6.4. Stability of tracking

Astabilitymeasure is a percentage of points correctlymatched between images i and
i+1. Formally, the stability measure of frames fi and fi+1 with allowed noise of e pixels is:

Stabilityeði; iþ1Þ ¼ 100� jfj 2 S j kprojfiþ1
ðCðpijÞÞ � piþ1

j k 6 egj=r;
where W.L.O.G S = {1, . . . ,r} denotes all track IDs common to both frames, and
pi1; . . . ; p

i
r and piþ1

1 ; . . . ; piþ1
r are the detected points for the corresponding tracks

and frames.
For many practical purposes (e.g., the correspondence problem), a full tracking of

3D points, or even allocation of a single track ID to a single scene point are not a
must. In such applications, we look for a reliable association of several anchor points
in frame i with points in frame i+1, which are the projection of the same scene point.
When associating points in frame i+1 with points in frame i+2, the set of associated
scene points may change. The stability measure is adequate for such applications.
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The stability measure resembles the ‘‘repeatability’’ measure of [4] in some as-
pects. The main difference is that ‘‘stability’’ takes automatic tracking into account,
thus examining the detection–tracking system as a whole, while ‘‘repeatability’’ aims
merely at the detection part, thus implicitly assuming tracking is always correct. This
assumption may bias the evaluation. An example is a feature detector which selects
all points in a large image region: a tracker cannot distinguish the points due to their
high number and proximity. Thus, an evaluation of a detector along with a tracker is
more apt to real life tasks.

Another difference from ‘‘repeatability’’ is the group of points which are expected
to repeat. ‘‘Repeatability’’ considers all interest points in the part of the scene which
appears in two successive frames. In contrast, ‘‘stability’’ uses the number of tracks
which follow points in both frames (r). Thus, if a track ends at a certain frame, its
last point is no longer expected to be detected in the next frame, even if its 3D point
still appears in that frame. This is because for the correspondence task, one may
ignore such a track. (Bear in mind, that in order to evaluate how long a 3D point
has been tracked we use the completeness measure).
7. Experimental results

Various feature trackers have been suggested in the literature (see Section 2). To
evaluate the performance of our tracker, we compare the Darg-based tracking algo-
rithm with four other algorithms: Junction Detection [3], ImpHarris [4], KLT [2,26]
andHarris-Laplacian [5]. Four of the algorithms under study: JunctionDetection, Imp-
Harris, Harris-Laplacian, and Darg use an identical tracker based on Kalman filter (the
onedescribed inSection5).Theyall share the same tracker codeand identical parameters.
The KLT algorithm is itself a combined detector–tracker, and as such cannot be split.

The original implementation [4] of ImpHarris uses 1% threshold of maximum ob-
served interest point strength. This threshold is too low for tracking: it results in a
large number of adjacent feature points, even in neighboring pixels, and in many
cases in connected edges rather than isolated points (Fig. 7). This phenomenon re-
duces the ability of a tracker to correctly associate features in successive frames.
Fig. 8 (parking-lot sequence only) shows that increasing the threshold to 20% im-
proves tracking results of ImpHarris. Therefore, our comparison would refer to
Fig. 7. (Left) Frame #10 of the parking-lot sequence. (Middle) ImpHarris, 1% threshold. (Right)
ImpHarris, 20% threshold. The increased threshold improves tracker ability to distinguish between feature
points, leading to a more stable detection–tracking system.



Fig. 8. (Left) Completeness comparison.On the toys and traffic sequences: Darg performs as well as Junction
Detection and KLT and most of the time better than ImpHarris or Harris-Laplacian. On the parking-lot

sequence: Darg attains better completeness than the other five trackers. (Right) Stability comparison.
Tracking by Darg is more stable than Junction Detection, ImpHarris or Harris-Laplacian. For the toys
sequence, Darg is more stable than KLT. For the parking-lot and traffic sequences, Darg and KLT equate.
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the 20% threshold version of ImpHarris. Similarly, we employed a 20% threshold for
the Harris part of the Harris-Laplacian detector of [5].

In all trackers, tracks shorter than a certain percentage of the length of the video
sequence are ignored (toys: 25%; parking-lot 25%; and traffic 10%). The threshold is
lower for the traffic sequence due to its higher variability.
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To follow the development in time of the completeness and stability measures, a
sliding window over frames in the video sequence is employed. The calculation of the
measures refers to the frames of the window as if they were the whole video sequence.
The window length is: 30 frames, and it shifts by 5 frames each time. The allowed
noise level in all sequences is: e = 3 pixels.

7.1. Completeness comparison

Fig. 8 (Left) shows graphs of the completeness measure for the toys, parking-
lot, and traffic sequences. Each axes system shows sliding completeness for the five
algorithms: Darg, Junction Detection, KLT, ImpHarris (20% threshold) and
Harris-Laplacian (20% threshold). The parking-lot sequence was tested also with
the original (1% threshold) version of ImpHarris.

The graphs show that the completeness of Darg is at least comparable to that of
Junction Detection and KLT, and usually better than ImpHarris or Harris-Lapla-
cian. On the traffic sequence: results for Darg, Junction Detection and KLT are sim-
ilar for this sequence, being a very difficult one. On the toys sequence: Junction
Detection performs better than KLT. In part of the sequence, Darg attains higher
completeness than the rest of the trackers. On the parking-lot sequence: Darg performs
better than Junction Detection, KLT, ImpHarris (in both versions) or Harris-Lapla-
cian. The most significant difference between Junction Detection or KLT and Darg is
at the last part of the sequence, when Darg reaches very high completeness values
(even 100%), while the completeness of Junction Detection and KLT drops. The rea-
son is the high parallax at the end of the sequence, when a car is very close to the
camera, while the background buildings are quite far. Darg copes well with parallax,
as the feature it tracks is intrinsic to the 3D object. ImpHarris (20%) copes well with
the last part of this sequence, but to a lower extent than Darg. Harris-Laplacian
(20%) can cope with the parallax, but it attains lower completeness rates in general.

7.2. Stability comparison

Fig. 8 (Right) introduces the sliding average stability criterion: stabilitye (i, i + 1),
for the four video sequences. As the graphs show, the stability of Darg is higher than
that of the other three trackers for the toys and parking-lot sequences. In parts of the
parking-lot sequence, KLT equates with Darg. In a small part of this sequence, Junc-
tion Detection also equates with Darg. For the traffic sequence we can order the
trackers by their stability (descending order): KLT, Darg, Junction Detection, Imp-
Harris and Harris-Laplacian. In parts of this sequence Darg equates with KLT.

7.3. No-tracking comparison

Another criterion for tracker comparison would be the no-track time: the total
time a tracker failed to track any point at all. We compare the total no-track time
over all three video sequences together. Their total number of frames is:
46 + 252 + 227 = 525.
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Harris-Laplacian (20%) maintained tracking at all times. This may be a result of
the high number of tracks it generates. Among the other algorithms, Darg has the
minimal no-track time: merely 4 no-track frames in all three video sequences. This
no-track time is significantly lower then that of the other three methods (ImpHarris:
24 frames; KLT: 81 frames; and Junction Detection: 121 frames).

7.4. Results summary

We see that Darg is more stable than Junction Detection, ImpHarris or Harris-
Laplacian, and sometimes (toys sequence) also more than KLT; Sometimes (park-
ing-lot and traffic seq.) Darg and KLT equate. In addition, the stability of Darg is
not at the expense of completeness, as Darg maintains completeness of tracking at
least comparable to the Junction Detection and KLT trackers (sometimes even a bet-
ter completeness), and better than the ImpHarris and Harris-Laplacian detectors.

7.5. Interpreting the results

When one interprets the results displayed here, one must refrain from over-gener-
alization of the graphs introduced here, because the graphs rely merely on three vi-
deo sequences. A comparison from which a ‘‘best’’ detector can be declared, should
base on a much more extensive comparison, say on thousands of video sequences.
Due to the large amount of manual work, this kind of results analysis is beyond
the scope of this paper.

The issue of test sequences refers not only to the amount of sequences, but also to
their distribution. ImpHarris, for example, may provide better results than Darg in
some edge-intensive sequences, while Darg may yield better results in edge-sparse
or edge-saturated domains, being more reliable there (as shown by this paper and
in [6]). Different techniques are better suited for different scenes, so their combination
should be employed when scene characteristic is unknown a priori. One such com-
bination of ImpHarris at edge-intensive image domains and a detector of extrema
of the intensity at smooth domains is reported in [41]. The robustness of Darg may
improve the stability of the maxima detector there, and is a subject for future
research.

Another factor affecting the stability of algorithms is the amount of features they
generate. A large number of features may make the tracking task more difficult. Darg,
for example, generated a relatively low number of features (10–20) in the three se-
quences under study, while Harris-Laplacian (20%) generated 136 tracks for the traf-
fic sequence. In our comparison we adopted the original parameters of the
algorithms, except for the Harris-based operators for which an attempt was made
to increase stability by higher thresholds. Exploring algorithm parameters beyond
the Harris-based attempts is outside the scope of this study, and is a subject for fu-
ture research.

To evaluate the suitability of algorithms for higher level tasks, we test the detec-
tion–tracking system as a whole, rather than its separate components. While it is
rather clear that such a comparison of the four algorithms employing an identical
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Kalman filter is ‘‘fair’’ and differences in results are due to differences in detected fea-
tures, the comparison with KLT that uses a built-in tracker may raise some issues.
However, we have chosen to include KLT in our comparison since we consider it
a commonly used method, and as such it serves as a basis for comparison. It should
also be noted that KLT tracking is considered more advanced than a mere Kalman
filtering.
8. Task-oriented measures

As explained in Section 6, evaluation of algorithms is task-dependent: different
tasks require different evaluation schemes. Fig. 9 (‘‘Flower Garden’’) demonstrates
the problem: tracking may be selective to certain areas of the scene. The scene con-
tains a tree close to the camera and a flower garden farther away. Nonetheless, KLT
tracks merely the background, but not the tree. Darg tracks both. For tasks which
need the tree be tracked, Darg would be more useful than KLT. However, this fact
is reflected by neither completeness nor stability. On the contrary, KLT performs
better according to these measures (Fig. 10).

To cope with the task-dependency of evaluation schemes, we suggest that during
the computation of completeness and stability one would apply a weighting scheme
to the video sequence under consideration. Different parts of the scene would gain
different a priori weights according to the higher level task. A track which follows
Fig. 9. Tracking the ‘‘Flower Garden’’ video sequence. (Left) Tracking by Darg. Both the tree and the
background are being tracked. Pay attention in particular to tracks 27 and 34 which detect the tree. (Right)
Tracking by KLT tracks only background objects.



Fig. 10. Completeness and stability comparison for the ‘‘Flower Garden’’ video sequence. Both measures
show that KLT performs better than Darg. The measures cannot reflect the fact that Darg (but not KLT)
tracks the tree, because it is a smooth 3D edge-sparse object. Applications in which detection of the tree is
crucial, may use a priori weighting to give the tree a higher weight; such a weighting may change the
preferred algorithm. In our case, such a task-oriented weighting would favor Darg.
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a certain scene point would receive its weight. In this manner, the overall analysis
would fit better for the required task. This solution is similar, in a sense, to the a priori
distribution of viewpoints employed in [40] when determining stable views of objects.

When evaluating tracking of the ‘‘Flower Garden’’ for applications which need
tracking of the tree, one would allocate higher a priori weights to the tree than to
the background. Because only Darg tracks the tree, this weighting would give rise
only to the completeness and stability of Darg, but not to that of KLT. The weighted
measures may then show that Darg is superior to KLT. Indeed, for an application
where the tree ought to be tracked, Darg is to be preferred to KLT, a fact reflected
only by the weighted measures.
9. Conclusions

We have presented an operator for scene-consistent detection of feature points in
video sequences. The operator efficiently detects local extrema of the intensity func-
tion in twice continuously differentiable image domains, and is insensitive to image
edges. Observing that the zero crossing of the gradient argument is a highly promi-
nent feature, we analytically show that this zero crossing relates to specific features of
the intensity surface, which, in turn, relates to specific local features of the 3D scene
geometry. Based on this operator, a commonly used algorithm for stable point track-
ing (using a 2D multi-target Kalman filter tracker) is described. Several video se-
quences demonstrate the high robustness maintained by the algorithm.

Two measures, completeness and stability, are introduced in order to evaluate per-
formance of algorithms for feature point tracking as well as correspondence establish-
ing tasks. These measures overcome various flaws in existing evaluation measures of
feature point trackers. The completenessmeasure is aimed at maximizing the tracking
time of a 3D scene point. The goal of the stabilitymeasure is to keep consistent tracking
of 3D scene points between successive frames (but the set of tracked scene points may
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change between frames). Applying task-oriented a priori weighting to these measures
was shown to improve the suitability of the suggestedmeasures to the original tasks for
which tracking was initiated. The suggested measures are generic, and are suggested as
a basis for comparison of 3D point tracking algorithms in general.

We have used the suggested measures in a comparison of our tracker with four
other detection–tracking methods. The comparison leads us to the conclusion that
a combination of detectors should be employed. The way to combine edge-based
and non-edge-based detectors (e.g., corner detectors and Darg) is not trivial, as a
sophisticated algorithm that will determine when to use each method is necessary;
it is a subject for future research.
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Appendix A. Response to the intensity surface—Proof

Proof of Theorem 1. Let us define the domain: D ¼deffðx; yÞ 2 R2 j y 6¼ 0 or x > 0g,
and let: arctan|D:D´ R denote the 2D arctan function Eq. (1) reduced to domain D.
For each (x,y) 2 D, arctanŒD is differentiable. By the chain rule, and based on the

differentiability of oIðx;yÞ
ox and oIðx;yÞ

oy , the compound function: hjEðx; yÞ ¼
def

arctan

jD
oIðx;yÞ
oy ; oIðx;yÞ

ox

� �
, where E ¼deffðx; yÞ 2 R2 j oIðx;yÞ

oy 6¼ 0 or oIðx;yÞ
ox > 0g, is also differen-

tiable. Therefore, if (x,y) 2 E, then j o
oy hðx; yÞj ¼ j o

oy hjEðx; yÞj < 1.

It follows, that if o
oy hðx; yÞ ! �1, then (x,y) 62 E, which implies: ðx; yÞ 2 :E ¼

fðx; yÞ 2 R2 j oIðx;yÞ
oy ¼ 0 and oIðx;yÞ

ox 6 0g. Let ðx0; y0Þ 2 :E be a point, where: limy!y0

o
oy hðx; yÞjx¼x0 ¼ �1. From the above, necessarily: oIðx;yÞ

oy jx¼x0; y¼y0
¼ 0.

Because of the continuous differentiability of oIðx;yÞ
oy (and similarly oIðx;yÞ

ox ), if one

examines a small enough neighborhood of (x0,y0), then at each side of y0,
oIðx;yÞ
oy has a

constant sign at that side. From here on, we assume all points (x,y) are in that e y-
neighborhood, and the x-rate is x = x0. We next examine the signs of oIðx;yÞ

oy and oIðx;yÞ
ox

at points (x,y) of a sufficiently small neighborhood of (x0,y0):

1. (x0,y0) is a point of inflection of I (x0,y), i.e.,
oIðx;yÞ
oy has a constant sign (except for

the point of inflection (x0,y0) itself, where
oIðx;yÞ
oy jðx0;y0Þ ¼ 0):

(a) 8y : y 6¼ y0;
oIðx;yÞ
oy > 0

(b) 8y : y 6¼ y0;
oIðx;yÞ
oy < 0.

http://www.freeimages.co.uk
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In both cases (a) and (b), h (x,y) has a removable singularity, because the 2D arc-
tan in quadrants I, II (arctan|{y:y > 0}(y,x)), is continuous, and similarly for quad-
rants III, IV (arctan|{y:y < 0}(y,x)). Therefore, there is no jump discontinuity.

(c) 8y : y 6¼ y0;
oIðx;yÞ
oy ¼ 0. Let us examine oIðx;yÞ

ox :
Tab
Case

Con

y <

y >

y >

y <

y <

y >

y <

y >

Tab
Case

Con

y >

y <
(i) 8y : y 6¼ y0;
oIðx;yÞ
ox < 0. h (x0,y) = p for all y „ y0. A removable discontinu-

ity exists, which contradicts the assumption that o
oy hðx; yÞ ! �1.

(ii) 8y : y 6¼ y0;
oIðx;yÞ
ox P 0. For all y, h (x,y) = 0, so no jump discontinuity

occurs.
(iii) 8y : y < y0;

oIðx;yÞ
ox P 0, and 8y : y > y0;

oIðx;yÞ
ox < 0 (or vice versa; the other

case is similar). Jump discontinuity occurs in this case, and o
oy hðx; yÞ !

þ1.
hðx; yÞ ¼
0 if y < y0
p if y > y0

�

Cases 2, 3, and 4 of the theorem are summarized in Tables 1–3 (respectively). The left
column of each table describes the sub-case under consideration. The middle column
le 1
2: 8y : y < y0;

oIðx;yÞ
oy > 0 and 8y : y > y0;

oIðx;yÞ
oy ¼ 0 (or vice versa)

dition h (x,y) = h (x,y) has:

y0
oIðx;yÞ
ox > 0

y0
oIðx;yÞ
ox < 0

arctan oIðx;yÞ
oy = oIðx;yÞ

ox

� �
þ p if y 6 y0

p if y > y0

(
Continuity

y0;
oIðx;yÞ
ox ¼ 0

hðx; yÞ > 0 if y < y0
hðx; yÞ ¼ 0 if y > y0

�
Jump discontinuity

y0
oIðx;yÞ
ox ¼ 0

p
2 if y < y0
0 or p if y > y0

�
Jump discontinuity

y0
oIðx;yÞ
ox > 0

y0
oIðx;yÞ
ox < 0

arctan oIðx;yÞ
oy = oIðx;yÞ

ox

� �
< p

2 if y < y0
p if y > y0

(
Jump discontinuity

y0;
oIðx;yÞ
ox < 0

y0;
oIðx;yÞ
ox > 0

arctan oIðx;yÞ
oy = oIðx;yÞ

ox

� �
þ p > p

2 if y < y0
0 if y > y0

(
Jump discontinuity

le 2
3: 8y : y < y0;

oIðx;yÞ
oy < 0 and 8y : y > y0;

oIðx;yÞ
oy ¼ 0 (or vice versa)

dition h (x,y) = h (x,y) has

y0;
oIðx;yÞ
ox 6 0 h ðx; yÞ < 0 if y < y0

h ðx; yÞ ¼ 0 or p if y > y0

�
Jump discontinuity

y0
oIðx;yÞ
ox 6 0

arctan oIðx;yÞ
oy = oIðx;yÞ

ox

� �
� p 6 � p

2 if y < y0
0 or p if y > y0

(
Jump discontinuity



Table 3
Case 4: For a minimum point (x0,y0), i.e., 8y : y < y0;

oIðx;yÞ
oy < 0 and 8y : y > y0;

oIðx;yÞ
oy > 0

Condition h (x,y) = h (x,y) has

y < y0
oIðx;yÞ
ox 6 0

arctan oIðx;yÞ
oy = oIðx;yÞ

ox

� �
� p 6 � p

2 if y < y0
hðx; yÞ > 0 if y > y0

(
Jump discontinuity

y > y0
oIðx;yÞ
ox 6 0

hðx; yÞ < 0 if y < y0
arctan oIðx;yÞ

oy = oIðx;yÞ
ox

� �
þ p � p

2 if y > y0

(
Jump discontinuity

y 6¼ y0
oIðx;yÞ
ox > 0 arctanðoIðx;yÞ

oy = oIðx;yÞ
ox Þ Continuity

The case of a maximum point is equivalent.
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shows the behavior of h (x,y) under that constraint. The right column indicates
whether or not a jump discontinuity of h (x,y) may occur in this case.
Appendix B. Intensity extrema under perspective projection

Lemma 1. Let (x,y,z) be a Cartesian coordinate system, and let (u,v) be the

coordinate system which results from the perspective projection of a 3D surface

z (x,y) on an image plane Ipersðx; yÞ : u ¼ � fx
zðx;yÞ ; v ¼ � fy

zðx;yÞ, where f is the focal

length.

If there exists d for which "x,y: |x�x0| < d and |y � y0| < d, then necessarily there

exists d2 for which "u,v: |u � u0| < d2 and |v�v0| < d2.
Proof. To prove the lemma, we consider the bounds on z(x,y) as well as on x and y

themselves. The 3D surface z(x,y) consists merely of positive values in the strong
sense. Therefore, $M > 0: "x,y: z(x,y) > M > 0. The image domain is finite and
therefore bounded: $A > 0: �A 6 x 6 A, and $B > 0: �B 6 y 6 B. The continuity
of z(x,y) at point (x0,y0) means:

8�1 > 0 9d1 > 0 : 8x; y : j x� x0 j< d1; j y � y0 j< d1 : j zðx; yÞ � zðx0; y0Þ j< �1:

Let: z0 = z(x0,y0). The required constraint on u follows directly from these
properties:

u� u0 ¼
x0f
z0

� xf
zðx; yÞ < f

d1
M

þ A

M2
�1

� �
:

Let: d2 ¼ f ðd1M þ A
M2 �1Þ. We have: u � u0 < d2. The proofs that u � u0 > �d2 and that

|v�v0| < d2 are similar in nature and are therefore omitted. h
Theorem 2. Let Iorth (x,y) be the intensity function produced by orthographic projec-

tion of a Lambertian surface z(x,y) with constant albedo illuminated by a point light

source at infinity (as described in Section 4.2.1):

Iorthðx; yÞ ¼ qN
!ðx; yÞ � L!¼ q cosðaðx; yÞÞ;
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where q is the (constant) albedo; N
!ðx; yÞ, a normal to the 3D surface z (x,y); L

!
, light

source direction (assumed constant); and aðx; yÞ ¼ \ðN!ðx; yÞ; L!Þ. Obviously,
aðx; yÞ 2 ½0; p

2
�.

Let Ipers (u,v) be the perspective projection of z (x,y). This means that:

Ipersðu; vÞ ¼ Iorthðx; yÞ ¼ q cosðaðx; yÞÞ:
If (x0,y0) is a point of local maximum of Iorth (x,y), then the perspective projection of

(x0,y0,z(x0,y0)), denoted (u0,v0), is a local maximum of Ipers (u,v).
Proof. By definition of a local maximum at point (x0,y0), the orthographic projec-
tion image Iorth (x,y) satisfies:

9d > 0 : 8x; y : jx� x0j < d; jy � y0j < d : Iorthðx0; y0Þ > Iorthðx; yÞ:
Now, according to Lemma 1, the last equation implies:

9d2 > 0 : 8u; v : ju� u0j < d2; jv� v0j < d2 : Iorthðx0; y0Þ > Iorthðx; yÞ:
Substituting Ipers (u,v) = Iorth (x,y) we get:

9d2 > 0 : 8u; v : ju� u0j < d2; jv� v0j < d2 : Ipersðu0; v0Þ > Ipersðu; vÞ
) (u0,v0) is a local maximum of Ipers (u,v). h
Corollary 1. Let Ipers (u,v) be the intensity function produced by perspective projection

of a constant albedo Lambertian surface z (x,y) illuminated by a point light source at

infinity (as described in Section 4.2.1): Ipersðu; vÞ ¼ qN
!ðx; yÞ � L!¼ q cosðaðx; yÞÞ,

where q is the constant albedo; N
!ðx; yÞ, a normal to the 3D surface z (x,y); L

!
, the light

source direction (assumed constant); and aðx; yÞ ¼ \ðN!ðx; yÞ; L!Þ 2 ½0; p
2
�. If at point

(x0,y0) the angle a(x,y) has a local minimum, then the intensity function Ipers (u,v)
has a local maximum at (u0, v0), the projection of (x0,y0).
Proof. The corollary follows directly from the decreasing monotonicity of the cosine
at ½0; p

2
�, and Theorem 2, which establishes the relation between maxima at the two

coordinate systems (x,y) and (u,v). h

Similar theorems also apply for the case of a local minimum of the intensity func-
tion. The importance of these theorems and corollaries is that they relate the inten-
sity features detected by Yarg with the geometric features of the 3D surface z(x,y) at
the detected locations. The fact that Yarg detects certain geometric features of the 3D
surface explains its robustness.
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