1. Let \(f, g : \mathbb{N} \to \mathbb{N} \) be two functions. Recall that \(f = O(g) \) if there exists a \(c > 0 \) such that \(f(n) \leq c \cdot g(n) \) for every sufficiently large \(n \). We say that \(f = \Omega(g) \) if \(g = O(f) \) and that \(f = \Theta(g) \) if \(f = O(g) \) and \(g = O(f) \). Also, we say that \(f = o(g) \) if for any \(\varepsilon > 0 \), \(f(n) \leq \varepsilon \cdot g(n) \) for every sufficiently large \(n \). Finally, we say that \(f = \omega(g) \) if \(g = o(f) \).

Prove or disprove:

(a) \((5n)! = O(n^5) \).

(b) If \(f(n) = O(n) \) then \(10^{f(n)} = O(2^n) \).

(c) \(\log(n!) = \Theta(n \log n) \).

(d) Every two functions \(f, g \) satisfy \(f = O(g) \) or \(g = O(f) \).

(e) There exists a function \(f \) such that \(f(n) = O(n^{1+\varepsilon}) \) for any \(\varepsilon > 0 \) but \(f(n) = \omega(n) \).

2. Show that any 1-tape Turing machine which at any step may move to the left, to the right or stay, can be simulated by a standard 1-tape Turing machine where the head has to move at any step. Compare the time complexity and the space complexity of the two machines.

3. Prove or disprove:

If a language \(A \) is decided by a 1-tape Turing machine \(M \) with at most \(100 \cdot n^5 \) steps on an input of size \(n \) then there exists a 1-tape Turing machine \(M' \) that decides \(A \) with at most \(n^5 \) steps on an input of size \(n \).

4. Prove that each of the following problems can be solved by a polynomial time algorithm:

(a) Input: A graph \(G \) and a positive integer \(k \).

 Question: Does \(G \) contain a vertex of degree at least \(\log_2 |V(G)| \) or a clique of size \(k \)?

 \(|V(G)| \) denotes the vertex set of \(G \).

(b) Input: A 3CNF formula \(\phi \) in which each clause contains exactly 3 distinct literals and each variable occurs exactly 3 times.

 Question: Is \(\phi \) satisfiable?

 Hint: Use the fact that any regular bipartite graph has a perfect matching.\(^1\)

\(^1\)A regular graph is a graph where each vertex has the same number of neighbors. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching which matches all vertices of the graph.