1. Show that P is closed under polynomial-time Cook reductions.

2. Prove that the following problems are self reducible by a (direct) polynomial Cook reduction from the search version to the decision version of the same problem.
 (a) Clique = \{ (G, k) | G contains a clique of size k \}.\footnote{The decision version is “Given a pair (G, k) does G contain a clique of size k?” and the search version is “Given a pair (G, k) find a clique of size k in G if exists, and reject otherwise”.
 (b) GraphIsomorphism = \{ (G_1, G_2) | G_1 and G_2 are isomorphic \}.\footnote{Two graphs are isomorphic if there is a way to label the vertices of one graph, such that the two graphs become identical.}

3. Let UpToOneSat be the following language:
 UpToOneSat = \{ \phi | \phi \text{ is a CNF formula that has at most one satisfying assignment} \}. Prove that UpToOneSat ∈ NP if and only if NP = coNP.

4. Let \(A \subseteq \{0, 1\}^n \) be a language which satisfies \(|A \cap \{0, 1\}^n| = n^3 \) for all \(n \geq 10 \). Prove that \(A \in NP \) implies \(A \in coNP \).

5. The class DP is defined as the set of all languages \(L \) for which there are two languages \(L_1 \in NP \) and \(L_2 \in coNP \) such that \(L = L_1 \cap L_2 \).
 (a) Show that \(P \subseteq DP \).
 (b) Is \(DP = NP \cap coNP \)? (prove or disprove or show that it is equivalent to a well-known open question).
 (c) Let SAT-UNSAT be the language of all the pairs \((\phi_1, \phi_2) \) such that \(\phi_1 \) and \(\phi_2 \) are CNF formulas, \(\phi_1 \) is satisfiable and \(\phi_2 \) is not. Show that SAT-UNSAT is DP-complete, i.e., SAT-UNSAT ∈ DP and every language in DP is polynomial-time reducible to it.
 (d) Bonus: Show that MAX-IS is DP-complete.