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Abstract. Some animals use counter-shading in order to prevent their detection
by predators. Counter-shading means that the albedo of the animal is such that
its image has a flat intensity function rather than a convex intensity function.
This implies that there might exist predators who can detect 3D objects based
on the convexity of the intensity function. In this paper, we suggest a mathe-
matical model which describes a possible explanation of this detection ability.
We demonstrate the effectiveness of convexity based camouflage breaking us-
ing an operator (“D.r4") for detection of 3D convex or concave graylevels. Its
high robustness and the biological motivation make D4 particularly suitable for
camouflage breaking. As will be demonstrated, the operator is able to break very
strong camouflage, which might delude even human viewers. Being non-edge-
based, the performance of the operator is juxtaposed with that of a representative
edge-based operator in the task of camouflage breaking. Better performance is
achieved by Dgr4 for both animal and military camouflage breaking.

1 Introduction

“Camouflage is an attempt to obscure the signature of a target and also to match its
background” [1]. Work related to camouflage can be roughly divided into two: cam-
ouflage assessment and design (e.g, [1], [2]), and camouflage breaking. Despite the
ongoing research, only little has been said in the computer vision literature on visual
camouflage breaking: [6], [11], [51, [3]. [4]

In this paper, we address the issue of visual camouflage breaking. We present bio-
logical evidence that detection of the convexity of the graylevel function may be used to
break camouflage. This is based on Thayer’s principle of counter-shading [12], which
observes that some animals use apatetic coloration to prevent their image (under sun
light) from appearing as convex graylevels to a viewer. This implies that other animals
may break camouflage based on the convexity of the graylevels they see (or else there
was no need in such an apatetic coloration).

Our goal is therefore to detect 3D convex or concave objects under strong camou-
flage. For this task, we employ our proposed operator (D,,4), which is applied directly
to the intensity function. D, responds to smooth 3D convex or concave patches in ob-
jects. The operator is not limited by any particular light source or reflectance function.
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It does not attempt to restore the three dimensional scene. The purpose of the operator
is detection of convex or concave objects in highly cluttered scenes, and in particular
under camouflage conditions.

The robustness and invariance characterizing D,,, (see [10]) as well as the bio-
logical motivation make it suitable for camouflage breaking, even for camouflages that
might delude a human viewer. In contrast with existing attempts to break camouflage,
our operator is context-free; its only a priori assumption about the target is its being
three dimensional and convex (or concave). In order to evaluate the performance of the
operator in breaking camouflage, we juxtaposed D, with a representative edge-based
operator. Due to lack of room only a small portion of the comparison can be given in
the paper.

The next section defines the operator D,,, for convexity-based detection. Sec-
tion 2.1 gives intuition for D,,, and is of particular importance for understanding
its behavior. Section 3 utilizes D, for camouflage breaking. Section 3.1 brings the
biological evidence for camouflage breaking by detection of graylevel convexity. Sec-
tion 3.2 establishes the connection between the biological evidence and the specific
convexity detector D,,,. Section 4 delineates a camouflage breaking comparison of an
edge-based method with our convexity detector. Concluding remarks are in section 5.

2 Yarg, Darg: Operators for Detection of Convex Domains

We next define an operator for detection of three dimensional objects with smooth con-
vex and concave domains.

Let I(x,y) be an input image, and VI(z,y) = (£&1(z,y), £ I(x,y)) the Carte-
sian representation of the gradient map of I(z, y). Let us convert VI(z, y) into its polar
representation. The gradient argument is defined by:

O(x,y) = arg(VI(x,y)) = arctan ( %I(z, Y) , %I(x,y) )

where the two dimensional arc tangent is:

arctan(¥), ifz >0
arctan(y, x) = arctan(%) + 7, ifr<0,y>0
arctan(£) — m, ifr<0,y<0

and the one dimensional arctan(t) denotes the inverse function of tan(t) so that:
arctan(t) : [—oo,00] — [—%, 5]
The proposed convexity detection mechanism, which we denote: Yy,,.4, is simply the

y-derivative of the argument map:

0 0
Yorg = a—y@(m,y) = B arctan ( %I(m,y) , %I(Jc,y))
To obtain an isotropic operator based on Y4, we rotate the original image by 0°,
90°, 180° and 270°, operate Y4, and rotate the results back to their original positions.

The sum of the four responses is the response of an operator which we name: D ..
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Fig. 1. (a) Paraboloidal gray-levels: I(z,y) = 100z* + 300y>. (b) Gradient argument of (a).
Discontinuity ray at the negative x-axis. (C) Yarg 0f (8) (= a% of (b)). (d) Rotation of (a) (90°
c.c.w.), calculation of gradient argument, and inverse rotation. (e) Rotation of (a) (90° c.c.w.),
calculation of Y44, and inverse rotation. (f) Response of D4, the isotropic operator.

2.1 Intuitive Description of the Operator

— What Does Y, Detect?
Y.rq detects the zero-crossings of the gradient argument. This stems from the last
step of the gradient argument calculation: the two-dimensional arc-tangent func-
tion. The arc-tangent function is discontinuous at the negative part of the x-axis;
therefore its y-derivative approaches infinity there. In other words, Y., approach-
es infinity at the negative part of the xz-axis of the arctan, when this axis is being
crossed. This limit reveals the zero-crossings of the gradient argument (see [10] for
more details).

— Why Detect Zero-Crossings of the Gradient Argument?
Y, 4 detects zero-crossings of the gradient argument of the intensity function I (z, y).
The existence of zero-crossings of the gradient argument enforces a certain range
of values on the gradient argument (trivially, values near zero). Considering the in-
tensity function I(z, y) as a surface in IR, the gradient argument “represents” the
direction of the normal to the surface. Therefore, a range of values of the gradient
argument means a certain range of directions of the normal to the intensity surface.
This enforces a certain structure on the intensity surface itself.
In [10] we have characterized the structure of the intensity surface as either a
paraboloidal structure or any derivable strongly monotonically increasing transfor-
mation of a paraboloidal structure (Fig. 1). Since paraboloids are arbitrarily curved
surfaces, they can be used as a local approximation of 3D convex or concave sur-
faces (Recall, that our input is discrete, and the continuous functions are only an
approximation!). The detected intensity surface patches are therefore those exhibit-
ing 3D convex or concave structure. The convexity is three dimensional, because
this is the convexity of the intensity surface I(x, y) (= 2D surface in IR?; Fig. 2(b)),
and not convexity of contours (= 1D surface in IR%; Fig. 2(a)). This 3D convexity of
the intensity surface is characteristic of intensity surfaces emanating from smooth
3D convex bodies.
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Fig. 2. 3D vs. 2D convexity. (a) 2D convexity: A contour is a 1D surface in IR?. (b) 3D convexity:
A paraboloid is a 2D surface in IR3.

— Summary
We detect the zero-crossings of the gradient argument by detecting the infinite re-
sponse of Y,,., at the negative z-axis (of the arctan). These zero-crossings occur
where the intensity surface is 3D convex or concave. Convex smooth 3D objects
usually produce 3D convex intensity surfaces. Thus, detection of the infinite re-
sponses of Y., results in detection of domains of the intensity surface which char-
acterize 3D smooth convex or concave subjects.

3 Camouflage Breaking

The robustness of the operator under various conditions (illumination, scale, orientation,
texture) has been thoroughly studied in [10]. As a result, the smoothness condition of
the detected 3D convex objects can be relaxed. In this paper, we further increase the
robustness demands from the operator by introducing very strong camouflage.

3.1 Biological Evidence for Camouflage Breaking by Convexity Detection

Next, we exhibit evidence of biological camouflage breaking based on detection of
the convexity of the intensity function. This matches our idea of camouflage breaking
by direct convexity estimation (using D). We bring further evidence, that not only
can intensity convexity be used to break camouflage, but also there are animals whose
coloring is suited to prevent this specific kind of camouflage breaking.

It is well known that under directional light, a smooth three dimensional convex
object produces a convex intensity function. The biological meaning is that when the
trunk of an animal (the convex subject) is exposed to top lighting (sun), a viewer sees
shades (convex intensity function). As we shall see, these shades may reveal the ani-
mal, especially in surroundings which break up shadows (e.g., woods) (see [8]). This
biological evidence supports D,., approach of camouflage breaking by detecting the
convexity of the intensity function.

The ability to trace an animal based on these shadow effects has led, during thou-
sands of years of evolution, to coloration of animals that dissolves the shadow effects.
This counter-shading coloration was first observed at the beginning of the century [12],
and is known as Thayer’s principle. Portmann [8] describes Thayer’s principle: “If we
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Fig. 3. Thayer’s principle of counter shading. (a) A cylinder of constant albedo under top lighting.
(b) A counter-shaded cylinder under ambient lighting (produced by mapping a convex texture).
(c) Thayer’s principle: the combined effect of counter-shading albedo and top lighting breaks up
the shadow effect (= convex intensity function).

Fig. 4. Thayer’s principle. The upper part of the animal is the darker one; transition from the dark
part to the bright part is obtained by a gradual change of albedo. When the animal would be in
sun light, this coloration would break the convexity of the intensity function.

paint a cylinder or sphere in graded tints of gray, the darkest part facing toward the
source light, and the lightest away from it, the body’s own shade so balances this color
scheme that the outlines becomes dissolved. Such graded tints are typical of vertebrates
and of many other animals.” Figure 3 uses ray tracing to demonstrate Thayer’s principle
of counter-shading when applied to cylinders. The sketches in Fig. 4, taken from [8],
demonstrate how animal coloration changes gradually from dark (the upper part) to
bright (the lower part). When the animal is under top lighting (sun light), the gradual
change of albedo neutralizes the convexity of the intensity function. Had no counter-
shading been used, the intensity function would have been convex (as in Fig. 3(a)), ex-
posing the animal to convexity based detectors (such as D). Putting counter-shading
into effect neutralizes the convexity of the intensity function thus disabling convexity-
based detection.

The existence of counter-measures to convexity based detectors implies that there
might exist predators who can use convexity based detectors similar to D ..

3.2 Thayer’s Counter-Shading Against D,,4-based Detection

Let us demonstrate how Thayer’s principle of counter-shading can be used to camou-
flage against D, 4-based detectors. In Fig. 5 we once again consider a synthetic cylin-
der; this time we operate D,,, on each of the images of that cylinder. As can be seen,
the counter-shaded cylinder under top lighting (Fig. 5, Column C) attains much lower
D4 values than the smooth cylinder under the same lighting (Fig. 5, Column A). This
is because counter-shading turns the intensity function from convex to (approximately)
planar.
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Fig. 5. Operation of D?wg on a counter-shaded cylinder. Column A: A smooth cylinder under
top lighting. Column B: The counter-shaded cylinder under ambient lighting. Column C: The
counter-shaded cylinder under top lighting. The counter-shaded cylinder can barely be noticed
under top lighting, due to the camouflage. Under top lighting, the response of Dg.4 is much
stronger when the cylinder is smooth than when it is counter-shaded, showing this type of cam-
ouflage is effective against Dq.g.

To see the transition from a convex intensity function to a planar one due to cam-
ouflage, we draw (Fig. 6-left) the vertical cross-sections of the intensity functions of
Fig. 5. The smooth cylinder under top lighting (Column A) produces a convex cross-
section. The albedo, or the counter-shaded cylinder under ambient lighting (Column
B), consists of graded tints of gray (i.e, convex counter-shading). Finally, the counter-
shaded cylinder under top lighting (Column C) produces a flat intensity function, which
means a lower probability of detection by Dg,,.

We verify that the flat intensity function is indeed harder to detect using D, than
the convex intensity function: we show that D, has a lower response to the counter-
shaded cylinder under top lighting than it has to the smooth cylinder under the same
lighting. This is obvious from Fig. 6-right which shows the vertical cross-sections of
the responses of D, to the various images of the cylinder.

The above demonstrates that Thayer’s principle of counter-shading is an effec-
tive biological camouflage technique against convexity-based camouflage breakers, and
more specifically, against D,,,. One can thus speculate that convexity-based camou-
flage breaking might also exist in nature (or else, the camouflage against it would be
unnecessary).

4 Experimental Results

In this section we juxtapose the D,,, operator with a typical edge-based operator—the
radial symmetry transform [9]—as camouflage breakers. This operator seeks general-
ized symmetry, and has been shown there to generalize several edge-based operators.
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Fig. 6. Cross-sections (parallel to the y-axis, at the center of the image) of: Left: The intensity
functions of Fig. 5. Thayer’s counter-shading yields a flat intensity function for a cylinder. Right:
D2, of Fig. 5. Under top lighting, the flattened intensity function of the counter-shaded cylinder
has a lower D4 response than that of the convex intensity function of the smooth cylinder.

We compare D, with edge-based methods, since camouflage by super-excitation of
a predator’s edge detectors is evident in the animal kingdom [7] (which implies edges
are biologically used for camouflage breaking).

The radial symmetry operator is scale-dependent, while the peaks of D, are not.
Therefore, we have compared D, with radial symmetry of radii: 10 and 30 pixels (i.e,
2 radial symmetry transformations performed for each original image). In the paper,
only one radius is introduced per original, but similar results were obtained for the
other radius as well.

Apatetic Coloration in Animal Animals use various types of camouflage to hide
themselves, one of which is apatetic coloration. Fig. 7 exhibits a natural camouflage
of a squirrel in a leafy environment under the shades of a nearby tree. The camouflaged
fur has many edges which mix with the environment, preventing the radial symmetry
operator from isolating any specific target. D,,4, however, produces a single strong
peak, exactly on the squirrel. The convexity of the squirrel (and in particular, its belly)
is the reason for its detection by D,,.,. The only smooth 3D convex region in the image
is the belly of the squirrel. Though some of the shades might look similar to the belly
of the squirrel (even to a human viewer), they do not possess the property of being a
projection of a 3D convex object, so their graylevels introduce no 3D convexity.
Another example of camouflage by apatetic coloration is Fig. 8. The figure shows
two Rocky Mountain sheep (Ovis Canadensis) in their natural rocky environment. The
coloration of the Rocky Mountain sheep fits their habitat (pay attention in particular to
the upper sheep in Fig. 8). D, detects the sheep as the main subject, since they appear
smooth (from the photographic distance), and are three dimensional and convex. Due
to the apatetic coloring, the rocky background produces much stronger edges than the
sheep, thus attracting edge-based methods. Radial symmetry specifies no single target.

Military Camouflage Breaking camouflage of concealed equipment is of particular in-
terest. Figure 9 presents a tank in camouflage paints in front of a tree. The tree produces



Detection by D..g. DZ,,.

Fig.7. A hidden squirrel. The squirrel is on a leafy ground shaded by a tree. The shades and
leaves form many edges “deluding” edge-based methods. Even human viewers find it difficult to
locate the squirrel in the image. D, detects the squirrel, breaking the camouflage.

Radial Symmetry (r=10).

DZ,,.
Fig. 8. Rocky mountain sheep in their rocky habitat. Edge based methods fail to detect the sheep
due to its apatetic coloration. Dqr4, however, highly responds to the convexity of the intensity
function.
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Fig. 9. A tank in camouflage paints. Convexity-based detection using Dqrg4 is not distracted by
the background (tree, grass). The tree distracts edge-based detection.

edges distracting the radial symmetry operator. The convexity of the intensity function
near the wheels of the tank exposes the tank to the D,,., detector.

An example of breaking clothes camouflage appears in Fig. 10. Camouflage clothes
on the background of dense bushes and a river makes the subject very hard to detect.
Edge based detection misses the subject. D, isolates the camouflaged subject, but
with one outlier (out of three detections).

5 Conclusions

Thayer’s principle states that various animals use counter-shading as a major basis for
camouflage. The observation of such a counter-measure in animals implies that oth-
er animals might use convexity detection to break camouflage (or otherwise there was
no need for the counter-measure). We illustrate how Thayer’s counter-shading prevents
detection based on the convexity of the graylevel function (D,). The effectiveness of
camouflage breaking by convexity detection (for subjects which are not counter-shaded
according to Thayer’s principle) is demonstrated using D,,4. The operator Dy, is
basically intended for detection of image domains emanating from smooth convex or
concave 3D objects, but the smoothness assumption can be relaxed. Finally, a com-
parison between the convexity-based camouflage breaker (D,,4) and an edge-based
operator (radial symmetry) has been delineated. Convexity-based camouflage breaking
was found to be highly robust and in many cases much more effective than edge-based
techniques.
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