
TEL-AVIV UNIVERSITY

RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES

SCHOOL OF COMPUTER SCIENCES

Controlling Burstiness in Fair
Queueing Scheduling

Thesis submitted in partial fulfillment of the requirements for the

master degree ”M.Sc.” at the School of Computer Sciences

Tel-Aviv University

by

Liat Ashkenazi

Prepared under the supervision of Prof. Hanoch Levy

March 2004

1

Acknowledgments
I would like to express my sincere gratitude to all those who contributed to the

completion of my thesis.
To my advisor, Prof. Hanoch Levy, for his supportive care and helpful guidance.
To Danny Hendler, Ori Shalev, David Raz, and Nir Andelman along with several

other colleagues from the school of computer sciences, for helping and backing me.
Last but not least, to my parents, Arie and Zehava, and to my brother and sister,

for their endless loving care.

1

Contents

1 Introduction 7

2 Existing FQ Schedulers: Properties and Complexity 10
2.1 Preliminaries . 10
2.2 The Complexity of GPS Emulation 10

2.2.1 The complexity of updating v(t) 11
2.2.2 The complexity of maintaining packet finish time 11

2.3 The Inaccuracy and Burstiness of WFQ and its Variants 12
2.3.1 The Adverse Properties of Burstiness 13

2.4 The Properties of WF2Q . 14
2.5 Motivation . 14

3 BCFQ: Burst Constraint Fair Queueing 15
3.1 Session Normalized Service . 15
3.2 System Normalized Service . 15
3.3 The Eligibility Constraint . 17
3.4 The Normalized Service of a Newly Active Session 17
3.5 BCFQ: Selecting the Next Session to be Transmitted 17
3.6 An Efficient Implementation of BCFQ 18

3.6.1 The Priority Queue Data Structure 18
3.6.2 The Computation of the g(t) Function 18
3.6.3 The Implementation of BCFQ 19

3.7 The Complexity of BCFQ . 19

4 Fairness Analysis of BCFQ 20

5 A Burstiness Criterion 22
5.1 The Burstiness Criterion and the Proximity of Schedulers to GPS . . 22
5.2 The Relation between Relative Fairness and Relative Burstiness . . . 26

6 Non-Burstiness of BCFQ and Its Equivalence to WF2Q 28
6.1 Equivalence of BCFQ and WF2Q: Constant Active Session Set . . . 28
6.2 The Non-Burstiness of BCFQ: Constant Active Session Set 31
6.3 Using the GPS virtual time in BCFQ: Equivalence to WF2Q 31

7 Simulation Results 34

8 Concluding Remarks 36

A Glossary of Notation 39

B SCFQ and GrFQ: Tagging 39

C BCFQ: A Scenario where All the Sessions Become Illegal 40

D The Minimum under Constraints Binary Tree 40

2

E The BCFQ Algorithm 41

F The Proof of Lemma 4.1 42

G Using the GPS Virtual Time in The BCFQ Algorithm 44

H The Proof of Lemma 6.7 45

3

List of Figures

1 Transmission Order of various schedulers (Packets identified by ses-
sions’ index) . 14

2 Histograms of positive deviation from GPS 36
3 The BCFQ scheduler PacketArrived Pseudo Code 42
4 The BCFQ scheduler PacketTransmit Pseudo Code 42
5 The BCFQ scheduler FinishTransmit Pseudo Code 43
6 PacketArrived Pseudo Code . 44
7 PacketTransmit Pseudo Code . 44
8 FinishTransmit Pseudo Code . 45

4

List of Tables

1 Detailed parameters of simulation cases 35

5

Abstract

Bennett and Zhang [3] demonstrated the existence of large discrep-

ancies between the service provided by the packet-based WFQ system

and the fluid GPS system. As demonstrated in [3] these discrepan-

cies can cause cycles of bursting. Such inaccuracy and bursty behavior

significantly and adversely affect both best-effort and real-time traffics.

The WF2Q algorithm [3] overcomes this difficulty but its computational

complexity is high relatively to other scheduling algorithms. Those al-

gorithms, in contrast, are subject to the burstiness problem.

This paper studies the issue of bursty transmission in packet schedul-

ing algorithms. We propose the Burst-Constrain Fair-Queueing (BCFQ)

algorithm, a packet scheduler that achieves both high fairness and low

burstiness while maintaining low computational complexity. We also

propose a new measure (and criterion) which can be used for evaluating

the burstiness of arbitrary scheduling algorithms. We use this measure

and demonstrate that BCFQ possesses the desired properties of fairness

and burstiness.

6

1 Introduction

Next generation networks are built to support a variety of applications with a wide

range of Quality of Service (QoS) requirements. QoS guarantees in a packet network

require the use of traffic scheduling algorithms in switches or routers. The choice

of a packet service discipline at queueing points in the network is one of the most

important issues in designing next generation networks. Fair Queueing algorithms

have received much attention, since they provide a separation between different

service classes, while letting them to share the available bandwidth.

Processor Sharing (PS), presented in Kleinrock [12], is an idealistic service dis-

cipline in which all active sessions are served concurrently and the processor rate

is equally shared among them. GPS is a generalized of PS where the service rate

granted to a session is proportional to its weight. As a result, it is possible to divide

the service among the sessions, at all times, exactly in proportion to the specified

service share. In practice packets must be processed one by one and thus GPS is

not practical and only serves as an idealistic model.

Number of different packet-by-packet scheduling algorithms that aim at approx-

imating GPS have been proposed. The earliest such algorithm was Weighted Fair

Queueing (WFQ), or PGPS, presented by Parekh and Gallager [15],[13],[14]. Ke-

shav [10] and Shenker [17] also showed that by having servers approximating PS,

sources can measure the network state more accurately. WFQ emulates GPS’s be-

havior by computing a virtual time function. The virtual time is used to compute

a time stamp for each arriving packet, indicating the time at which it would depart

the system under GPS. Packets are then transmitted in increasing order of their

timestamps. One problem of WFQ is that it leads to high computational complex-

ity and makes the scheme infeasible for high speed applications. Another problem of

WFQ was demonstrated by Bennett and Zhang [3]. They showed that there could

be severe discrepancies between the service provided by WFQ and GPS. Specifically

it was shown that the amount of service WFQ provides to a session can be much

larger than that provided by GPS. This inaccuracy leads to the scheduler producing

bursty output. Such burstiness adversely affects (a) delay bounds for real-time traf-

fic when there is hierarchical link sharing; and (b) traffic management algorithms

for best-effort traffic.

The WF2Q scheduling proposed in [3] overcomes this problem by choosing the

sessions with the minimum finish time just among sessions that already have started

their service in GPS. The service provided by WF2Q is almost identical to that of

GPS, differing by no more than one maximum size packet. However its computa-

tional complexity is still high.

Several scheduling algorithms have been proposed to reduce the computational

complexity of WFQ. Self-Clocked Fair Queueing (SCFQ) presented by Golestani

[8],[7] and Start-Time Fair Queueing presented by Goyal, Vin, and Cheng [9] com-

7

pute a self-clock as the index of work progress. Stiliadis and Varma [21],[19] proposed

Rate-Proportional Server (RPS). RPS uses a system potential function that main-

tains the global state of the system by tracking the service offered by the system to

all sessions sharing the outgoing link. Greedy algorithms as Greedy Fair Queueing

(GrFQ) presented by Shi and Sethu [18] were proposed to minimize the maximum

differences between sessions. None of these efficient schedulers provides a solution

to the burstiness problems of WFQ.

The objective of this paper is to study the burstiness problem in Fair Queueing

scheduling and to device an efficient solution to it. We start (Section 2) by analyzing

the existing algorithms. In this context we first provide an explicit discussion of

the complexity limitations of emulating GPS; such discussion is necessary, as the

literature seems to be somewhat unclear about this issue. We conclude that this

complexity is quite high, O(N) operations per packet transmission. We then show

that efficient scheduling algorithms like SCFQ and GrFQ, that operate via some

approximation, are subject to the busrtiness problem, as observed in [3] for WFQ.

Having addressed the efficiency and burstiness problems of existing algorithms,

we propose (Section 3) a new scheduler, Burst Constrain Fair Queueing (BCFQ),

that is both efficient and not subject to the burstiness problems. The BCFQ al-

gorithm is based on two principles. Its major scheduling decisions are based on

using the normalized service of both the system and the individual sessions. Bursti-

ness is prevented by computing an approximate virtual time (whose computational

complexity is low) and comparing the session’s normalized service against it. The

complexity of BCFQ is similar to that of SCFQ and GrFQ, namely O(logN) opera-

tions per packet; in contrast, the complexity of WFQ and WF2Q is O(N) operations

per packet transmission. Having devised BCFQ we then (Section 4) show that its

fairness is identical to that of previous algorithms by showing that it admits to the

Relative Fairness Bound (RFB).

We then (Section 5) turn to address the burstiness issue. First we recognize

that while a measure of algorithm fairness has been proposed and widely used, a

similar measure for burstiness does not exist. We thus propose the Relative Bursti-

ness bound (RB) as a criterion of burstiness that can be applied easily to various

algorithms to examine whether they are bursty or not. We further show that the

RB criterion is equivalent to measuring ”proximity to GPS”. We also show that a

scheduling policy whose Relative Fair Bound is low can have its relative burstiness

high and thus the RFB is not appropriate for measuring burstiness.

Having devised a burstiness criterion we then (Section 6) demonstrate the low

burstiness of BCFQ. We do that by showing that when the active session set is

constant BCFQ behaves exactly as WF2Q. Further, we show that if one is willing

to increase the computational complexity of BCFQ (via using the GPS virtual time

to assist its computation) its behavior is identical to that of WF 2Q. Thus, under

both settings BCFQ admits the RB criterion.

8

We then (Section 7) examine the burstiness of BCFQ, under general conditions,

via simulation. We carry out an array of simulation runs and show that under

general conditions (that is, the actives sessions are not necessarily constant) the

burstiness of BCFQ is very low. Finally, concluding remarks are given in Section 8.

For the reader’s convenience a glossary of notation is provided in Appendix A.

9

2 Existing FQ Schedulers: Properties and Com-

plexity

2.1 Preliminaries

A session consists of an infinite sequence of packets, which are stored in a FIFO

queue. The system consists of N sessions and one output link. The server operates

at a fixed rate r and is work-conserving1. The N sessions share the same output

link. Let Si,P (0, t) denote the total amount of service received by session i by time

t under scheduler P and wi the weight of session i.

Definition 2.1 A session is Active or Backlogged at time t, if at time t its queue

is not empty. Let A(t) denote the active session set at time t and A(t, t′) denote

the active session set during interval (t, t′), when the active session set during this

interval is constant.

Definition 2.2 A busy period is a maximal-length interval of time during which

at least one of the N sessions is active.

Throughout the paper we assume the system is busy, if the system becomes idle all

its variables become zero and the time is initiated.

Definition 2.3 System variables:

The overall service granted by the system by time t is defined as SP (0, t) =
∑

i Si,P (0, t).

The system weight at time t is defined as W (t) =
∑

i∈A(t) wi and the system weight

during interval (t, t′), when the active session set on this interval is constant, is

defined as W (t, t′) =
∑

i∈A(t,t′) wi.

Definition 2.4 The change of a session from active to inactive (or vice versa) is

defined as an event, where tk is the time of the kth event (simultaneous events are

ordered arbitrarily).

Definition 2.5 Two schedulers with different service disciplines are called corre-

sponding schedulers of each other if they have the same speed, same set of sessions,

same arrival pattern , and if applicable, same service share for each session.

2.2 The Complexity of GPS Emulation

Below we provide a review of the complexity results of GPS emulation, where we

conclude that its complexity is O(N) operations per packet transmission. This

review is given in some detail, since to the best of our knowledge, these details are

1A server is work-conserving if it is busy whenever there are packets to be transmitted. Other-
wise, it is non-work-conserving.

10

not very clear in the literature. An emulation of GPS which is based on a virtual

time function v(t) was proposed in [6],[15],[13],[14]. The computational complexity

of that emulation is composed of two components: The computation of v(t) and

the maintenance of the packet finish times. The virtual time is used to track the

progress of GPS. Every packet holds a virtual finish time variable which denotes the

virtual time at which the packet transmission ends. As presented in [13] the virtual

finish time is computed by using the system virtual time v(t). In order to track the

progress of GPS, one needs to compute the real time at which the next packet will

depart from the GPS system. This is achieved using the current minimum virtual

finish time and the system virtual time (v(t)). Therefore, one can emulate the GPS

system by using two functions: The virtual time and the virtual finish time.

2.2.1 The complexity of updating v(t)

v(t) is updated using the following recursive equation:

v(tk−1 + τ) = v(tk−1) +
τ

W (tk−1, tk)
, (1)

where tk is the time of the kth event (Definition 2.4) and 0 ≤ τ ≤ tk−tk−1. The total

system weight changes every event, therefore the v(t) function must be recomputed

at every event. Accordingly the computational complexity of v(t) depends on the

number of events that occur. The main problem of the complexity of emulating

GPS is that events can occur at an arbitrarily short period. The reason for this

phenomenon is that in GPS packets are served simultaneously. Consequently, it is

possible that many packets will finish transmission almost in the same time. Thus if

many of these packets are the last packets on their queues we observe many events (of

queues becoming inactive) occurring in a short period of time. The result is that the

number of computations of the v(t) function can, during a single packet transmission,

reach the total number of sessions. Assuming that a single computation of v(t) takes

O(1) operations, the complexity of computing v(t) is therefore O(N) operations per

packet transmission where N is the number of sessions.

2.2.2 The complexity of maintaining packet finish time

In order to track the progress of GPS we need the minimal finish virtual time.

Therefore the packet finish time must be stored in a data structure. The data

structure must support two operations: Insert a packet finish time, and Extract-

Minimum (ExMin) packet finish time; this data structure is called priority queue.

Three simple data structures can serve to implement a priority queue: 1. Unordered

link list, where the complexity of Insert is O(1) per packet and of ExMin is O(N)

per packet, 2. Ordered link list, where the complexity of Insert is O(N) per packet

11

and of ExMin is O(1) per packet, and 3. Heap, where the complexity of Insert is

O(log(N)) per packet and of ExMin is O(log(N)) per packet.

As stated earlier, since in GPS the sessions are served in parallel, there can

be many packet departures in an arbitrarily short period. Every packet departure

causes ExMin operation. If there are N departures, where N is the number of

sessions, the complexity can reach O(N2), O(N) or O(Nlog(N)) operations during

a single transmission unit, depending on the data structure implemented .

To summarize 2.2.1 and 2.2.2, the high complexity in emulating GPS results from

the fact that GPS serves the sessions simultaneously and therefore there can be many

packet departures during a single packet transmission. When N departures occur

during a single transmission unit, both the complexity of computing v(t) is O(N)

per packet transmission and the complexity of performing order of N ExMin, using

a simple data structure, is O(N) per packet transmission. Under more complicated

and efficient data structures that were proposed for maintaining the packet finish

time [1],[5],[16], the computation of v(t) is still of high complexity (O(N)).

2.3 The Inaccuracy and Burstiness of WFQ and its Variants

Bennett and Zhang presented in [3],[2],[4] the inaccuracy and bursty behavior of

WFQ. Below we review that result and show that it applies to many other schedulers

such as SCFQ [8] and GrFQ [18].

In [3],[2],[4], the following example is used to illustrate the large discrepancies

between the services provided by GPS and WFQ. Assume that there are 11 sessions

with packet size of 1 sharing a link with the speed of 1, where w1 = 10, and wi = 1,

i = 2, ..., 11. Session 1 sends 11 back-to-back packets starting at time 0 while each

of all the other 10 sessions sends only one packet at time 0. If the server is GPS, it

will take 2 time units to transmit each of the first 10 packets of session 1, one time

unit to transmit the 11th packet, and 20 time units to transmit the first packet from

each of the other sessions. Denote the kth packet of session j pk
j , then, under GPS,

the packet finish time is 2k for pk
1, k = 1...10, 21 for p11

1 , and 20 for p1
j , j = 2, ..., 11.

Bennett and Zhang [3] showed that under WFQ [13] the first 10 packets of

session 1 (pk
1,k = 1...10) will first be transmitted, followed by one packet from each

of sessions 2,...,11 (p1
j ,j = 2, ..., 11), and then the 11th packet of session 1 (p11

1). In

the example, as explained in [3], between time 0 and 10, WFQ serves 10 packets

from session 1 while GPS serves only 5. After such a period, WFQ needs to serve

other sessions in order for them to catch up. The difference between the amounts

of service provided to each session by WFQ and GPS is the inaccuracy of WFQ in

approximating GPS.

Examining SCFQ [8] we observer that packets will be transmitted according to

their F k
j tag. The packet with the lowest F k

j tag is served first. The F k
j tag is com-

12

puted according to the progress of working in the system (the detailed computation

can be found in Appendix B). According to the above example, the F k
j values are

F k
1 = k/10, k = 1...11 and F 1

j = 1, j = 2, ..., 11. Therefore, as in WFQ, the first 10

packets of session 1 (pk
1,k = 1...10) will be transmitted, followed by one packet from

each of sessions 2,...,11 (p1
j ,j = 2, ..., 11), and then the 11th packet of session 1 (p11

1).

Thus SCFQ is subject to the same inaccuracy as WFQ.

Examining GrFQ [18] we observer that packets will be transmitted according to

their ui and ûi session values that are computed according to the progress of working

in the system (the detailed computation can be found in Appendix B). According

to the above example, at time 0, ui(0) = 0,i = 1, ..., 11, û1(0) = 1/10, and ûi(0) = 1,

i = 2, ..., 11, therefore session 1 is chosen to transmit. At time 1, u1(1) = 1/10,

ui(1) = 0,i = 2, ..., 11, û1(1) = 2/10, and ûi(1) = 1,i = 2, ..., 11, therefore session

1 is chosen to transmit, and so on. Thus the first 10 packets of session 1 will be

transmitted, followed by one packet from each of sessions 2,...,11, and then the 11th

packet of session 1. Thus GrFQ is subject to the same inaccuracy as WFQ and

SCFQ. The whole sample path of WFQ, SCFQ, and GrFQ systems is shown in

Figure 1.

This cycle of bursting 10 packets and going silent for 10 packet times can continue

indefinitely, if more packets arrive to each session. As demonstrated above, there

could be large discrepancies between the services provided by WFQ, SCFQ or GrFQ

and GPS. As explained in [4], this inaccuracy impacts adversely both (a) The delay

bound for real-time traffic when there is hierarchical link sharing; and (b) Traffic

management algorithms for best-effort traffic.

2.3.1 The Adverse Properties of Burstiness

In this section we will describe the adverse properties of burstiness as explained in

Bennett and Zhang [4],[3],[2].

(a) Link-sharing and real-time traffic.

Suppose a real-time traffic and best-effort traffic share a link. In the example

above assume the first 10 packets of session 1 belong to best-effort traffic and the

11th packet belongs to real-time traffic. In WFQ, SCFQ or GrFQ scheme the best-

effort packets not only can consume all the bandwidth reserved for session 1 in the

current time period, but also can get ahead and use bandwidth that are reserved for

future traffic. Then when a real-time packet arrives, it may still have to wait at least

10 packets transmission times. If we consider the example with bigger parameters,

i.e. more sessions and higher speed, the delay of the real-time traffic can be much

worse.

(b) Traffic management algorithms for best-effort traffic.

While accurate estimation of bandwidth available for each source in a dynamic

network environment is a pre-requisite for an efficient and robust feedback-based

13

WFQ, SCFQ and GrFQ 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 1
WF2Q 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1

Figure 1: Transmission Order of various schedulers (Packets identified by sessions’

index)

traffic management algorithm, the oscillation of service rates introduced by the

inaccuracy of WFQ, SCFQ or GrFQ will significantly affect the rate estimation

algorithm and result in instability of end-to-end control algorithms. This is true for

both rate-based flow control algorithms as proposed by Keshav in [11] and window-

based flow control algorithms as TCP .

Therefore it is important to develop a scheduler that overcomes this bursty be-

havior with low computational complexity. The reason for this inaccuracy is that

the amount of service WFQ, SCFQ or GrFQ provide to a session can be much larger

than provided by GPS during certain period of time.

2.4 The Properties of WF2Q

The WF2Q scheduler presented by Bennett and Zhang [3] overcomes the inaccuracy

problem of WFQ described in Section 2.3. In the WF2Q system, when the next

packet is chosen for service at time t, rather than selecting it from among all the

packets at the server as in WFQ, the server only considers the set of packets that

have started receiving service in the corresponding GPS system at time t.

As Bennett and Zhang showed in [3], for the example discussed in Section 2.3,

the WF2Q scheduler will service session 1 alternately as shown in Figure 1.

As we realize in Figure 1, the output from the WF2Q scheduler is rather smooth

as opposed to the bursty output under the WFQ, SCFQ, and GrFQ schedulers. As

proved in [3], the service provided by WF2Q is almost identical to that of GPS.

However its computational complexity is still high.

2.5 Motivation

The last section presents the problems that exist in various schedulers. The main

problem is that many schedulers give to a session during a specific period more

service than they should which creates burst periods. Our motivation is to develop

a scheduler that overcomes the burstiness problem while having a low computational

complexity.

14

3 BCFQ: Burst Constraint Fair Queueing

The BCFQ scheduler operates by applying a packet selection criterion on a set of

eligible packets. The selection criterion is described in Section 3.5 and the eligibility

constraint in Section 3.3. Prior to that, Section 3.2 is used to introduce the system

normalized service.

3.1 Session Normalized Service

The amount of service a session receives from the system divided by its weight

specifies its normalized share of the system. We assign each session the normalized

service it got until time t. A similar concept was used in [8],[19],[18],[20]. Let pk
i

denote the kth packet of session i.

Definition 3.1 Assume session i is active in the interval (0, t). The normalized

service session i receives by time t, hi(t), is defined as: hi(t) = Si,P (0, t)/wi.

In the sequel we present the normalized service of a session that was not con-

tinuously active. The normalized service of a session increases when the session is

served. Thus if Lk
i is the length of packet pk

i and τs and τe are its transmission start

time and transmission end time, respectively, then:

hi(τe) = hi(τs) + Lk
i /wi. (2)

Let t be a packet selection epoch. Let pH
i denote the head packet of the queue of

session i at time t and LH
i denote the length of pH

i . The potential normalized service

of session i at time t, h′i(t), is defined as:

h′i(t) = hi(t) + LH
i /wi. (3)

3.2 System Normalized Service

The GPS virtual time requires conducting GPS emulation. The computational com-

plexity of this emulation as described in Section 2.2 is O(N) operation per packet

transmission where N is the number of sessions. The high complexity stems from the

fact that the GPS virtual time has to recompute every event which can be occurred

O(N) times per packet transmission. Below we present the system normalized ser-

vice that will serve as a low complexity substitute to the high complexity virtual

time.

The accumulated system normalized service for scheduler P during the interval

(0, tl) in which the system is continuously busy is,

gP (tl) =
l∑

k=1

SP (tk−1, tk)/W (t−k), (4)

15

where tk is the time of the kth event under scheduler P , as defined in Definition 2.4,

and (t−k) denotes the time instant just prior to time tk.

We can compute the accumulated normalized service also by,

gP (tk−1 + τ) = gP (tk−1) + SP (tk−1, tk−1 + τ)/W (tk−1, tk), (5)

for 0 ≤ τ ≤ tk − tk−1. In case that the server rate is 1 we get,

gP (tk−1 + τ) = gP (tk−1) + τ/W (tk−1, tk). (6)

As stated above (4), (5), and (6) apply for when the system is continuously

busy. When the system becomes idle and then becomes busy again, all the system

variables are set to zero and time is reinitiated, that is t := 0 and g := 0.

Remark 3.1 Note the similarity in shape of gP (t) to the virtual time function

of GPS, v(t). In fact v(t) = gGPS(t). Nonetheless, for an arbitrary scheduler P ,

gP (t) 6= gGPS(t), due to the differences between the events of P and GPS.

The gP (t) function depends on the events in the system, since the system total

weight changes when the active session set changes. Different schedulers lead to

different event times, therefore gP (t) depends on the scheduler P . In a packet-based

scheduler P , gP (t) must also be computed every event. However since in this system

packets are served ”one at a time”, it can not experience many departures during

a single packet transmission. Therefore the complexity of computing gP (t) is O(1)

per packet transmission.

The most accurate way to compute the ideal service that a session should be

granted is to refer to the amount of service it would get in the GPS system, namely to

compute gGPS(t). A more efficient way is to compute gBCFQ(t), since it is computed

according to the events in the BCFQ scheduler . Although calculating gBCFQ(t) is

less accurate than calculating according to GPS system, it achieves close results.

But there can be some discrepancies between computing gBCFQ(t) and gGPS(t), due

to the differences in the events experienced in the system.

Observation 3.1 If two non-idling schedulers P and Q have the same output link

rate and the same events during (0, t), then their accumulated normalized service is

identical, namely gP (t) = gQ(t).

The proof is immediate.

Corollary 3.2 Given scheduler P and a corresponding GPS scheduler, if the sys-

tems weights of P and GPS are constant during the interval (0, t), then ∀0<τ<t

gP (τ) = v(τ), where v(τ) is the GPS virtual function.

Proof From Equation (6), one can easily verify that when the system weight

remains constant in (0, t) and is equal to W then gP (τ) = τ/W . Similarly, from

Equation (1), under the above conditions v(τ) = τ/W . Q.E.D.

16

Corollary 3.3 If the active session set is constant during the interval (0, t), then

∀0<τ<t gP (τ) = v(τ) , where v(τ) is the GPS virtual function.

Proof Corollary 3.3 is implied directly from Corollary 3.2. Q.E.D.

3.3 The Eligibility Constraint

The inaccuracy of WFQ shows up in situations where a session receives too much

service in comparison to GPS. The eligibility constraint introduced in this section

aims at restricting the amount of service given to a session. We will use the system

accumulated normalized service (gP (t)), in comparison to the session normalized

service (hi(t)) to carry out this restriction.

Specifically, if gP (t) can be thought of as the amount of service one unit of weight

should get by time t, then wi ·gP (t) represents the amount of service session i should

get by t. Therefore to limit the amount of service given to a session we have to

maintain Si,P (0, t) ≤ wi · gP (t), or, alternatively, via Definition 3.1, hi(t) ≤ gP (t).

Definition 3.2 Session i is said to be legal or eligible at time t by BCFQ if it

meets the eligibility constraint: hi(t) ≤ gP (t).

Note that in some rare cases under BCFQ all sessions may become ineligible,

(∀i,hi(t) > gBCFQ(t)). A simple remedy , in this case, is to set gBCFQ(t) :=

min{hi(t)}. A detailed example where all the sessions are ineligible is presented

in Appendix C.

3.4 The Normalized Service of a Newly Active Session

In Section 3.1 we described how to update the session normalized service, hi(t),

when session i is active. An open question is how to update these variable when

session i becomes active after being inactive. A natural approach is to grant session

i a value that will not discriminate it compared to other sessions in the system.

A natural selection that creates little discrimination is to grant session i the value

hi(t) = gP (t). Further, to avoid a situation where a session being discriminated

positively by leaving at t (with a high normalized service hi(t) > gP (t)) and returning

a little while later, at t + ε (and being granted hi(t + ε) := gP (t + ε) < hi(t)), we

correct it by assigning2:

hi(t) = max{hi(t
−), gP (t)}. (7)

3.5 BCFQ: Selecting the Next Session to be Transmitted

Upon packet departure the scheduler must decide on the next packet for transmission

among the currently active sessions. BCFQ chooses among the eligible sessions as

2The notation ”t−” denotes the time instant just before time t.

17

defined in Section 3.3 the one with the minimum potential normalized service, as

defined in Section 3.1. The logic behind this decision is: 1. A session that got more

service than it should will not be chosen, and 2. Between the legal sessions we will

choose at t the one whose selection will cause to the least discrimination (when its

service completes), namely the one with the minimal potential normalized service.

To demonstrate the effectiveness of BCFQ in reducing burstiness, consider again

the bursty example presented in Section 2.3 (Figure 1) and apply BCFQ to it. At

time 0, hi(0) = 0, i = 1, ..., 11, h′1(0) = 1/10, h′i(0) = 1, i = 2, ..., 11, and g(0) = 0,

thus all the sessions are legal. Among them session 1 has the smallest h′i and it is

selected to transmit. At time 1, h1(1) = 1/10, hi(1) = 0, i = 2, ..., 11 , h′1(1) = 2/10,

h′i(1) = 1, i = 2, ..., 11 and g(1) = 1/20, thus, all sessions except for session 1 are

legal. Since all the legal sessions have the same h′i, a tie-breaking rule will select

the session with the smallest index, session 2, for transmission. At time 2, session

1 becomes legal again and has the smallest h′i among all active sessions, therefore

it will be chosen to transmit. The reader may easily verify that this pattern of

behavior continues and the resulting transmission pattern is a cyclic repetition of

1,2,1,3,...1,10,1,11, exactly identical to the transmission pattern of WF2Q (Figure

1).

Thus, we realize that the output from the BCFQ system is rather smooth, as

opposed to the bursty output of a WFQ scheduler.

3.6 An Efficient Implementation of BCFQ

3.6.1 The Priority Queue Data Structure

We maintain an efficient data structure for finding the minimum h′i under the eligibil-

ity constraint. We utilize the data structure, presented by Stoica and Abdel-Wahab

[22], that dynamically finds a minimum subject to a constraint.

The data structure is based on a binary search tree and supports the following

operations: Insertion, deletion, and finding the eligible session with the minimum

h′i. We call this data structure Minimum-under-Constraint Binary Tree (MCBT).

Detailed explanation of MCBT and its operations is provided in Appendix D.

As explained in [22] the complexity of each of the operations is O(tree− heigh)

per packet. Each of the operations traverses the tree in a path from the root to one

of the leaves or from one of the leaves to the root. Using one of the balanced-trees

(red-black or AVL [22]) one gets an overall time complexity of O(logN) for each

elementary operation (where N is the number of active sessions).

3.6.2 The Computation of the g(t) Function

The g(t) function, appearing in Equation (6), must be computed at every event,

i.e. when the active session set changes. In the BCFQ implementation we simplify

18

the computation of gBCFQ(t) and compute this function upon completion of each

packet transmission. Packets that arrive in the middle of transmission are treated

as they arrive at the completion of that transmission. If the jth packet transmission

completion occurs at time tj and the server rate is 1 then the computation of gBCFQ

is preformed as follows,

gBCFQ(tj+1) = gBCFQ(tj) + (tj+1 − tj)/W (tj). (8)

3.6.3 The Implementation of BCFQ

We implement the BCFQ scheduler using two main functions: PacketArrived and

PacketTransmit. In the PacketArrived function we insert the packet to its queue

and if the packet arrives to an empty queue, we update the session parameters,

update the system total weight, and insert it to the MCBT (see Section 3.6.1). In

the PacketTransmit function we choose the session for transmission and then call

FinishTransmit, which deletes the packet from the queue, updates gBCFQ(t) and the

session parameters. When the session has no more packets, FinishTransmit deletes

it from the MCBT (see Section 3.6.1) and updates the system total weight.The

algorithm pseudo code is presented in Appendix E.

3.7 The Complexity of BCFQ

Theorem 3.4 The per packet complexity of BCFQ when using gBCFQ(t), is O(logN)

where N is the number of sessions.

Proof For each packet we perform the PacketArrived procedure and the Pack-

etTransmit procedure (see Section 3.6.3). The computation of gBCFQ(t) takes O(1)

per packet transmission as explained in Section 3.6.2. The main complexity results

from the MCBT operations (see Section 3.6.1): GetLegalMin, Delete and Insert,

where each takes O(logN) operations per packet as demonstrated in Section 3.6.1.

Q.E.D.

19

4 Fairness Analysis of BCFQ

The Relative Fairness Bound (RFB) has been used widely in the FQ literature

[23],[8],[18]. It is based on the maximum difference between the normalized service

received by any two active sessions. Since it bounds the gap between sessions, it

serves as a fairness measure. In this section we show that BCFQ has a relatively

low RFB.

The following definition of the relative fairness bound (RFB) is equivalent to the

definition in [23],[18].

Definition 4.1 Let (t1, t2) be an interval of time during which all sessions under

consideration are all active. Given a scheduler P , for a pair of sessions i and j, that

are continuously active during interval (t1, t2), the RF(i,j)(t1, t2) measure is defined

as,

RF(i,j)(t1, t2) =

∣∣∣∣
Si,P (t1, t2)

wi

− Sj,P (t1, t2)

wj

∣∣∣∣ (9)

The relative fairness with respect to session i over time interval (t1, t2), denoted by

RFi(t1, t2), is defined as,

RFi(t1, t2) = max∀jRF(i,j)(t1, t2). (10)

The relative fairness over time interval (t1, t2), RF (t1, t2), and the relative fairness

bound, RFB, can now be defined as,

RF (t1, t2) = max∀iRFi(t1, t2) (11)

RFB = max∀(t1,t2)RF (t1, t2). (12)

Lemma 4.1 Under BCFQ any pair of sessions i and j that are continuously active

in the interval (0, t) obey the following,

RF(i,j)(0, t) =

∣∣∣∣
Si(0, t)

wi

− Sj(0, t)

wj

∣∣∣∣ ≤ max{Li,max

wi

,
Lj,max

wj

}. (13)

The proof is given in Appendix F.

Corollary 4.2 Under BCFQ, any pair of sessions i and j that are continuously

active in the interval (0, t2), obey the following,

RF(i,j)(t1, t2) =

∣∣∣∣
Si(t1, t2)

wi

− Sj(t1, t2)

wj

∣∣∣∣ ≤ 2 max{Li,max

wi

,
Lj,max

wj

}. (14)

Proof Substitute t = t2 and t = t1 to bound RF(i,j)(0, t2) and RF(i,j)(0, t1)

respectively. Use these two bounds combined with Si(t1, t2) = Si(0, t2)−Si(0, t1) to

get (14). Q.E.D.

20

Theorem 4.3 The Relative Fairness Bound of the BCFQ scheduler is bounded as

follows,

RFB ≤ 2
Lmax

wmin

. (15)

Proof Follows directly from the definition of RFB in Section 4.1 and Corollary

4.2. Q.E.D.

We thus conclude that the RFB of BCFQ is identical to that of some other

schedulers such as SCFQ [8] and GrFQ [18].

21

5 A Burstiness Criterion

In Section 2.3, we demonstrated that schedulers which are proved to have a low RFB

are still subject to the burstiness problem. Thus a simple criterion for examining

scheduler burstiness is needed. In this section we propose a new criterion called

Relative Burstiness (RB), that does not depend on the GPS system. We further

prove that the RB criterion is equivalent to the set of criteria provided for WF2Q [3]

(Equations (10),(11), and (12) there) and that a low RFB is not sufficient criterion

for measuring burstiness. Let ic denote the complement of i, namely the set of all

active sessions except i, and let Sic,P (0, t) denote the total amount of service received

by the set of sessions ic by time t under scheduler P , and let Wic = W − wi.

Definition 5.1 Let P be a scheduling policy, then the relative burstiness with

respect to session i over the interval (t1, t2), denoted by RBi(t1, t2), is defined:

RBi(t1, t2) =

∣∣∣∣
Si,P (t1, t2)

wi

− Sic,P (t1, t2)

Wic

∣∣∣∣. (16)

Definition 5.2 Let (0, t) be an interval during which the active session set is con-

stant. A scheduler P is said to be non-bursty if ∀t≥0 the following holds:

∀iRBi(0, t) ≤ Li,max

wi

. (17)

Corollary 5.1 Let (0, t) be an interval during which the active session set is con-

stant and (t1, t2) be an interval such that 0 ≤ t1 < t2 ≤ t. If P is a non-bursty

scheduler then the following holds,

∀iRBi(t1, t2) ≤ 2
Li,max

wi

. (18)

Proof Substitute t = t2 and t = t1 in (17) to bound RBi(0, t2) and RBi(0, t1)

respectively. Use these two bounds combined with Si(t1, t2) = Si(0, t2)−Si(0, t1) to

get (18). Q.E.D.

Remark 5.1 Note that the use of constant active session set is common in the

literature. See, e.g., the RFB criterion defined in [23],[18].

5.1 The Burstiness Criterion and the Proximity of Sched-
ulers to GPS

In this section we will show an equivalence between a scheduler being non-bursty

(according to Definition 5.2) and its proximity to GPS (Theorem 5.5).

22

According to Bennett and Zhang [3], given a WF2Q system and the correspond-

ing GPS system, the following properties hold for any i and t:

Si,GPS(0, t)− Si,WF 2Q(0, t) ≤ Lmax, (19)

Si,WF 2Q(0, t)− Si,GPS(0, t) ≤ (1− wi

W
)Li,max. (20)

The first property (19) holds for both WFQ [13] and WF2Q [3], while the second

(20) holds only for WF2Q. As presented in [3], since the service provided by WF2Q

can be neither too far behind (Equation (19)), nor too far ahead (Equation (20)),

when compared to the corresponding GPS system, it must be that WF2Q provides

service which is almost identical to that of GPS. This is formally defined next.

Definition 5.3 Given a scheduler P and a corresponding GPS scheduler, P is

said to be proximate to GPS if the following holds for all i and t:

Si,GPS(0, t)− Si,P (0, t) ≤ Lmax, (21)

Si,P (0, t)− Si,GPS(0, t) ≤ (1− wi

W
)Li,max. (22)

Scheduler P is tightly proximate to GPS if we replace Equation (21) with,

Si,GPS(0, t)− Si,P (0, t) ≤ (1− wi

W
)Li,max. (23)

Let pk
i denote the kth packet of session i and let dk

i,GPS and dk
i,WFQ denote the

times that pk
i departs under GPS and WFQ respectively. In the following claim we

provide a tight relation between dk
i,WFQ and dk

i,GPS when the active session set is

constant. Lemma 5.3 is assisted by this claim.

Claim 5.2 If the active session set is constant, then for all k and i,

dk
i,GPS ≥ dk

i,WFQ. (24)

Proof Suppose that the server finishes transmission at time τ under WFQ and

must select the next packet to be transmitted. Consider a session i that belongs to

the constant active session set. According to [13] (in the analysis prior the Theorem

1 there), the only packets that are delayed more in WFQ than in GPS are those

that arrive too late to be transmitted in their GPS order. Since we assume that

the active session set is constant, at every packet selection epoch τ there must exist

at least one packet in the queue for session i. Thus the earliest-to-finish packet of

session i (under GPS) must be in the queue. Therefore there exist no packet that

arrive too late to be transmitted under the GPS order and the proof follows. Q.E.D.

23

The following lemma establishes a bound for WFQ/WF2Q which is tighter than

(19) when the active session set is constant. Theorem 5.4 is assisted by this lemma.

Lemma 5.3 If the active session set is constant during the interval (0, t), then

under WFQ (and WF2Q):

Si,GPS(0, t)− Si,WFQ(0, t) ≤ (1− wi

W
)Li,max. (25)

Proof We first prove the lemma for WFQ and then for WF2Q. We follow the

proof of Equation (19) for WFQ as presented in [13], but add the fact that the

active session set is constant. Let bk
i,WFQ be the time that pk

i begins transmission

under WFQ, and let Lk
i be the length of pk

i . Then pk
i completes transmission at

bk
i,WFQ +Lk

i /r. Since session i packets are served in the same order under both GPS

and WFQ,

Si,GPS(0, dk
i,GPS) = Si,WFQ(0, bk

i,WFQ + Lk
i /r). (26)

From Claim 5.2, dk
i,GPS ≥ bk

i,WFQ + Lk
i /r. Therefore,

Si,GPS(0, dk
i,GPS) ≥ Si,GPS(0, bk

i,WFQ + Lk
i /r). (27)

From (26) and (27) we get,

Si,WFQ(0, bk
i,WFQ + Lk

i /r) ≥ Si,GPS(0, bk
i,WFQ + Lk

i /r). (28)

The processing rate given to session i in GPS is rwi

W
, therefore,

Si,GPS(0, bk
i,WFQ + Lk

i /r) = Si,GPS(0, bk
i,WFQ) + Lk

i

wi

W
. (29)

The processing rate of WFQ is r, therefore,

Si,WFQ(0, bk
i,WFQ + Lk

i /r) = Si,WFQ(0, bk
i,WFQ) + Lk

i . (30)

Substituting (29) and (30) in (28) we get,

Si,GPS(0, bk
i,WFQ)− Si,WFQ(0, bk

i,WFQ) ≤ (1− wi

W
)Li,max. (31)

The proof for arbitrary t under WFQ follows from the fact that the value of Si,GPS(0, t)−
Si,WFQ(0, t) reaches its maximal value when session i packets begin transmission un-

der WFQ. To complete the proof for WF2Q one can use the same proof as in [3]

(the proof to Theorem 1 there) and Equation (31). Q.E.D.

Theorem 5.4 If the active session set is constant during interval (0, t), then WF2Q

is tightly proximate (according to Definition 5.3).

Proof Equations (19) and (20), and Lemma 5.3 yield the proof. Q.E.D.

24

According to [3], WF2Q possesses properties (19) and (20) and therefore it is

non-bursty and accurate. Next (Theorem (5.5)) we will prove the relation between

non-burstiness of a scheduler (according to Definition 5.2) and tight proximity to

GPS (according to Definition 5.3).

Theorem 5.5 Under constant active session set, scheduler P is non-bursty (Def-

inition 5.2), iff it is tightly proximate to GPS (Definition 5.3).

Proof We will divide the proof to two parts. In part (a) we will prove that

Equation (22) holds iff
Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
holds. In part (b) we will prove

that Equation (23) holds iff
Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
holds.

(a) Equation (22) holds iff
Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
holds.

1) Assuming
Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
, we prove (22).

We assume
Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
, or Si,P (0, t)Wic−(SP (0, t)−Si,P (0, t))wi ≤

Li,max ·Wic , or

Si,P (0, t)− SP (0, t)
wi

Wic + wi

≤ Li,max
Wic

Wic + wi

. (32)

If the active session set is constant during interval (0, t) then the following holds,

Si,GPS(0, t) = SGPS(0, t)
wi

W
. (33)

The service rate of GPS and of scheduler P is equal thus, SGPS(0, t) = SP (0, t).

Substituting this in (33) we get,

Si,GPS(0, t) = SP (0, t)
wi

W
. (34)

Substituting (34) in (32) we get, Si,P (0, t)− Si,GPS(0, t) ≤ Li,max(1− wi

W
).

2) Assuming (22), we prove
Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
.

Substituting (34) in (22) we get, Si,P (0, t) − SP (0, t)wi

W
≤ (1 − wi

W
)Li,max, or

Si,P (0, t)(Wic + wi) − SP (0, t)wi ≤ (W − wi)Li,max, or Si,P (0, t)Wic − (SP (0, t) −
Si,P (0, t))wi ≤ Wic · Li,max. Then we get,

Si,P (0,t)

wi
− Sic,P (0,t)

Wic
≤ Li,max

wi
.

(b) Equation (23) holds iff
Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
holds.

1) Assuming
Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
, we prove (23).

We assume
Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
, or (SP (0, t)−Si,P (0, t))wi−Si,P (0, t)Wic ≤

Li,max ·Wic , or

SP (0, t)
wi

Wic + wi

− Si,P (0, t) ≤ Li,max
Wic

Wic + wi

. (35)

25

Substituting (34) in (35) we get,

Si,GPS(0, t)− Si,P (0, t) ≤ Li,max(1− wi

W
). (36)

2) Assuming (23), we prove
Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
.

Substituting (34) in (23) we get,

SP (0, t)
wi

W
− Si,P (0, t) ≤ (1− wi

W
)Li,max, (37)

or SP (0, t)wi − Si,P (0, t)(Wic + wi) ≤ (W − wi)Li,max, or (SP (0, t) − Si,P (0, t))wi −
Si,P (0, t)Wic ≤ Wic · Li,max. Then we get,

Sic,P (0,t)

Wic
− Si,P (0,t)

wi
≤ Li,max

wi
. Q.E.D.

5.2 The Relation between Relative Fairness and Relative
Burstiness

The following theorem establishes a bound on the burstiness of a scheduler as a

function of its fairness. Unfortunately, however, as shown in Remark 5.2 tight

fairness does not necessarily lead to tight burstiness. Let X(i, j) be an arbitrary

variable possibly depending on i and j (session indices).

Theorem 5.6 If scheduler P obeys the following relative fairness (RF) criterion,

∣∣∣∣
Si,P (0, t)

wi

− Sj,P (0, t)

wj

∣∣∣∣ ≤ X(i, j),∀i,j, (38)

then it obeys the following relative burstiness (RB) criterion,

∣∣∣∣
Si,P (0, t)

wi

− Sic,P (0, t)

Wic

∣∣∣∣ ≤ max{k,j}∈A(t){X(k, j)},∀i. (39)

Proof Summing Equation (38) for all j 6= i we get,

∑

j 6=i

∣∣∣Si,P (0, t)

wi

− Sj,P (0, t)

wj

∣∣∣ ≤
∑

j 6=i

X(i, j),

or ∑

j 6=i

∣∣∣wjSi,P (0, t)− wiSj,P (0, t)
∣∣∣ ≤

∑

j 6=i

wiwjX(i, j),

or ∣∣∣Si,P (0, t)
∑

j 6=i

wj − wi

∑

j 6=i

Sj,P (0, t)
∣∣∣ ≤ wi

∑

j 6=i

wjX(i, j),

or ∣∣∣Si,P (0, t)Wic − wiSic,P (0, t)
∣∣∣ ≤ wi

∑

j 6=i

wjX(i, j),

26

or ∣∣∣Si,P (0, t)

wi

− Sic,P (0, t)

Wic

∣∣∣ ≤ 1

Wic

∑

j 6=i

wjX(i, j).

Now since X(i, j) ≤ max{k,j}∈A(t){X(k, j)},

1

Wic

∑

j 6=i

wjX(i, j) ≤ max{k,j}∈A(t){X(k, j)} 1

Wic

∑

j 6=i

wj = max{k,j}∈A(t){X(k, j)},

and then we get,

∣∣∣Si,P (0, t)

wi

− Sic,P (0, t)

Wic

∣∣∣ ≤ max{k,j}∈A(t){X(k, j)}.

Q.E.D.

We thus may conclude that any scheduler possessing the relative fairness crite-

rion, possesses an upper bound on the relative burstiness criterion.

Corollary 5.7 If scheduler P obeys the following relative fairness criterion,

∣∣∣∣
Si,P (0, t)

wi

− Sj,P (0, t)

wj

∣∣∣∣ ≤ max{Li,max

wi

,
Lj,max

wj

},∀i,j, (40)

then it obeys the following relative burstiness criterion,

∣∣∣∣
Si,P (0, t)

wi

− Sic,P (0, t)

Wic

∣∣∣∣ ≤ maxl∈{A(t)}{Ll,max

wl

},∀i. (41)

Proof Using Theorem 5.6 we get,

∣∣∣∣
Si,P (0, t)

wi

− Sic,P (0, t)

Wic

∣∣∣∣ ≤ max{k,j}∈A(t){max{Lk,max

wk

,
Lj,max

wj

}},∀i (42)

which leads to the proof. Q.E.D.

Note that one session with large packets and low weight can cause the bound to be

high and therefore non-tight.

Remark 5.2 Note that a scheduler with a low relative fairness (RF) may still have

a high relative burstiness (RB), as (41) may be significantly higher than (40). Such

a scheduler may have bursty behavior since its relative burstiness bound is higher

than it should be as defined in Definition 5.2. For example the GrFQ scheduler has

a relative fairness bound as in (40), as proved in [18], while its relative burstiness

bound is much higher (41), as can be easily seen from the example presented in

Section 2.3. The same can be shown also for the SCFQ scheduler [8].

27

6 Non-Burstiness of BCFQ and Its Equivalence

to WF2Q

WF2Q is an accurate and non-bursty scheduler whose service approximates GPS

very closely. In this section we analyze BCFQ and determine conditions under which

its schedule is identical to that of WF2Q. This will provide an evidence (see Section

6.2) to the non-burstiness of BCFQ. Specifically, we will show the equivalence (in

the sense of yielding exactly identical schedules) of BCFQ to WF2Q in the following

settings: First (Subsection 6.1) we show that if the active session set is constant

during the interval (0, t) then BCFQ is equivalent to WF2Q during that interval.

Second (Subsection 6.3) we show that if BCFQ uses the GPS virtual time function as

its eligibility constraint and one more change is introduced, then BCFQ is equivalent

to WF2Q.

Let pk
i denote packet k of session i and let bk

i,BCFQ (bk
i,GPS) and dk

i,BCFQ (dk
i,GPS)

denote the times at which pk
i starts transmission and ends transmission, respectively,

in BCFQ (GPS). Let ak
i denote the arrival time of pk

i .

Definition 6.1 Two packet-based schedulers P and Q are equivalent if ∀i,k bk
i,P =

bk
i,Q, namely all the packets’ transmission start times are identical.

6.1 Equivalence of BCFQ and WF2Q: Constant Active Ses-
sion Set

Below, in Theorem 6.3 we will show that if the active session set is constant in the

interval (0, t) then BCFQ yields identical schedule to that of WF2Q and thus is

as close to GPS as WF2Q. Recall from Corollary 3.3, that under these condition

gBCFQ(τ) = v(τ) for every 0 < τ < t. Since the active session set is constant in

(0, t), let W denote the sum of weights of the active sessions.

Lemma 6.1 If the active session set is constant in (0, t), then the eligibility con-

straint of BCFQ, hi(τ) ≤ gBCFQ(τ), holds iff Si,BCFQ(0, τ) ≤ Si,GPS(0, τ).

Proof When the active session set is constant in (0, t) session i remains active in

(0, t) and thus from Definition 3.1 we get for 0 < τ < t:

hi(τ) =
Si,BCFQ(0, τ)

wi

. (43)

The service rate of BCFQ and GPS is equal, thus, the service for all sessions obeys:

SBCFQ(0, τ) = SGPS(0, τ). (44)

Since the active session set is constant in (0, t) we have:

Si,GPS(0, τ) = wi · SGPS(0, τ)

W
. (45)

28

Further, under these condition Equation (4) can be rewritten as,

gBCFQ(τ) =
SBCFQ(0, τ)

W
. (46)

Plugging (44) and then (45) to (46) yields gBCFQ(τ) =
Si,GPS(0,τ)

wi
, which together

with (43) yields the proof. Q.E.D.

Lemma 6.1 will be used in the sequel (Theorem 6.3) to show that the sets of

eligible sessions of WF2Q and BCFQ are identical to each other.

Lemma 6.2 If the active session set is constant in (0, t), then under BCFQ the

potential normalized service of session i at epoch dk
i,BCFQ, h′i(d

k
i,BCFQ), is identical

to the GPS finish virtual time of pk+1
i , F k+1

i,GPS.

Proof According to Equation (1), when the active session set is constant,

v(τ) =
SGPS(0, τ)

W
. (47)

Plugging (45) to (47) we get:

v(t) =
Si,GPS(0, t)

wi

. (48)

Since session i’s packets are served in the same order under both schemes,

Si,GPS(0, dk
i,GPS) = Si,BCFQ(0, dk

i,BCFQ). (49)

Therefore, from (48) and (49) we get:

v(dk
i,GPS) =

Si,GPS(0, dk
i,GPS)

wi

=
Si,BCFQ(0, dk

i,BCFQ)

wi

= hi(d
k
i,BCFQ). (50)

Namely, the virtual time at dk
i,GPS is equal to the normalized service of session i

at dk
i,BCFQ. Adding Lk+1

i /wi to both sides and using v(dk
i,GPS) + Lk+1

i /wi = F k+1
i,GPS

(implied from (48) and from the definition of GPS) we get:

h′i(d
k
i,BCFQ) = F k+1

i,GPS. (51)

Q.E.D.

29

Lemma 6.1 (eligibility constraint) and Lemma 6.2 (selection criterion) are next

used to show the equivalence of WF2Q to BCFQ.

Theorem 6.3 If the active session set is constant in (0, t), then BCFQ and WF2Q

are equivalent.

Proof Let tj,P be the time of the jth departure under scheduler P . We will prove

by induction on the departure times under BCFQ that the behavior of the two

schedulers is identical. Assuming that the two schemes are equal during interval

(0, tj,BCFQ), we will prove that they are equal also during interval (0, tj+1,BCFQ).

According to the assumption, tj,BCFQ = tj,WF 2Q, therefore at tj,BCFQ both BCFQ

and WF2Q have to choose the next packet for transmission.

BCFQ selects the session with the minimum potential normalized service (h′i(tj,BCFQ)),

among the set of sessions obeying hi(tj,BCFQ) ≤ gBCFQ(tj,BCFQ). WF2Q will select

at tj,WF 2Q the session with the minimum finish virtual time (F k
i) among the sessions

whose packets already started service under GPS (that is, the service they got by

tj,WF 2Q under WF2Q is smaller than or equal to what they got by GPS). Lemma

6.1 implies that the set of eligible sessions under BCFQ and the set of sessions that

already start service under GPS are the same. And from Lemma 6.2 we can con-

clude that selecting the session with the minimum potential normalized service and

selecting the session with the minimum finish virtual time is equivalent. Therefore,

BCFQ and WF2Q will select at tj,BCFQ the same packet for transmission. Thus,

the two schemes are also equal during interval (0, tj+1,BCFQ). Since the above holds

also for t = 0, the equivalence holds for any time t. Q.E.D.

Lastly, the next theorem establishes the accuracy of BCFQ.

Theorem 6.4 If the active session set is constant in (0, t), then the following re-

lations hold for any i, k, 0 < τ < t:

Si,GPS(0, τ)− Si,BCFQ(0, τ) ≤ (1− ri

r
)Li,max, (52)

Si,BCFQ(0, τ)− Si,GPS(0, τ) ≤ (1− ri

r
)Li,max, (53)

where ri := rwi

W
and r is the server rate.

Proof The equations, where WF2Q replaces BCFQ were proved in [3] (Equations

(11),and(12) there). This, combined with Lemma 5.3 and then Theorem 6.3, leads

to the proof. Q.E.D.

We thus conclude, that if the active session set is constant in (0, t), then the

service provided by BCFQ during this interval is equivalent to that of WF2Q and

similar to that of GPS, differing by no more than one maximal size packet. According

to simulation results given in Section 7, also when the active session set changes the

service provided by BCFQ will be close to that of GPS.

30

6.2 The Non-Burstiness of BCFQ: Constant Active Session
Set

As we present in Section 3.5 BCFQ behavior is not bursty. The next theorem

establishes that BCFQ is non-bursty when the active session set is constant.

Theorem 6.5 BCFQ is a non-bursty scheduler (Definition 5.2).

Proof The theorem is implied directly from Theorem 6.4 and Theorem 5.5.

Q.E.D.

6.3 Using the GPS virtual time in BCFQ: Equivalence to

WF2Q

To demonstrate the properties of BCFQ, we will next show that if BCFQ uses the

GPS virtual time for its eligibility constraint and incorporates one more modifica-

tion, then it is equivalent to WF2Q. Note that the analysis is conducted assuming

general setting of the sessions, that is, the active session set needs not be constant.

Note also that if these changes are implemented in BCFQ its computational com-

plexity becomes identical to that of WF2Q.

Claim 6.6 If session i is active during the interval (t1, t2), then the following holds:

Si,GPS(t1, t2) = wi · (v(t2)− v(t1)). (54)

Proof As proposed in [13], the rate change of GPS virtual time is 1/W (tj−1, tj),

when the active session set is constant during the interval (tj−1, tj) and each active

session i receives service at rate wi · 1/W (tj−1, tj). Therefore we get,

Si,GPS(tj−1, tj) = wi · (tj − tj−1)/W (tj−1, tj). (55)

By summing on j we get,

Si,GPS(0, t) = wi · v(t). (56)

Since Si,GPS(t1, t2) = Si,GPS(0, t2)−Si,GPS(0, t1), the lemma is proved by substituting

t by t1 and t2 in (56) and subtracting the resulting equations. Q.E.D.

We now must introduce one more modification to the algorithm in order to more

closely approximate GPS. Although, in some situations, a session can be inactive in

GPS, while still being active in BCFQ, its normalized service (hi) should incorporate

the amount of service it would receive during the inactive interval in the GPS system.

The same idea is proposed also in [18]. Therefore, when session i is inactive under

GPS during the interval (dk
i,GPS, bk+1

i,GPS) while still being active under BCFQ at

dk
i,BCFQ (ak+1

i ≤ dk
i,BCFQ), the normalized service of session i (hi(d

k
i,BCFQ)) is set also

according to the GPS virtual time of pk+1
i at ak+1

i , v(ak+1
i). The detailed algorithm

is presented in Appendix G.

31

Summarizing this change, when ak+1
i ≤ dk

i,BCFQ we set:

hi(d
k
i,BCFQ) := max{hi(b

k
i,BCFQ) + Lk

i /wi, v(ak+1
i)}, (57)

and if i′s buffer is empty at dk
i,BCFQ (ak+1

i > dk
i,BCFQ) we set:

hi(d
k
i,BCFQ) := hi(b

k
i,BCFQ) + Lk

i /wi. (58)

From Section 3.4 and due to using the GPS virtual time instead of gP (t), a newly

active session that becomes active at t will be updated as follows,

hi(t) := max{hi(t
−), v(t)}. (59)

Lemma 6.7 Assuming BCFQ uses the GPS virtual time then, 1) When ak+1
i ≤

dk
i,BCFQ, the normalized service of session i in the end of transmission under BCFQ

(hi(d
k
i,BCFQ)) is equal to the GPS start virtual time of pk+1

i , v(bk+1
i,GPS); namely

hi(d
k
i,BCFQ) = v(bk+1

i,GPS). 2) When ak+1
i > dk

i,BCFQ, the normalized service of session

i when becoming active under BCFQ scheduler (hi(a
k+1
i)) is equal to the GPS start

virtual time of pk+1
i , v(bk+1

i,GPS); namely hi(a
k+1
i) = v(bk+1

i,GPS).

The proof is given in Appendix H.

Lemma 6.8 Assuming BCFQ uses the GPS virtual time then, at every decision

epoch of BCFQ the set of eligible sessions under BCFQ is equivalent to the set of

sessions that already started service under GPS.

Proof Let tj,BCFQ be the jth departure epoch under BCFQ and let pk
i be the

latest packet of session i departing before or at tj,BCFQ, namely dk
i,BCFQ ≤ tj,BCFQ <

dk+1
i,BCFQ.

Note that pk+1
i starts transmission under GPS prior to tj,BCFQ if and only if

v(bk+1
i,GPS) ≤ v(tj,BCFQ). Thus, we have to prove that the eligibility constraint of

BCFQ at tj,BCFQ for every active sessions i, hi(tj,BCFQ) ≤ v(tj,BCFQ), is equivalent

to v(bk+1
i,GPS) ≤ v(tj,BCFQ). We will divide the proof to two cases: (a) ak+1

i ≤ dk
i,BCFQ,

and (b) ak+1
i > dk

i,BCFQ.

(a) ak+1
i ≤ dk

i,BCFQ

According to Lemma 6.7 when ak+1
i ≤ dk

i,BCFQ then,

hi(d
k
i,BCFQ) = v(bk+1

i,GPS). (60)

We assume dk
i,BCFQ ≤ tj,BCFQ < dk+1

i,BCFQ, therefore i is not served in the interval

[dk
i,BCFQ, tj,BCFQ], and thus, hi(d

k
i,BCFQ) = hi(tj,BCFQ). From this equation and (60)

we get, v(bk+1
i,GPS) = hi(tj,BCFQ) from which the equivalence is direct.

32

(b) ak+1
i > dk

i,BCFQ

According to Lemma 6.7 when ak+1
i > dk

i,BCFQ then,

hi(a
k+1
i) = v(bk+1

i,GPS). (61)

We assume dk
i,BCFQ < ak+1

i ≤ tj,BCFQ < dk+1
i,BCFQ where the second inequality results

from i being active at tj,BCFQ. Therefore there are no event at queue i at the interval

[ak+1
i , tj,BCFQ], and thus, hi(a

k+1
i) = hi(tj,BCFQ). From this equation and (61) we

get, v(bk+1
i,GPS) = hi(tj,BCFQ) from which the equivalence is direct. Q.E.D.

Theorem 6.9 Assuming BCFQ uses the GPS virtual time then, 1) When ak+1
i ≤

dk
i,BCFQ, the potential normalized service of session i at the end of transmission

under BCFQ (h′i(d
k
i,BCFQ)) is equal to the GPS finish virtual time of pk+1

i , v(dk+1
i,GPS);

namely h′i(d
k
i,BCFQ) = v(dk+1

i,GPS). 2) When ak+1
i > dk

i,BCFQ, the potential normalized

service of session i when becoming active under BCFQ scheduler (h′i(a
k+1
i)) is equal

to the GPS finish virtual time of pk+1
i , v(dk+1

i,GPS); namely h′i(a
k+1
i) = v(dk+1

i,GPS).

Proof Lemma 6.7, Equation (3) and Claim 6.6 yield the proof. Q.E.D.

Theorem 6.10 If BCFQ uses GPS virtual time for its eligibility constraint (as

presented in Appendix G), then it is equivalent to WF2Q.

Proof Let tj,P be the time of the jth departure under scheduler P . We will

prove by induction on the departure times that the actions of the two schedulers are

identical to each other. Assuming that the two schemes are equal during interval

(0, tj,BCFQ), we will prove that they are equal also during interval (0, tj+1,BCFQ).

According to the assumption, tj,BCFQ = tj,WF 2Q, therefore at that epoch both BCFQ

and WF2Q have to select the next packet for transmission.

BCFQ selects the session with the minimum potential normalized service (h′i(tj,BCFQ))

among the set of sessions that obey hi(tj,BCFQ) ≤ v(tj,BCFQ). WF2Q selects at

tj,WF 2Q the session with the minimum finish virtual time among the sessions that

already start service under GPS. Lemma 6.8 implies that the set of eligible sessions

and the set of sessions that already start service under GPS are equivalent. Further

from Lemma 6.9 we can conclude that selecting the session with the minimal poten-

tial normalized service and selecting the session with the minimal finish virtual time

is equivalent. Therefore, BCFQ and WF2Q will select at tj,BCFQ the same packet for

transmission. Thus, the two schemes are also equal during interval (0, tj+1,BCFQ).

Since the above holds also for t = 0, the equivalence holds for any time t. Q.E.D.

33

7 Simulation Results

In Section 6 we showed that when the active session set is constant BCFQ is not

bursty. In this section, we use simulation experiments to examine the burstiness of

BCFQ in a general environment (that is, when the active session set is not necessarily

constant) and demonstrate that the burstiness of BCFQ is very low3.

We conduct a simulation of BCFQ and compare it to that of WFQ under ex-

actly the same arrival patterns. We evaluate the burstiness of BCFQ by measur-

ing its positive deviation from GPS (Si,BCFQ(0, t) − Si,GPS(0, t)) and computing

the full statistics of this deviation. Similarly we compute the deviation of WFQ

(Si,WFQ(0, t)− Si,GPS(0, t)).

We examine five cases representing a wide range of parameters, differing from

each other in their sessions’ relative rate and weight and in the number of bursty

sessions. Cases A, B, and C consist of several heavy traffic and bursty sessions

and many light traffic sessions. They differ from each other in the burstiness and

weights given to the high traffic sessions. Cases D and E examine situations where

the average rate of all the sessions is identical; in Case D five of the sessions are

highly prioritized (weight 5) while in Case E all sessions are of the same weight.

Note that we do not examine cases with sessions that have high rate and low weight

since these cases are not stable.

The details of the experiments are as follows: The output link rate is 100 pack-

ets/second and the total number of packets (throughout the simulation) is approxi-

mately 500,000. Case A consists of 110 sessions, 10 of which are high rate sessions,

each transmitting at average rate of 4.16 packets/sec, and the other 100 are low rate

sessions, each transmitting at average rate of 0.434 packets/sec. The traffic of each

session is bursty, and follows an on-off model where the on-period and the off-period

are uniformly distributed between 48 to 96 seconds (for the high rate sessions) or

between 460 to 920 seconds (for the low rate sessions). The overall utilization of

the output link is approximately 0.85. The high rate sessions receive a high weight,

wi = 10 while the low rate sessions receive low weight, wi = 1. Cases B, C, D,

and E, are similar in their description but significantly differ from Case A in their

parameters. The parameters of all five cases are depicted in Table 1.

The simulation measures the deviation Si,BCFQ(0, t)−Si,GPS(0, t) and Si,WFQ(0, t)−
Si,GPS(0, t) for all epochs t which are packet termination epochs under GPS. The

deviation is measured in units of packets. We combine this data into a histogram

reflecting the percentage of epochs (packets) which are subject to certain deviation.

Figures 2(a) and 2(b) depict the results for Case A and Case B, respectively4. The

3The reader may recall that when BCFQ is modified via the modification analyzed in Section
6.3 it is equivalent to WF2Q and therefore it is not bursty.

4Note that the packets that are subject to 0 deviation are not provided in the figure and thus
the numbers do not add up to 100%

34

Number of
sessions

Average session
rate (pkt/sec)

Duration of on (off)
period: Uniform at
range:

Weights
Case
(utilization)

High Low High Low High Low High Low

A (0.85) 10 100 4.16 0.434 48-96 460-920 10 1
B (0.85) 5 100 8.33 0.434 24-48 460-920 20 1
C (0.88) 1 100 41.666 0.462 4.8-9.6 432-864 30 1
D (0.8) 5 100 0.796 0.796 260-520 260-520 5 1
E (0.86) - 100 - 0.862 - 232-264 - 1

Table 1: Detailed parameters of simulation cases

figures demonstrate that under BCFQ only a very small fraction of the packets are

subject to large deviation (1%-2% of the packets experience deviation of more than

1 time unit). In contrast, WFQ experiences much larger deviations (20% of the

packets or more experience deviation of more than 1 time unit, some experiencing

deviation of up to 13 time units). Note that Case B is subject to significantly more

bursty inputs than Case A, namely the heavy sessions are with higher rate and

higher weight. For this reason its output, for WFQ, is also more bursty.

Figure 2(c) depicts the results for Case C. Due to the very high burstiness of the

heavy session, the output of both WFQ and BCFQ becomes more bursty (compared

to A and B). The figure demonstrates that the performance of BCFQ is significantly

better than that of WFQ: Under BCFQ only a very small fraction of the packets are

subject to large deviation (approximately 0.1% of the packets experience deviation

of more than 10 time unit). In contrast, WFQ experiences much larger deviations

(approximately 3% of the packets experience deviation of more than 10 time unit,

some experiencing deviation of up to 22 time units).

For Case D WFQ and BCFQ experience (figure is not provided) similar results:

For both of them, no packet experiences deviation of more than 1 packet. This

stems from the fact that the average rates of all sessions are equal for each other,

and the sessions differ only in their weights. Thus, the input rate of the high priority

sessions is not very bursty, and the behavior of both scheduling policies is good. For

Case E (figure is not provided) the results are similar to that of Case D. This stems

from the fact that in Case E all the sessions are identical in their rate and their

weight and therefore there are no bursty sessions.

35

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1 2 3 4 5 6 7

WFQ
BCFQ

Positive Deviation from GPS (measured in packets)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

(a) Case A

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1 2 3 4 5 6 7 8 9 10 11 12 13

WFQ
BCFQ

Positive Deviation from GPS (measured in packets)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

(b) Case B

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

WFQ
BCFQ

Positive Deviation from GPS (measured in packets)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

(c) Case C

Figure 2: Histograms of positive deviation from GPS

8 Concluding Remarks

We studied the issue of bursty transmission in packet scheduling algorithms. We

proposed the Burst-Constrain Fair-Queueing (BCFQ) algorithm, a packet scheduler

that achieves both high fairness and low burstiness while maintaining low compu-

tational complexity. We also proposed a new measure (and criterion) which can be

used for evaluating the burstiness of arbitrary scheduling algorithms. We used this

measure and demonstrated that BCFQ possesses the desired properties of fairness

and burstiness while maintaining low computational complexity.

36

References

[1] Bennett, J. C. R., Stephens, D. C., and Zhang, H. High speed, scalable,

and accurate implementation of fair queueing algorithms in atm networks. In

Proceedings of ICNP ’97 (October 1997), pp. 7–14.

[2] Bennett, J. C. R., and Zhang, H. Hierarchical packet fair queueing algo-

rithms. In Proceedings of ACM SIGCOMM’96,Palo Alto, CA (August 1996),

pp. 143–156.

[3] Bennett, J. C. R., and Zhang, H. WF2Q: worst-case fair weighted fair

queueing. In Proceedings of IEEE INFOCOM (March 1996), pp. 120–128.

[4] Bennett, J. C. R., and Zhang, H. Why wfq is not good enough for

integrated services networks. In Proceedings of NOSSDAV ’96, Zushi, Japan

(April 1996), pp. 524–532.

[5] Chiussi, F. M., and Francini, A. Implementing fair queueing in atm

switches part 1: A practical methodology for the analysis of delay bounds.

In Proceedings of IEEE Globecom’97 (November 1997).

[6] Demers, A., Keshav, S., and Shenker, S. Analysis and simulation of

a fair queueing algorithm. Internetworking Research and Experience (October

1990), 3–26. Also in Proceedings of ACM SIGCOMM’89, pp. 3-12.

[7] Golestani, S. J. Network delay analysis of a class of fair queueing algorithms.

IEEE Selected Areas in Communications 13, 6 (August 1995), 1057–1070.

[8] Golestani, S. J. A self-clocked fair queueing scheme for broadband appli-

cation. In Proceedings of IEEE INFOCOM, Toronto, Canada (June 1996),

pp. 636–646.

[9] Goyal, P., Vin, H. M., and Cheng, H. Start-time fair queueing: a schedul-

ing algorithm for integrated service packet switching networks. IEEE Trans.

Networking 5, 5 (October 1997), 690–704.

[10] Keshav, S. A control-theoretic approach to flow control. In Proceedings of

ACM SIGCOMM’91, Zurich, Switzerland (September 1991), pp. 3–15.

[11] Keshav, S. A control-theoretic approach to flow control. In Proceedings of

ACM SIGCOMM, Zurich, Switzerland (September 1991), pp. 3–15.

[12] Kleinrock, L. Queueing Systems, Volume 2: Computer Applications. Wiley,

1976.

37

[13] Parekh, A. K., and Gallager, R. G. A generalized processor sharing

approach to flow control in integrated services networks:the single-node case.

IEEE/ACM Trans. Networking 1, 1 (June 1993), 344–357.

[14] Parekh, A. K., and Gallager, R. G. A generalized processor sharing

approach to flow control in integrated services networks: the multiple node

case. IEEE/ACM Trans. Networking 2 (April 1994), 137–150.

[15] Parekh, A. K. J. A Generalized Processor Sharing Approach to Flow Con-

trol in Integrated Services Networks. PhD thesis, Massachusetts Institute of

Technology, February 1992.

[16] Rexford, J., Greenberg, A., and Bonomi, F. Hardware-efficient fair

queueing architectures for high-speed networks. In Proceedings of IEEE INFO-

COM (March 1996).

[17] Shenker, S. Making greed work in networks: A game-theoretic analysis of

switch service disciplines. In Proceedings of ACM SIGCOMM’94, London, UK

(August 1994), pp. 47–57.

[18] Shi, H., and Sethu, H. Greedy fair queueing: A goal-oriented strategy

for fair real-time packet scheduling. In Proceedings of the Real-Time Systems

Symposium (RTSS) (December 2003).

[19] Stiliadis, D., and Varma, A. Efficient fair queueing algorithms for packet-

switched networks. IEEE/ACM Tansactions on Networking 6, 2 (April 1998),

175–185.

[20] Stiliadis, D., and Varma, A. Latency-rate servers: a general model for

analysis of traffic scheduling algorithms. IEEE Tansactions on Networking 6,

5 (October 1998), 611–624.

[21] Stiliadis, D., and Varma, A. Rate-proportional servers: A design method-

ology for fair queueing algorithms. IEEE/ACM Tansactions on Networking 6,

2 (April 1998), 164–174.

[22] Stoica, I., and Abdel-Wahab, H. Earliest eligible virtual deadline first:

A flexible and accurate mechanism for proportional share resource allocation.

Tech. Rep. 9522, Old Dominion University, November 1995.

[23] Zhou, Y., and Sethu, H. On the relationship between absolute and relative

fairness bounds. IEEE Comm. Letters 6, 1 (January 2002), 37–39.

38

A Glossary of Notation

pk
i The kth packet of session i

Lk
i The length of packet pk

i

Si,P (0, t) The amount of service received by session i by time t under scheduler P

wi The weight of session i

W (t) The sum of weights of the active session set at time t

v(t) The GPS virtual time at time t

hi(t) The normalized service of session i at time t

h′i(t) The potential normalized service of session i at time t

gP (t) The accumulated system normalized service for scheduler P at time t

A(t) The active session set at time t

B SCFQ and GrFQ: Tagging

Under SCFQ [8], packets will be transmitted according to their F k
j tag. Under GrFQ

[18], packets will be transmitted according to their ui and ûi session values. In this

sections we describe how SCFQ computes F k
j tag and how GrFQ computes ui and

ûi values.

SCFQ:

Under SCFQ [8], every kth packet of session j will be tagged with a service tag

F k
j which is computed by the following equations:

F k
j =

Lk
j

wj

+ max{F k−1
j , v̂(ak

j)},

where ak
j is the arriving time of kth packet of session j, and

v̂(t) = F l
j , s

l
j < t ≤ dl

j,

where sl
j and dl

j respectively denote the times packet pl
j starts and finishes service.

GrFQ:

Under GrFQ [18], every session i will be tagged with ûi which is computed by

the following equations. At time t, if packet k arrives at session i, the beginning

utility of this packet is set as:

BUi,k = max{FUi(t
−), v(t)},

39

where v(t) is the virtual time of GPS. The finishing utility of session i would then

be updated as:

FUi(t) = BUi,k + Li,k/wi,

where Li,k is the length of packet k of session i. Then the utility is defined as:

ui(t) = max{ui(t
−), BUi,h},

where BUi,h is the beginning utility of the new head packet in session i queue. The

potential utility is defined as:

ûi(t) = ui(t) + Li,h/wi,

where Lh
i is the length of the packet at the head of session i’s queue.

Upon completion of each packet transmission, the GrFQ scheduler will choose to

transmit the next packet from the session with the minimum value of Max(Ûi(t))-

Min(Ûi(t)) among all the active sessions, where the set Ûi(t) defined as, Ûi(t) =

{ûi(t)}
⋃{uj(t)|j 6= i and j ∈ A(t)}.

C BCFQ: A Scenario where All the Sessions Be-

come Illegal

We show a scenario when all the session become illegal. Assume that there are 3

sessions with packet size of 1 sharing a link with the speed of 1, where w1 = 10,

and wi = 1, i = 2, 3. Session 2 and 3 send 2 back-to-back packets starting at

time 0 while Session 1 sends 2 back-to-back packets starting at time 1. At time

0, gBCFQ(0) = 0, h2(0) = h3(0) = 0, h′2(0) = h′3(0) = 1 therefore p1
2 will be

transmitted. At time 1, Session 1 become active, gBCFQ(1) = 1/2, h1(1) = 1/2,

h2(1) = 1, h3(1) = 0, h′1(1) = 0.6, h′2(1) = 2, h′3(1) = 1, therefore p1
1 will be

transmitted. At time 2, gBCFQ(2) = 1/2 + 1/12 = 0.583, h1(2) = 0.6, h2(2) = 1,

h3(2) = 0, h′1(2) = 0.7, h′2(2) = 2, h′3(2) = 1, just Session 3 is legal therefore p1
3 will

be transmitted. At time 3, gBCFQ(3) = 1/2 + 2/12 = 0.666, h1(3) = 0.6, h2(3) = 1,

h3(3) = 1, h′1(3) = 0.7, h′2(3) = 2, h′3(3) = 2, just Session 1 is legal therefore p2
1 will

be transmitted. At time 4, Session 1 finishes to transmits its packets and it becomes

inactive, gBCFQ(3) = 1/2 + 3/12 = 0.75, h2(3) = 1, h3(3) = 1, h′2(3) = 2, h′3(3) = 2,

but as we can notice at time 4 the two sessions are illegal.

D The Minimum under Constraints Binary Tree

In this section we describe the minimum under constraints binary tree. We use this

data structure for the efficiency of the BCFQ algorithm and denote it as MCBT -

Minimum under Constraints Binary Tree.

Each MCBT node stores:

40

• h val: A session normalized service (hi) value.

• h’ val: A potential session normalized service (h′i) value.

• min h’ val: A minimum potential session normalized service among all of the

nodes in its subtree.

The key of the MCBT tree is the session normalized service (hi(t)).

We now describe the MCBT operations:

Insertion

The insertion key is h val, as the key of the tree. The insertion is performed just

like in a binary tree, with additional that the value min h’ val is update for nodes

on the path of the inserted node.

Deletion

Like insertion, deletion is performed as in a binary tree, except for the update

of min h’ val of the ancestors of the deleted node.

Get Min under Constraint

The function gets the g(t) value as an input and returns the eligible node with

the minimum h′i(t). Our purpose is to find the node with the minimum h′i(t) among

the eligible nodes, according to the eligibility constraint defined in Section 3.3. The

algorithm, starting from the root, goes down in the following way: if g(t) is larger

than the current node’s h val, it chooses its right sub-tree; otherwise it chooses its

left one. As a result a path from the root to one of the leaves is created. This path

divides the tree to three parts: 1. The nodes that are on the left side of the path

- all these nodes are eligible, 2. The nodes that are on the right side of the path -

all these nodes are not eligible, and 3. The nodes on the path - part of which are

eligible and part of which are not. Therefore, we have to look for min h’ val just on

the path or on its left side. Every node in the tree stores min h’ val among all the

nodes in its sub-tree, then we search for the node with the minimum h’ val by going

down from the root of the left partition (the legal side) to the root of the subtree

with min h’ val. The eligible node with the minimum h′i(t) is either in the path or

it is the descendant of the root of the subtree with min h’ val in the left side.

E The BCFQ Algorithm

The algorithm pseudo code is presented on Figures 3, 4, 5. Once a busy period is

over, i.e., when the server becomes idle and no more packets are found in the sessions’

queues, the algorithm is reinitialized by setting to zero the gBCFQ(t) function, and

hi(t) and h′i(t) measures.

41

PacketArrived(Packet P arrives to Session i at Time t)
1: if (queue i is empty) then
2: if (at time t the system is busy and transmits packet p2) then
3: next g = gBCFQ(t) + p2.length/systemTotalWeigth at transmission beginning;
4: hi(t) = max{hi(t

−),next g};
5: else - the system is not busy
6: hi(t) = max{hi(t

−),gBCFQ(t)};
7: end if ;
8: h′i(t) = hi(t) + P .length/wi;
9: MCBT->InsertNode(hi(t),h

′
i(t));

10: systemTotalWeight =+ wi;
11: end if ;
12: i.insertToQueue(P);

Figure 3: The BCFQ scheduler PacketArrived Pseudo Code

PacketTransmit()
1: while (At least one session is active) do
2: if(none of the sessions is legal) then
3: gBCFQ(t) = minimum hi; end if ;
3: end if ;
4: Session i = MCBT->GetLegalMin(gBCFQ(t));
5: P = i.headOfQueue;
6: Transmit(P);
7: FinishTransmit(packet P from Session i);
8: end while;

Figure 4: The BCFQ scheduler PacketTransmit Pseudo Code

F The Proof of Lemma 4.1

RF(i,j)(0, t) must get its maximum at an epoch τe when either i or j completes

transmission. Let τs be the transmission start epoch prior to τe. The proof will be

conducted via induction on τs and τe. To this end let τ ′e be the latest epoch prior

to τs at which either i or j completes transmission. Obviously τ ′e ≤ τs. Obviously

neither i nor j are served in (τ ′e, τs) and thus if Equation (13) holds for t = τ ′e it

must hold for t = τs. What remains to show is that if Equation (13) holds for

t = τs it must hold for t = τe, which we show next. Without loss of generality

assume that session i gets service during interval (τs, τe). At τs session i is chosen to

transmit, therefore there are two exclusive possibilities: A. Session i is legal, session

42

FinishTransmit(Packet P from Session i)
1: gBCFQ(t) =+ P .length/systemTotalWeight at transmission beginning;
2: i.deleteHeadOfQueue;
3: MCBT->Delete(Session i);
4: hi =+ P .length/wi;
5: if(i.queue is Empty) then
6: systemTotalWeight = systemTotalWeight - wi;
7: return;
8: end if ;
9: h′i = hi + headPacket.length/wi;
10: MCBT->Insert(Session i);

Figure 5: The BCFQ scheduler FinishTransmit Pseudo Code

j is either legal or illegal, and h′i(τs) ≤ h′j(τs). B. Session i is legal, session j is

illegal, and h′j(τs) ≤ h′i(τs). Note that either A or B must hold, since if all the

active sessions are illegal at τs, we fix the g(τs) value that at least one active session

becomes legal, as explained in Section 3.3. Since i transmits at (τs, τe) and j does

not, we have hj(τs) = hj(τe) and h′i(τs) = hi(τe). We will use also the fact that the

potential normalized service is always larger than the current normalized service, ∀l

h′l(t) > hl(t).

Case A: h′i(τs) ≤ h′j(τs) and hi(τs) ≤ g(τs) (session i is legal). Divide this

case to three sub cases: A1. hj(τs) ≥ h′i(τs). A2. hi(τs) ≤ hj(τs) < h′i(τs). A3.

hj(τs) < hi(τs).

Case B : h′j(τs) ≤ h′i(τs) and hi(τs) ≤ g(τs) < hj(τs) (session i is legal and j not).

Case A1 : In case A1 hj(τs) ≥ h′i(τs), therefore hj(τe)−hi(τe) = hj(τs)−h′i(τs) ≥ 0

thus
∣∣∣Si(0,τe)

wi
− Sj(0,τe)

wj

∣∣∣ = hj(τe)−hi(τe). This obeys hj(τe)−hi(τe) = hj(τs)−h′i(τs) <

hj(τs) − hi(τs), where the equality results from i being served and j not and the

from equality h′i(τs) > hi(τs). Using the inductive assumption, the lemma holds

for τs, that is hj(τs)− hi(τs) ≤ max{Li,max

wi
,

Lj,max

wj
}, thus implying hj(τe)− hi(τe) ≤

max{Li,max

wi
,

Lj,max

wj
}.

Case A2 : hj(τs) < h′i(τs), therefore hi(τe) − hj(τe) = h′i(τs) − hj(τs) > 0 thus∣∣∣Si(0,τe)
wi

− Sj(0,τe)

wj

∣∣∣ = hi(τe) − hj(τe). Case A2 additionally assumes that hi(τs) ≤
hj(τs), therefore hi(τe) − hj(τe) = h′i(τs) − hj(τs) ≤ h′i(τs) − hi(τs) = Li/wi ≤
Li,max/wi ≤ max{Li,max

wi
,

Lj,max

wj
}.

43

PacketArrived(Packet P arrives to Session i at Time t)
1: if(queue i is Empty) then
2: hi(t) = max{hi(t

−),v(t)};
3: h′i(t) = hi(t) + P .length/wi;
4: MCBT->InsertNode(hi(t),h

′
i(t));

5: systemTotalWeight =+ wi;
6: end if ;
7: P.v val = v(t);
8: i.insertToQueue(P);

Figure 6: PacketArrived Pseudo Code

PacketTransmit()
1: while (At least one session is active) do
2: Session i = MCBT->GetLegalMin(v(t));
3: P = i.headOfQueue;
4: Transmit(P);
5: FinishTransmit(packet P from Session i);
6: end while;

Figure 7: PacketTransmit Pseudo Code

Case A3 : hj(τs) < hi(τs), therefore hi(τe) − hj(τe) = h′i(τs) − hj(τs) > 0 thus∣∣∣Si(0,τe)
wi

− Sj(0,τe)

wj

∣∣∣ = hi(τe) − hj(τe). In case A, h′i(τs) ≤ h′j(τs), therefore hi(τe) −
hj(τe) = h′i(τs)−hj(τs) ≤ h′j(τs)−hj(τs) = Lj/wj ≤ Lj,max/wj ≤ max{Li,max

wi
,

Lj,max

wj
}.

Case B : h′i(τs) ≥ h′j(τs), therefore hi(τe) − hj(τe) = h′i(τs) − hj(τs) ≥ h′i(τs) −
h′j(τs) ≥ 0 thus

∣∣∣Si(0,τe)
wi

− Sj(0,τe)

wj

∣∣∣ = hi(τe)−hj(τe). Case B additionally assumes that

hj(τs) > g(τs) ≥ hi(τs), therefore hi(τe)−hj(τe) = h′i(τs)−hj(τs) < h′i(τs)−hi(τs) =

Li/wi ≤ Li,max/wi ≤ max{Li,max

wi
,

Lj,max

wj
}.

G Using the GPS Virtual Time in The BCFQ Al-

gorithm

In this section we present the BCFQ algorithm when using the GPS virtual time.

The algorithm is presented in Figures 6, 7, and 8.

44

FinishTransmit(Packet P from Session i)
1: i.deleteHeadOfQueue;
2: MCBT->Delete(Session i);
3: hi =+ P .length/wi;
4: if(i.queue is Empty) then
5: return; end if ;
6: hi = max{hi,headPacket.v val};
7: h′i = hi + headPacket.length/wi;
8: MCBT->Insert(Session i);

Figure 8: FinishTransmit Pseudo Code

H The Proof of Lemma 6.7

The proof includes two parts, (1) if ak+1
i ≤ dk

i,BCFQ, namely pk+1
i arrives prior to

dk
i,BCFQ, where we have to prove that:

hi(d
k
i,BCFQ) = v(bk+1

i,GPS), (62)

and (2) if ak+1
i > dk

i,BCFQ, namely session i is inactive at (dk
i,BCFQ, ak+1

i), where we

have to prove that:

hi(a
k+1
i) = v(bk+1

i,GPS). (63)

We will prove the theorem by induction. The inductive assumption will divide to

two: (a) if ak
i ≤ dk−1

i,BCFQ then,

hi(d
k−1
i,BCFQ) = v(bk

i,GPS), (64)

and (b) if ak
i > dk−1

i,BCFQ then,

hi(a
k
i) = v(bk

i,GPS). (65)

(1.a) Proving (62) by assuming (64).

ak+1
i ≤ dk

i,BCFQ therefore according to (57) at dk
i,BCFQ the normalized service is

updated as follows,

hi(d
k
i,BCFQ) = max{hi(b

k
i,BCFQ) + Lk

i /wi, v(ak+1
i)}. (66)

From the inductive assumption (64) and then from Claim 6.6 we get,

hi(d
k−1
i,BCFQ) + Lk

i /wi = v(bk
i,GPS) + Lk

i /wi = v(dk
i,GPS). (67)

45

Since we assume ak
i ≤ dk−1

i,BCFQ then hi(b
k
i,BCFQ) = hi(d

k−1
i,BCFQ). Substituting this in

(67) and then in (66), we get,

hi(d
k
i,BCFQ) = max{v(dk

i,GPS), v(ak+1
i)}. (68)

If ak+1
i ≤ dk

i,GPS then dk
i,GPS = bk+1

i,GPS and v(ak+1
i) ≤ v(dk

i,GPS); substituting these in

(68) we get, hi(d
k
i,BCFQ) = v(dk

i,GPS) = v(bk+1
i,GPS). If ak+1

i > dk
i,GPS then ak+1

i = bk+1
i,GPS

and v(ak+1
i) > v(dk

i,GPS); substituting these in (68) we get, hi(d
k
i,BCFQ) = v(ak+1

i) =

v(bk+1
i,GPS).

(1.b) Proving (62) by assuming (65).

ak+1
i ≤ dk

i,BCFQ, therefore, as in (1.a) above, according to (57) at dk
i,BCFQ the nor-

malized service is updated as follows,

hi(d
k
i,BCFQ) = max{hi(b

k
i,BCFQ) + Lk

i /wi, v(ak+1
i)}. (69)

Assuming that ak
i > dk−1

i,BCFQ and according to the normalized service definitions

in Section 3.1, session i normalized service does not change during the interval

(ak
i , b

k
i,BCFQ), therefore we get,

hi(b
k
i,BCFQ) = hi(a

k
i). (70)

From (70), and the inductive assumption (65) and then from Claim 6.6 we get,

hi(b
k
i,BCFQ) + Lk

i /wi = v(bk
i,GPS) + Lk

i /wi = v(dk
i,GPS). (71)

Substituting (71) in (69) we get,

hi(d
k
i,BCFQ) = max{v(dk

i,GPS), v(ak+1
i)}. (72)

If ak+1
i ≤ dk

i,GPS then dk
i,GPS = bk+1

i,GPS and v(ak+1
i) ≤ v(dk

i,GPS); substituting these in

(72) we get, hi(d
k
i,BCFQ) = v(dk

i,GPS) = v(bk+1
i,GPS). If ak+1

i > dk
i,GPS then ak+1

i = bk+1
i,GPS

and v(ak+1
i) > v(dk

i,GPS); substituting these in (72) we get, hi(d
k
i,BCFQ) = v(ak+1

i) =

v(bk+1
i,GPS).

(2.a) Proving (63) by assuming (64).

ak+1
i > dk

i,BCFQ, therefore, according to (58) at dk
i,BCFQ the normalized service is

updated as follows,

hi(d
k
i,BCFQ) = hi(b

k
i,BCFQ) + Lk

i /wi. (73)

Assuming ak
i ≤ dk−1

i,BCFQ implies hi(d
k−1
i,BCFQ) = hi(b

k
i,BCFQ), and combining with the

inductive assumption (64) and then Claim 6.6 we get,

hi(b
k
i,BCFQ) + Lk

i /wi = v(bk
i,GPS) + Lk

i /wi = v(dk
i,GPS). (74)

46

From (73) and (74) we get,

hi(d
k
i,BCFQ) = v(dk

i,GPS). (75)

Since ak+1
i > dk

i,BCFQ, then, according to (59) at ak+1
i the normalized service is

updated as follows,

hi(a
k+1
i) = max{hi(d

k
i,BCFQ), v(ak+1

i)}. (76)

Substituting (75) in (76) we get,

hi(a
k+1
i) = max{v(dk

i,GPS), v(ak+1
i)}. (77)

If ak+1
i ≤ dk

i,GPS then dk
i,GPS = bk+1

i,GPS and v(ak+1
i) ≤ v(dk

i,GPS); substituting these in

(77) we get, hi(a
k+1
i) = v(dk

i,GPS) = v(bk+1
i,GPS). If ak+1

i > dk
i,GPS then ak+1

i = bk+1
i,GPS

and v(ak+1
i) > v(dk

i,GPS); substituting these in (77) we get, hi(a
k+1
i) = v(ak+1

i) =

v(bk+1
i,GPS).

(2.b) Proving (63) by assuming (65).

ak+1
i > dk

i,BCFQ, therefore, according to (58) at dk
i,BCFQ the normalized service is

updated as follows,

hi(d
k
i,BCFQ) = hi(b

k
i,BCFQ) + Lk

i /wi. (78)

As in (70) and (71) we get:

hi(a
k
i) = hi(b

k
i,BCFQ), (79)

and

hi(b
k
i,BCFQ) + Lk

i /wi = v(bk
i,GPS) + Lk

i /wi = v(dk
i,GPS). (80)

From (78) and (80) we get,

hi(d
k
i,BCFQ) = v(dk

i,GPS). (81)

ak+1
i > dk

i,BCFQ, therefore, according to (59) at ak+1
i the normalized service is up-

dated as follows,

hi(a
k+1
i) = max{hi(d

k
i,BCFQ), v(ak+1

i)}. (82)

Substituting (81) in (82) we get,

hi(a
k+1
i) = max{v(dk

i,GPS), v(ak+1
i)}. (83)

If ak+1
i ≤ dk

i,GPS then dk
i,GPS = bk+1

i,GPS and v(ak+1
i) ≤ v(dk

i,GPS); substituting these in

(83) we get, hi(a
k+1
i) = v(dk

i,GPS) = v(bk+1
i,GPS). If ak+1

i > dk
i,GPS then ak+1

i = bk+1
i,GPS

and v(ak+1
i) > v(dk

i,GPS); substituting these in (83) we get, hi(a
k+1
i) = v(ak+1

i) =

v(bk+1
i,GPS).

Finally the induction basis holds, since hi(0) = v(0) = 0, thus the proof follows.

47

