1. (a) Show that for every \(A \in \text{BPP} \), \(\text{BPP}^A = \text{BPP} \).

 (b) Show that if \(\text{SAT} \in \text{BPP} \) then \(\text{PH} = \text{NP}^\text{SAT} \).

2. Call a CNF formula over \(n \) variables simple if it is either unsatisfiable or it has at least \(\frac{2^n}{n^3} \) satisfying assignments. Show a randomized algorithm for checking the satisfiability of simple formulas, that outputs the correct answer with probability at least \(\frac{2}{3} \).

3. Let PP be the set of languages for which there exists a probabilistic polynomial-time Turing machine \(M \), such that for every \(x \in L \) the machine \(M \) accepts \(x \) with probability greater than \(1/2 \), and for every \(x \notin L \) the machine \(M \) accepts \(x \) with probability at most \(1/2 \).

 (a) Show that BPP is closed under union and intersection and explain why your argument fails for PP.

 (b) Show that \(\text{NP} \subseteq \text{PP} \subseteq \text{PSpace} \).

4. Define ZPP as the class of all languages decided by a probabilistic Turing machine running in expected polynomial time. That is, for a language \(L \in \text{ZPP} \) there is a probabilistic Turing machine \(M(x, y) \) with the following behavior: on input \(x \in L \), \(M \) always accepts, on input \(x \notin L \), \(M \) always rejects, and for every \(x \),

 \[
 \mathbb{E}_{y}[\text{number of steps before } M(x, y) \text{ halts}] \leq |x|^c
 \]

 for some fixed \(c > 0 \). Prove that \(\text{ZPP} = \text{RP} \cap \text{coRP} \).