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Should caches be split or shared?
Analysis using the superposition of bursty stack depth processes
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Abstract

We address the question as to whether caches containing items of different types should be split or shared. We
characterize the access to those caches as stack depth processes and show that the process defining the mixing of the access
streams to the different types is the critical determining factor, with the burstiness of the individual streams being a key
parameter. We characterize the mixing process using a double-geometric model, and give an exact solution for the behavior
of a LRU cache when it is subjected to such a mixed stream of stack depth processes. We show that this minimalist
approach is quite successful in dealing with real data from a database application. We further extend the model to a Markov
mixing model which is more accurate but has higher complexity.
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1. Introduction

Throughout the history of computer systems, the cache and memory hierarchy have retained a central
role. In this paper we ask the question: if there are two types of items in a cache, should the available
cache space be split between the two types or should the two types share a common cache? This question
arises in a variety of contexts and is, for example, an actual and difficult database administration function
[2,7]. The “cache” might be a section of main memory which serves as the page buffer for a database
management system, and the different types of requests might be for index pages or data pages. Or
the cache might be on a processor module, and the different requests might be for instruction or data
lines.

Most caches are managed according to some variant of the Least Recently Used (LRU) policy, in
which when a new item has to be brought into the cache the item to be replaced is chosen to be the
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one which has been least recently used. The proportion of times that the requested item is found in the
cache is called the hit ratio. The cache can be represented as a stack data structure: every time an item
is accessed it is introduced at the top of the stack. If the accessed item was already present below in the
stack, this is just a reordering of the stack, but if it is not present then a “victim” must be chosen to leave
to make room for it (at steady state the cache is always full). The victim chosen for replacement is the
one at the bottom of the stack, and this is indeed the least recently used item.

To get any insight into how caches behave in practice, we need to understand the streams of requests
that represent their accesses. In general these streams are arbitrary, but a powerful model has been
developed which helps. It is called the stack depth process [1]. To characterize the stream we consider
an infinite stack just like the one described above. At steady state, the request process impinging on
the (infinite) stack finds the requested data item (from a previous request) at depth D (D is a random
variable, and its value is taken as infinite if the item was never in the cache before). The process is then
represented by the stack depth distribution of D. This process can effectively represent temporal locality
of access by having the mass of the depth distribution concentrated near the origin. It can also represent
cyclic access to a set of items (a distribution with a single atom) 2

When should caches be split and when should they be shared? We will use some very simple

examples to illustrate. Suppose process A repeatedly accesses data items 1, 2, 3, ..., 10 and process B
repeatedly accesses data items 11, 12, 13, ..., 20. Now suppose processes A and B are running together
and provide an interleaved stream of access, i.e., 1,11,2,12,...,10,20,1, 11,2, .... It is clear that if

we had memory for 15 cache items, we would get the best result (with a LRU cache) by giving either
process A or B space for 10 items — after that we do not have a good use for the remaining five spaces.
Note that the process to which we give 10 will get a 100% hit ratio; to give any less than 10 would result
in a 0% hit ratio and obviously giving it any more would not help. But giving all 15 to a shared cache
for processes A and B would result in an overall 0% hit ratio. Thus the best overall result for such an
interleaved process is a 50% hit ratio and a split cache is the right choice. Now suppose processes A and
B run in long bursts, i.e., the combined stream consists of many repetitions of (1, 2, 3, ..., 10) followed
by many repetitions of (11, 12, 13, ..., 20). In this case, it is clear that with only memory for 10 cache
items, we can get an almost 100% hit ratio using a shared cache. The improved “time sharing” of the
space results in a better result. In the case of “bursty” processes, we clearly want to reuse the memory
resources, and the shared cache is the optimal choice. We have used cyclic streams in this example only
for illustration. Indeed, if streams were purely cyclic, we would not use LRU. Of course in real systems,
the processes are not so simple and the tradeoff between the respective advantages of splitting and
sharing caches is not so clear. In fact, for real systems, LRU is a robust algorithm that is often chosen
and is optimal under certain conditions [1]. The development of simple models to guide this decision is
thus the subject of the paper.

We conclude from the above illustration that the way the streams are mixed or superposed is of key
importance in deciding whether to split or share the cache. In fact it can easily be shown [4] that if the
mixing is “random” (a Bernoulli mixing process where we randomly choose a stream to obtain each
arrival), then appropriately sized split caches are always optimal. However, every system designer looks
for ways to share scarce resources between competing demands and it is clear that a shared cache is the
right choice when the streams are more bursty.

2 Traces of item requests can be processed into stack depth distributions with a single pass of the data [5]. O device
drivers have been constructed, for example [8], which automatically collect this information for individual streams.
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In this paper, we provide a minimalist Markov model for a bursty mixing of the streams and provide
an exact analysis under this model for the performance of a shared LRU cache subjected to such a mix
of stack depth processes. The analysis for the case of separate (optimally split) caches being easy, we
are then in a position to answer the question as to when caches should be split or shared.

The structure of this paper is as follows: In Section 2 we analyze the performance of a stream
resulting from a double-geometric superposition. In Section 3 we present the analysis of a superposition
following a more general model — one in which the superposition is governed by a general Markov
chain. In Section 4 we provide an example in which the effect of burstiness on cache performance
and on the decision whether to split or combine caches is demonstrated. In Section 5 we provide two
examples taken from an actual database trace. Concluding remarks are given in Section 6.

The issue of modeling cache performance when it is subjected to the superposition of streams was
addressed by several approximate techniques in the past (refer to [3,6] and [9] for complete references).
A model of superposition which allows exact analysis, but which does not capture burstiness (since it is
applied only to Bernoulli mixing of streams) was presented and analyzed in [3].

2. Double-geometric superposition of two stack reference streams

In this section we propose and study a model of superposition between stack depth processes which
can capture not only the mix ratio between the streams but also their burstiness. The model proposed is
called a double-geometric superposition model.

2.1. Notation and definitions

Consider two streams, Py, P>, having stack depth distributions d'(n), d*(n). That is, when stream
P; is applied to a LRU-managed cache, the probability that the current reference finds the item that it
references at depthn,n = 1,2, ... (n = 1 is the most recently used item in the cache) is d' (n), i = 1, 2.
Note that d’(n) is a “defective” distribution in that it may not sum to unity: items that have never
previously been accessed will be assumed to be found at an infinite stack depth. For modeling purposes,
we will assume that the streams are stack depth processes, that is, they are stochastic processes which
choose their next reference according to independent samplings of the stack depth distribution. This is
one of several simple models for reference streams, and it has been reported, for example [1], that this
model tends to be quite successful in capturing temporal locality of references within a trace, and is
superior to the so called independent reference model. Given a stack depth distribution d(), one may
define the cumulative depth distribution D(i) = Z’F ,d(j), and so obtain D;() and D().

A double-geometric superposition with parameters A, and A, of two stack depth processes, P; and
P,, can be described as follows: At every time epochz,t = 1,2, ..., we select the next item from either
P, or P,. If at time ¢ the selected item is from P; (P,) then at time ¢ + 1 the selected item is taken
from Py (P,) with probability A, (A,) and from P, (P;) with probability 1 — A; (1 — A»). This process is
called double-geometric superposition since the superposed process consists of alternating bursts of P,
and P; and the lengths of the bursts are distributed according to the (shifted) geometric distribution with
parameters A and A;.

The double-geometric superposition can be also described as driven by a simple discrete-time two-
state Markov chain with states 1 and 2: if the chain state at time ¢, S(¢), is i (i = 1, 2) then at 7 we
select the next item from P;. Also, the transitions of the Markov chain are as follows: if S(zr) = 1 then
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S(t + 1) = 1 with probability A; and S(t + 1) = 2 with probability 1 — X;; similarly, if S(z) = 2 then
S(t + 1) = 2 with probability A, and S(z + 1) = 1 with probability 1 — A,.

Remark 1. In the special case in which A; = 1 — X, the superposition is identical to the Bernoulli
superposition studied in [3].

The two parameters A;, A, allow one to capture both the mix ratio between the processes and their
burstiness. The mix ratio is characterized by the relative fractions of type-1 (f1) and type-2 (f>) items
within the superposed stream P; these are given by

X2 *
= =, h=——=. (H
Ao+ A+ A

fi

where ¥ & 1 — x.

The burstiness of the streams can be conveniently defined using the measure of burst length. To define
this measure note that the combined stream can be viewed as alternating bursts of type-1 and type-2
items. A type-1 burst is a consecutive sequence of type-1 items in which the first item is preceded and
the last item is succeeded by a type-2 item; a type-2 burst is defined similarly. Note, that the length of
the burst is greater than or equal to one.

Let b; denote the expected length of a type-i burst. The fractions of items which are of type-1 and
type-2 are then expressed by

b] b2
= s = . 2
h b+ by f2 by + b, @
Also, in the double-geometric stream, we have
1 1
by = ——, = . 3
V=10 e (3)

The relative burst length, or the burstiness, b, is defined to be the ratio between », and the expected
burst length of the type-1 items in the corresponding Bernoulli process; the corresponding Bernoulli
process is a Bernoulli superposition process with relative population fractions f; and f,. Note that
b is also identical to the ratio between b, and the expected burst length of the type-2 items in the
corresponding Bernoulli process. The value of b can be computed from the fact that in the corresponding

Bernoulli process the expected burst length of type-1 items is given by T—l_fl and from f = bli‘ 5

bib
S L 4)
by + b,
It is easy to see that

1

namely, b is bounded below by 1/2 and is not bounded from above. Recall that for a Bernoulli process
b = 1. An implication of this property is that the burstiness in the Bernoulli process is relatively low.
Thus, the Bernoulli process is expected to be a good model for processes with low burstiness and not so
good for processes with high burstiness. This property will be later examined in Sections 4 and 5.
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2.2. Analysis

Next we analyze the stack depth distribution of the combined stream when it is fed into a LRU stack.
To analyze this system consider a type 1 tagged item (denoted &) and trace its journey in the stack. Let
the triple (n1, ny, S) represent the state of £ where n; and n, (n; > 0, n, > 0) represent the number of
type 1 and type 2 items above (more recently used) than &£ and S € {1, 2} represents the state of the
switching process. Note that the future of £; is fully determined by this state. We will trace the journey
of £; starting at the top of the stack (i.e. at state (0,0,1) or (0,0,2)) and continuing as long as &£, does
not return to the top of the stack. Note that since we are interested in a single journey of £, all states
represent the location of £ prior to its return to the top of the stack.

Let r = 0 be the time at which & starts its journey. Let ¢! (n1, ny, S; t) denote the probability that at
time ¢ £ is at state (n1, n2, S) under the current journey. The values of g'(n1, ny, S; t) can be computed

in a simple recursive way

q'(0,0,1;0) = A (6)
g'(0,0,2;0) =1, (7)
q'(ny,n2, 5;0) =0, ny,ny > 0,(ny,ny) # (0,0), S € {1, 2} (8)
g'(0,0,1;1) =0, t>0 )
q'(0,0,2;1) =0, t>0 (10)

q'(ni,n2, 1;0) = q' (7, na, 15t — DA Dy (1) + q' (n1,na, 15 ¢ = DA Dy (n)
+4q'(n1,ny, 2t = DA Da(ny) + q' (ny, n2, 251 — DA; Da(n)
ny,ny >0, (n,n) #0,0), t >0 (1)
q'(ni,n2,2:t) = ¢' (], my, 1;t — DA Dy (ny) + q' (1, na, 138 — 1Ay Dy (ny)
+q'(n1,n5,2;t — DAaDa(ny) + q' (n1,n2, 25t — DAa Da(n2)
ni,ny >0, (n,ny) #0,0), r >0, (12)

where n~ denotes n — 1.

Note that Egs. (6) and (7) stem from the fact that when & starts its journey at (0, 0) it starts it either
at the state S = 1 (with probability A;) or at the state § = 2 (with probability 1 — A;). This is implied
directly from the fact that at + = —1 the requested page is of type-1 and from the definition of the
double-geometric arrival process.

Let us now define s'(ny,n1,S) = Y 0, q' (n1, n2, S; 1); note that s'(n;,ny, S) can be interpreted
as the expected number of time units that £ stays in the state (n,n», S) during the journey 3. The
recursion given in Eqs. (6)—(12) leads to a similar recursion between the s variables

$10,0,1) = X4 (13)
$1(0,0,2) =, (14)

* One may ask under what conditions the infinite sum converges. While this is an interesting question, for all practical
purposes the depth distributions d'() and d*() can always be taken to have finite support. It follows that a finite set of data
items then circulate through the cache, and thus they will all have a finite equal mean interaccess interval. Thus, in this
case, the expected time of the journey is finite.
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stny, na, 1) = s' (], na, DA D1(ny) + 5" (n1, na, DA Dy (1) + 5" (n1, ny , 2)A2 Dy (n3)

+s'(ny,n2, DA Da(na),  ny,na >0, (ny,n2) # (0,0) (15)
s'(n1,na,2) = s'(ny, n2, DA Di(ny) + s' (ny, nz, DA Dy(ny) + 5" (n1, 15, A2 Da(n3)
+ 51 (ny, n2, Ao Da(my),  my,na >0, (ny,n2) # (0,0). (16)

Note that (13) and (14) are consistent with the fact that £ remains in position 1 of the stack exactly
one time unit. This is the case since any access to another item in the stack will push &; to position 2,
while an access to £; will terminate the current journey.

For these equations to properly hold on the boundaries (n; = 0, n» = 0, (n1, n2) # (0, 0)) we define

s'(ny, —1,1) =s'(ny, -1,2) =0, ny >0,
sl(=1,n5,1) =s'(=1,n,,2) =0, ny > 0.

Note that the set of equations does not lend itself to a simple recursive solution due to the mutual
dependency between the states. Nonetheless, this difficulty may be overcome in the following way: we
may focus on a pair of variables s'(n1, ny, 1) and s! (11, n, 2) and consider the two equations associated
with these variables. These are two equations (represented by Eq. (15) and Eq. (16) above) in two
unknowns (s!(n1, n2, 1) and s'(n, n», 2)). We may now solve this set to yield

$100,0,1) = A, (17)
s1(0,0,2) =1 — A, (18)
s' (i, n2, 1) = {[1 = 22D2(n2)] [M Di(ny)s' (n], n2, 1) + A2 Do (ny)s' (ny, n3, 2)]
+ (1 = A2) Da(n2) [M Dy (n1)s' (ny, na, 1) + A2 Da(ny)s ' (n1, n3, 2)]}
{[1 = 21Dy (n)I[1 — A2 D (n2)] — A2 D (n2)h Dy ('11)}_1 ,
ni,ny >0, (ny,n) # (0,0) (19)
s'(m,n2,2) = {(1 = 2) D1 (n) [M D1 (ny)s' (n7], na, 1) + 22 Da(n)s' (n1, 3, 2)]
+ [1 = D)1 [AiDi(n)s' (n7, na, 1) + A Dy (n3)s' (n1, 3, 2)]}
{[1 = M Dy (DI = A2 Ds(n2)] — Ra Da(n) Xy Di(nn))
ni,ny >0, (n1,n7) # (0, 0). (20)

Note that in Egs. (19) and (20), s'(n1, n2, 1) and s!(n,, nz, 1) are expressed directly in terms of lower
index variables. Thus, Egs. (19), (20), (17) and (18) now allow us to use a simple recursive procedure
for deriving the values of s'(n;,n,,1) and s'(n;, ns,2), ny,ny > 0. The recursive procedure first
determines s'(0, 0, 1) and s'(0, 0, 2) (from Eqs. (17) and (18)). It proceeds by sequentially increasing
the values of 7, and n, to recursively obtain s!(n, n5, 1) and s'(ny, ny, 2) from Egs. (19) and (20).

Next, define d'(n, n,, S) (S = 1, 2) to be the probability that £ finishes its journey at (n;, n,, S).
This is simply given by

oC
d'(n1,n2,1) =) g'(n1, 2, 10 (1 + 1) = 5' (11, ma, Dei(m1 + 1)
=0

d'(n1,n2,2)=0,  ny,ny>0. (21)
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Now, define d {11,2} (n) to be the probability that when & is requested it is in depth n. This is given by

n—1
d[ll,Z)(n)= Zdl(nl,n-l—nl,l), n>1. (22)

n=0

In a similar way we can trace the evolution of a type-2 tagged item, denoted &, in the LRU stack.
The analysis of &, is identical to that of £; and is done in a symmetric way (simply by renaming the item
types). Using similar notation, d*(n, n;, S) is defined to be the probability that £, finishes its journey at
(ny,n2,8)(S=1,2),and d{ 1.21(n) the probability that when &; is requested it is in stack depth n.

Using this notation, the probability that when an arbitrary item (either type-1 or type-2) is requested
it is in stack depth n, is given by

As Al
d(n )—— +— d{l 2}( )+— +—— d{lz}(n) (23)

2.3. Computational aspects

To compute d(n) for n = 1,..., N one needs to compute all the values s'(n,nz, j), i = 1,2,
j =1,2,ny+n;, < n. Since each of these computation is done in constant time, the overall computation
ford(n),n =1, ..., N, requires O(N 2) operations. Since the computation can be done “row by row”
the amount of space required is O(N).

3. Superposition of streams according to a general Markov chain

While the double-geometric model allows burstiness to be captured, it does not allow all mixing
behaviors to be represented. This generalization can be achieved by modeling the mixing process as
an M state Markov chain, with the type of data item being accessed being a function of the chain’s
state. A little thought shows that arbitrarily distributed burst lengths can be modeled in this way. The
chain consists of M states, indexed 1, ..., M. The transitions between the states are represented by a
transition matrix A = (%, ;) where A; ; denotes the probablhty that at time ¢ + 1 the chain will be at state
j given that at time ¢ it is at state i; notethatz 1Ay =1forl <i <M. Letqg=(q1...,qu) be
the steady state probability vector of this chain, namely g; is the probability that in steady state the chain
is at state {. This vector can be found by solving the linear equation set

qh =gq (24)

and the normalization equation

M
> oa=1 (25)
i=1

Since the type of element that is accessed is a function of the state, it follows that the M states of
the chain can be renamed and partitioned into two sets, {1,..., M;} and {M; + 1, ..., M} such that
1 < M; < M. When the Markov chain is at state 1 < m < M, the next item selected is taken from P,
while when the Markov chain is at state M; + 1 < m < M the next item selected is taken from P;.
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Remark 2. In some situations it is more convenient to consider a process in which at state m the
next item is selected from Process 1 with probability 7,, and from Process 2 with probability 1 — m,.
However, every such process can be represented by the simpler one in which 7,, = 1 (at state m always
select Py) or 7, = O (at state m always select from P,).

The analysis approach provided in Section 2 can be generalized to accommodate this model. We
consider a type-1 tagged item, denoted &), and trace its journey in the LRU stack, from the moment it is
in the top of the stack (most recently accessed) until it is accessed again. At every moment the system
state relevant to the future behavior of & is given by the number of type-1 items and the number of
type-2 items residing above (more recently accessed) it and the state (1 < m < M) of the Markov chain;
the system state is therefore represented by the triple (n;, ny, m).

Similarly to the analysis in Section 2, let s!(ny, ny, m) be the expected number of time units that &,
stays in (n, n,, m). Relations between the variables s'(ny, np, m) can be written in a similar manner to

Egs. (13)-(16)

M,
$10,0,6) = > guhms (26)

m=1

M, .

st(ny, o, k) = Z s'(ny, na, M)A D1 (n1) + ' (n1, n2, M)Ay Dy (n1)
m=1
M ——
+ Y s'mny, Mk Da(ng) + 5" (n1, na, mYh ik Da(n2),
m=M+1

ni,ny > 0,(n,n2) #0,0),1 <k <M. 27

Note that Eq. (26) resembles Egs. (17) and (18). Equation (26) results from two properties:

(1) & stays at (0, 0, k) exactly one time unit at each journey. After arriving at (0, 0, k), the next time
unit must result either in &; being pushed to (0, 1, k') or (1,0, k') for some 1 < & < m or in
moving to state (0, 0, k') (1 < k' < m). The latter move however represents a request made to £,
in which the move belongs to a new journey.

(2) Given that &£ is in (0, 0, k) at time ¢, it implies that at time 7 — 1 the Markov chain must have been
in either of the states 1 < m < M. The conditional probability that the Markov chain was at 7 — 1
at state m, given that it was at either of the states 1, ..., M; is given by —%"—

Similarly to Egs. (13)-(16), Eqgs. (27) and (26) do not lend themselvlélsq'to a direct recursive
computation. However, the structure of Eq. (27) suggests that provided that the values of the variables
sl(nl_,nz,m) and sl(nl,n;,m) are available for 1 < m < M then the equations for siny, na, k),
1 < k < M form an independent set of M equations in M unknowns. Thus, once the variables
s'(n7,na, m) and s'(ny, n;, m), 1 <m < M, are computed, the solution for the values of s'(ny, na, m),
1 <m < M, can be achieved by solving M linear equations.

The equation for deriving the values of s>(n, n,, k) are done in a similar way to those of Egs. (27)
and (26). The computation of d’(n), na, j),i = 1,2; j = 1,2, and of dfl‘z](n) are done as in Egs. (21)
and (22). The computation of d(n) (equivalent to Eq. (23)) is done as follows:

M, M
din) =dly ;MY gn+di5n) D Gm. (28)
m=1

m=M+1
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This results from the fact that the fraction of accesses to items which are of type-1 is given by

fi = oty G-
3.1. Computational aspects

To compute d(n) for n = 1,..., N one needs to compute all the values s'(ny,n,, j), i = 1,2,
Jj=12,...,M,n; 4+ n, < n. Thus the overall complexity is O(N?>M?) and the space complexity is
O(N) + O(M?).

4. The burstiness and its effect on superposition modeling

As stated before, a simple alternative for modeling the mixing or superposition of reference streams is
the Bernoulli model. That model allows both fast exact computation of the superposed depth distribution
and simple approximations [3]. While both the Bernoulli model and the double-geometric model allow
one to model any arbitrary mix ratio between the processes, the latter model is richer in that it allows
the stream to have larger (or smaller) bursts than those of the Bernoulli model. The major question in
selecting between the models is, therefore, the effect of the burstiness on the accuracy of the model.

To address this issue we now consider a synthetic example similar to the motivating example given in
the Introduction. We use it to examine the effect of the burstiness on the depth distribution of superposed
processes.

In the example we consider two stack depth processes P, and P;. The depth distribution of P is
given by

dy (k) = 0; k # 1000,
d (1000) = 1. (29)

The depth distribution of P, is identical to that of Py, but the two processes address a disjoint set of
items. Note that in each stream the items are referenced in a cyclic pattern that repeats itself in a period
of 1000. We examine the superposition of P; and P» with an equal number of references coming from
each stream.

Thus, we have f; = f> = 0.5. In this case we consider three situations:

(1) b =1 (Bernoulli mixing); thus b; = b, =2 (and A; = A, = 0.5).
(2) b = 500; thus b, = by = 1000 (and X; = A, = 0.999).
(3) & =1000; thus b; = b = 2000 (and A; = A, = 0.9995).

We also compare the performance using an optimally split cache. It is easy to see that the optimal
split policy (for an available total cache size between 1000 and 2000 items) will grant all of its first 1000
spaces to P; and the rest to P,).

We observe from Fig. 1 that the performance of the joint stream under a joint cache is very sensitive
to the burstiness of the streams. Furthermore, we observe that the decision whether to use a shared
cache or an optimally split cache is sensitive both to the cache size and to the burstiness level. For
example, note that when the burstiness is 1 (Bernoulli) the optimally split cache is highly superior to the
joint cache for any cache size (as proved in [4]). When the joint stream is very bursty (b = 1000 ) a
shared cache is highly superior over the whole range. When the burstiness level is between these levels
(b = 500) the superiority varies as function of the cache size.



184 H. Levy, RJ.T. Morris/ Performance Evaluation 27&28 (1996) 175188

o
@

=
3

o
©
2

@]

©

=

3

R

»

T

=

Y
\
\
\
\
\
y
A
\
\
\
\
\
i

=
o2}
T

2
05 :
E |
i
0.4 | 4
0.3t b
t
0.2F l’ §
l
0.1- |
!
0 —1 1 L / N —
500 1000 1500 2000
cache size

Fig. 1. A synthetic example — shared vs. optimal split cache.

5. Experimental results from a real database trace

In this section we consider a real database trace and evaluate the accuracy of prediction of the various
superposition models. A trace was obtained from a large DB2 database installation. The page requests
are directed to 47 different database tables, and thus the stream of requests can be considered as a
superposition of 47 streams, each directed to a different table.

Out of these 47 streams we first selected a pair of streams and examined it. The two streams consist
of 3204 and 10411 requests respectively. Initially, we consider two artificial interleaving scenarios for
these streams: the first interleaves them in 13 equal sized (deterministic) bursts (thus leading to block
sizes of roughly 246 and 800 respectively); the second interleaves them in 62 equal sized segments (thus
leading to block sizes of roughly 51 and 167 respectively). Note that these interleaving scenarios are
chosen to test and stress the various modeling techniques.

We now examine how this interleaving affects the performance of the shared cache and the quality of
our model in predicting the cache behavior.

To carry out this examination we do the following:

(1) Each of the two streams is individually applied to an LRU cache and the depth distribution of the
streams are recorded in D;() and D, ().

(2) We measure the mix ratio of the streams (and record them as f; and f>) and the expected burst

sizes in the combined interleaved stream (and record them as b1 and b,).

(3) We apply the combined stream to a single LRU cache and record the depth distribution of the
merged stream; we denote this “exact”.

Using the measurements derived in items 1 and 2 above, we now use the double-geometric and the

Bernoulli models to predict the depth distribution of the joint stream. In addition we use an approximate

approach (presented in [4]), which is based on assuming that the burst lengths are deterministic, to

provide one more prediction (called “deterministic prediction”).
In Figs. 2 and 3 we consider these two cases (13 interruptions and 62 interruptions, respectively) by
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Fig. 2. A real example — 13 interruptions between the streams.
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Fig. 3. A real example — 62 interruptions between the streams.

depicting the hit ratio (cumulative depth distribution) as function of the cache size. We observe that the
actual performance of the system (as observed on the “exact” curve) is sensitive to the burstiness, and
varies significantly between the figures. We also observe that the double-geometric model provides a
very accurate prediction of the exact results, and responds adequately to the change in burstiness. In
contrast, the Bernoulli prediction is not responsive to the changes in burstiness (as expected) — and its
prediction is much worse than that of the double-geometric model. We also note that the deterministic
model [4] responds adequately to the burstiness, but performs worse than the double-geometric model;
this is despite the fact that the burst sizes are deterministic in this example (and not geometric), and
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Fig. 4. Real streams (second pair) — low end.

is due to the fact that the deterministic model contains other approximations designed to reduce the
computational effort.

We next consider a second pair of streams. This time we use the actual interleaving or superposition
that was found in the trace. The total number of requests from both these streams is 104028. The
expected block sizes are b; = 4.944 and b, = 113. The relative burst length is therefore quite short:
b = 4.73. Figures 4 and 5 show the behavior of these two streams; we plot the hit ratio of the shared
cache as function of the cache size for: 1) Exact analysis, 2) Bernoulli model prediction, and 3) Double-
geometric model prediction. Note that the exact analysis is obtained by taking the original combined
trace from the database (which contained the actual interleaving) and applying that to a LRU simulation.
The figures show the low end (Fig. 4) and the high end (Fig. 5) of the cache size range. Although the
interleaving is in fact far more complex than represented by either the Bernoulli or double-geometric
models, both models show quite good accuracy. The double-geometric model more correctly predicts
the structure at the low end of the curve where the cache size is small, as would be expected. Overall
the double-geometric model shows smaller “maximum error”. The Bernoulli model shows relatively
good performance (and close to the double-geometric) because the relative burst length is still quite low.
However, as explained above and shown in Fig. 1, the Bernoulli approximation will tend to result in
misleading cache allocations. A more complete study of cache allocation and assignment (assignment is
the optimization of which streams should be placed in which caches) is the object of paper {4].

6. Conclusions

The task of analyzing a complex workload to see whether a cache should be split or shared can be
addressed by a simple characterization of the workload comprising the stack depth distribution and mean
burst length for each constituent stream. After obtaining that characterization, the decision as to whether
to split or share the cache can be obtained by computing the effect of the superposition of these streams
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Fig. 5. Real streams (second pair) — high end.

into the cache. We have found that the methodology of this paper adequately models this superposition.
Having developed these techniques, long traces can be reduced to compact representations that can
then be used to efficiently analyze many options, for example those resulting when several streams and
caches exist.

Just as importantly, the theoretical results concerning the importance of burstiness give good
qualitative insight as to what to do. Indeed, if one takes a case of index and data access in a database
management system, these are pretty well mixed, and we have found through extensive experimentation
and field work (with our colieagues Ted Messinger and Dick Mattson) that only modest improvements
in overall hit rates are obtainable from the separation of index and data into separate “buffer pools”.
However when different types of applications are running on a machine (“transaction” versus “complex
query”) the right combination of sharing and splitting can result is significant improvement. The
complete solution of the problem of assignment of streams to caches is a more complex combinatorial
problem which must be solved using more heuristic techniques [4]. Those techniques rely upon
superposition as the basic building block. While approximate superposition methods were used in [4],
the present paper provides an exact solution under the double-geometric assumption.
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