Peer to Peer Networks
Lecture notes – 4

Rehearsal and introduction

 (
2
1
3
Discrete Markov Chain
p –
transition

prob.
) (
2
1
3
Continuous Markov Chain
λ
 –
transition

rate
)

 Equilibrium: 			Equilibrium:

At this course we remain in the Markovian space. We’ll focus mostly on continuous Markov chains from now on.

 is the transition rate, and not the transition probability, and .

We defined Q to be the transition rate matrix such that .

Birth-Death Chains:
 (
1
0
2
k
……..
)
The assumptions we need on a birth-death process are that in homogeneous Markov chain X(t) where births and deaths are independent and

While is an expression describing a term that converges to 0 ‘faster’ than .

Look at the time Axis at . If we want to be at , what are all the possible states to be at -at time t?

 (
states
Time
t+
Δ
t
t
D1
B1
)
Note: when t is infinitesimally small, only one death/birth can happen at t+Δt.

Denote the probability to be at state k at time t+Δt:

The above equation is for any k>0. If we open the above terms we get:

Changing sides and dividing by Δt would result:

Adding lim to both sides results:

Note: when k=0, we need to zero the k-1 terms in the above equation.

The above describes the probability growth rate to be at state k.
We see that the probability growth rate to be at any state is the sum of all ‘incoming’ rates minus the sum of all ‘outgoing’ rates.
We can ‘wrap’ any number of states and find out what the incoming and outgoing rates are, and retrieve the probability to be at those states.
 (
1
0
2
k
……..
)
Birth Chains:

Let’s examine a simpler process where- meaning birth-only process:

We can make the process even simpler by assuming meaning the rates are constant. We now get:

where the above is a simple solution of differential equation.

From that we can deduce:

The global formula for would then be:

This describes a Poisson distribution function: the probability of k arrivals during interval t.

Mean value E[k]:
Consider the random variable K: the number of arrivals at interval t (what used to be α(t)).
K’s mean value:

Remember the following holds: . It’s easy to understand why if we think of each i as the probability for exactly i arrivals to happen at interval t. the summation of all probabilities of possible arrival# must give 1.
Therefore, for every t:

 and the variance:

Moment generating function G(z):
Let’s examine the Z-Transform of the Poisson probability function:

Define:

Finally resulting G(Z) – Pk’s generating function:

By differentiating m times and assigning z=1, we can calculate moment m of K specifically its mean and variance.

Interarrival-times distribution
We’d like to break (0,t) to 2k+1 time frames as shown in the figure below:
 (
0
……..
Time
)
Consider the joint distribution of arrivals when it’s known beforehand that exactly k arrivals have occurred during (0,t).
Define: - [exactly 1 arrival in each of the ’s and no arrivals at in any of ’s].
We’d like to calculate the probability of given exactly k arrivals occurred in (0,t):

Note that the α’s and β’s events are independent events, thus the probability can be calculated as a product of the individual probabilities:

And

Giving:

SAME AS IF EACH OF THE POINTS WAS PLACED UNIFORMILY ON (0,t) !!!

*the last equation is since t=+
Note that it doesn’t matter if the points on the time axis were picked randomly with uniform distribution, or picked in advance like in the above analysis.
Furthermore, it is easy to prove that the interval’s starting time doesn’t matter- only its length:

 interarrival time = exponential distribution:

Define - the time between adjacent arrivals.
 (
Time
arrival
arrival
)
Accordingly,

Define the PDF and pdf and
Calculation A(t) and a(t) is easy:

This is the PDF and pdf of the exponential distribution – concluding:
Poisson process implies interarrival process with exponential distribution!

Specifically, this is a memoryless process whose properties were largely discussed at lecture-2:

mean value:

- a constant birth rate
Let’s finally examine the rate at an infinitesimal period Δt. Recall that:

Similarly (using Taylor):

Moreover – the probability to have two or more arrivals in (t0,t0+Δt) is 0:

And so –

Exponentially distribution implies constant birth rate.

Summary:
We can summarize by concluding the relations between Poisson’s arrival process, the exponential interarrival times and the constant birth rate as depicted in the following figure.
Each circle implies the other one!
 (
Poisson arrival process
Exponential
interarriv
al

times
Constant birth rate
)
For further usage we’ll calculate A(t) Laplace transform:

M/M/1 Birth-Death process:

Consider a model where and - Poisson arrival process and Poisson service time:

 (
1
0
2
k
……..
)
Note that the service time is the same as the death rate, since when finishing service the customer is gone.

From now and during chapter 3 we’re going to talk about the system after reaching equilibrium – the changes ‘rate’ is 0. Recall that is the probability to have k ‘customers’ at time t, the mathematical equivalent would be:

This is the stationary state t has no meaning since no changes occur in time anymore. For each state, the ‘enter-rate’ equals the ‘exit-rate’.

 (
1
0
2
k
……..
k+1
)consider the following diagram, focusing on the dashed cut between states k and k-1.
The following holds:

 and therefore:

 .

Define

And we get that

As always, the following holds:

Giving:

Note that is the probability for the queue to be empty – meaning that 1- is the probability for the queue to be full/active – which is why is the utilization of the queue/server.

Chapter 3: Birth Death queueing Systems in Euqilibrium

What would change in case and ?
The equation should be changed to represent the dashed cut in the above figure:

At some cases, this phrase converges to something we can calculate (for example when special relations between the different’s and ’s apply).

Convergence note: The above term converges iff starting some for every : .
Note: the probabilities converge – the system does not converge to a certain state.

Calculating the queue size’s mean value N:

Recall Little Law:

Note that the average service time is and that is 1-(utility) if the customer will be in the system exactly the average service time as described in the following graph for M/M/1:
 (
T
1
)
Upto here 3/5/2012
oleObject3.bin

oleObject50.bin

image47.wmf
00

Pr[|]1()

t

tttttetot

l

l

-D

>+D>==-D+D

%%

oleObject51.bin

image48.wmf
000000

Pr[1(,)]1Pr[0(,)]Pr[1(,)]

1(1()][()]

()

morethanarrivalintttarrintttarrinttt

tottot

ot

ll

+D=-+D-+D

=--D+D-D+D=

=D

oleObject52.bin

oleObject53.bin

image49.wmf
0

*()()

st

ASeatdt

S

l

l

¥

-

==

+

ò

oleObject54.bin

image50.wmf
k

ll

=

oleObject55.bin

image4.wmf
pt

l

=×D

image51.wmf
k

mm

=

oleObject56.bin

image52.wmf
()1

()1

t

t

Ate

Bte

l

m

-

-

=-

=-

oleObject57.bin

image53.wmf
()

k

Pt

oleObject58.bin

image54.wmf
11

()

()()()()0

k

kkk

dPt

PtPtPt

dt

lmlm

-+

=-+++=

oleObject59.bin

image55.wmf
1

kk

PP

lm

-

×=×

oleObject60.bin

oleObject4.bin

image56.wmf
1

kk

PP

l

m

-

=

oleObject61.bin

image57.wmf
0

k

k

PP

l

m

æö

=

ç÷

èø

oleObject62.bin

image58.wmf
l

r

m

@

oleObject63.bin

image59.wmf
0

k

k

PP

r

=×

oleObject64.bin

image60.wmf
0

00

1

k

k

kk

PP

r

¥¥

==

=×=

åå

oleObject65.bin

oleObject5.bin

image61.wmf
0

0

1

1

k

k

P

r

r

¥

=

==-

å

oleObject66.bin

image62.wmf
0

P

oleObject67.bin

oleObject68.bin

image63.wmf
r

oleObject69.bin

image64.wmf
(1)

k

k

P

rr

=-

oleObject70.bin

image65.wmf
k

ll

¹

image5.wmf
1:Pr[1(,)|]()

k

Bexactlybirthintttkinpopulationtot

l

+D=×D+D

oleObject71.bin

image66.wmf
k

mm

¹

oleObject72.bin

image67.wmf
1

1

k

kk

k

PP

l

m

-

-

=Þ

oleObject73.bin

image68.wmf
1

0

0

1

k

i

k

i

i

PP

l

m

-

=

+

=

Õ

oleObject74.bin

image69.wmf
i

l

oleObject75.bin

image70.wmf
i

m

oleObject6.bin

oleObject76.bin

image71.wmf
0

k

oleObject77.bin

image72.wmf
0

ik

>

oleObject78.bin

image73.wmf
1

ii

lm

+

>

oleObject79.bin

image74.wmf
1

0000

1

(1)(1)(1)(1)

1

kkk

k

kkkk

NkPkk

rrrrrrrrrr

rrr

¥¥¥¥

-

====

éù

¶¶

=×=×-=-×=-×=-×

êú

¶¶-

ëû

åååå

oleObject80.bin

image75.wmf
1

N

r

r

=

-

image6.wmf
1:Pr[1(,)|]()

k

Dexactlydeathintttkinpopulationtot

m

+D=×D+D

oleObject81.bin

image76.wmf
/

1

NTT

rl

l

r

=Þ=Þ

-

oleObject82.bin

image77.wmf
1/

1

T

m

r

=

-

oleObject83.bin

image78.wmf
1

m

oleObject84.bin

image79.wmf
1

r

-

oleObject85.bin

image80.wmf
0

r

=

oleObject7.bin

oleObject86.bin

image81.wmf
r

oleObject87.bin

image82.wmf
1

m

oleObject88.bin

image7.wmf
2:Pr[0(,)|]1()

k

Bexactlybirthintttkinpopulationtot

l

+D=-×D+D

oleObject8.bin

image8.wmf
2:Pr[0(,)|]1()

k

Dexactlydeathintttkinpopulationtot

m

+D=-×D+D

oleObject9.bin

image9.wmf
()

ot

D

oleObject10.bin

image10.wmf
t

D

oleObject11.bin

image11.wmf
tt

+D

oleObject12.bin

image12.wmf
k

E

oleObject13.bin

image13.wmf
()

k

Ptt

+D

oleObject14.bin

image14.wmf
11,

11,

()()()

()()

()()

()

stay

kkkk

birth

kkk

death

kkk

const

PttPtpt

Ptpt

Ptpt

ot

--

++

+D=×D+

×D+

×D+

D

oleObject15.bin

image15.wmf
11

1

()()[1()]

()[()]

()[()]

kkkk

kk

kk

PttPtttot

Pttot

Pttot

lm

l

m

--

+

+D=×-×D-×D+D+

××D+D

××D+D

oleObject16.bin

image16.wmf
1111

()()

()

()()()

kk

kkkkkkkk

PttPt

ot

PtPtPtP

tt

lmlm

--++

+D-

D

=-×-×+×+×+

DD

oleObject17.bin

image17.wmf
1111

()

()()()

k

kkkkkkk

dPt

PtPtP

dt

lmlm

--++

=-×++×+×

oleObject18.bin

image18.wmf
:0

k

k

m

"=

oleObject19.bin

image19.wmf
11

()

()()

k

kkkk

dPt

PtPt

dt

ll

--

=-×+×

oleObject20.bin

image20.wmf
:

k

k

ll

"=

oleObject21.bin

image21.wmf
0

0

10

0

()

()

()

(()())()

1

(0)

0

t

k

kk

ifk

k

otherwise

dPt

Pt

dt

dPt

PtPtPte

dt

P

l

l

l

-

-

=

ì

=-×

ï

ï

ï

=-×-Þ=

í

ï

ï

ì

=

ïí

î

î

oleObject22.bin

image22.wmf
1

()

Pt

oleObject23.bin

image1.wmf
P

pp

=×

image23.wmf
1

101

()

()()()

t

dPt

PtPtPtte

dt

l

lll

-

=-+Þ=×

oleObject24.bin

image24.wmf
()

k

Pt

oleObject25.bin

image25.wmf
()

()

!

k

t

k

t

Pte

k

l

l

-

=×

oleObject26.bin

image26.wmf
1

01

()()

[]

!(1)!

kk

tt

kk

ktt

Ekete

kk

ll

ll

l

-

¥¥

--

==

==×

-

åå

oleObject27.bin

image27.wmf
0

()

1

!

i

t

i

t

e

i

l

l

¥

-

=

=

å

oleObject28.bin

oleObject1.bin

image28.wmf
[]

Ekt

l

=

oleObject29.bin

image29.wmf
2

k

t

sl

=

oleObject30.bin

image30.wmf
Pr[]

k

gKk

==

oleObject31.bin

image31.wmf
(1)

()()[]

()()

()

!!

kk

k

kkkk

kttZttZtZ

k

GZgZGZEZ

tZtZ

ZPteeeee

kk

lllll

ll

=×Þ=

××

=×=×=×××=

å

ååå

oleObject32.bin

image32.wmf
(1)

()[]

ktZ

GZEZe

l

-

==

oleObject33.bin

image2.wmf
0

Q

p

×=

image33.wmf
Pr[(0,)]

Pr[|(0,)]

Pr[(0,)]

k

k

Aandexactlykarrivalsint

Aexactlykarrivalsint

exactlykarrivalsint

=

oleObject34.bin

image34.wmf
Pr[1int]

i

ii

arrivalinervaloflengthe

lb

blb

-

=

oleObject35.bin

image35.wmf
Pr[int]

i

i

noarrivalinervaloflengthe

la

a

-

=

oleObject36.bin

image36.wmf
1

1212

12

*

12

(......)(...)

Pr[|(0,)]

[()/!]

...

!

kk

k

k

kt

k

k

eeeeee

Aexactlykarrivalsint

tke

k

t

lbla

lblblala

l

lblblb

l

bbb

+

--

-

××

==

=

oleObject37.bin

image37.wmf
()

Pr[(,)]

!

k

t

t

Xsstke

k

l

-D

D

+D==×

oleObject38.bin

oleObject2.bin

image38.wmf
t

%

oleObject39.bin

oleObject40.bin

oleObject41.bin

image39.wmf
()Pr[]

Attt

=<

%

oleObject42.bin

image40.wmf
()'()

atAt

=

oleObject43.bin

image41.wmf
0

()1[]1()1

()'()

t

t

AtPttPte

atAte

l

l

l

-

-

=->=-=-

==

%

oleObject44.bin

image3.wmf
l

image42.wmf
00

0

00

00

0

00

0

()

Pr[]

Pr[|]

[]

Pr[]Pr[]

[]

1(1)

1(1)

1

Pr[]

ttt

t

t

tttt

ttttt

Ptt

ttttt

Ptt

ee

e

e

tt

ll

l

l

-+-

-

-

<£+

<+>==

>

£+-£

==

>

==

--

=-=

=£

%

%%

%

%%

%

%

oleObject45.bin

oleObject46.bin

image43.wmf
2

000

11

[]()

tt

Etattetedt

ll

llll

llll

¥¥¥

--

¶¶

éù

=×=×=-=-=×

êú

¶¶

ëû

òòò

%

oleObject47.bin

image44.wmf
1

[]

Et

l

=

%

oleObject48.bin

image45.wmf
l

oleObject49.bin

image46.wmf
2

00

()

Pr[|]11[1....]()

2!

t

t

tttttettot

l

l

ll

-D

D

<+D>=-=--D++=D+D

%%

