The PPSZ algorithm

Seminar on exact exponential algorithms

Tal Lancewicki

Based on Paturi et al. [1998]
K-SAT problem

- CNF with n variables
- Each clause has at most k literals
- Is there a satisfying solution?

$$G = (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_3 \lor \overline{x}_6 \lor x_5)$$
Overview

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.30704^n</td>
<td>1.434^n</td>
<td>1.334^n</td>
<td>1.30704^n</td>
<td>1.306995^n</td>
</tr>
<tr>
<td>4</td>
<td>1.468^n</td>
<td>1.477^n</td>
<td>1.5^n</td>
<td>1.469^n</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1.569^n</td>
<td></td>
<td>1.6^n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1.637^n</td>
<td>1.667^n</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Restriction of a formula

• $G = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$

$G|_{x_1=1} = (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$

$= (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_2} \lor x_3)$

$G|_{x_1=0} = (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$

$= (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$
Function $\text{Modify}(G, \pi, y)$

- for $i \in [n]$:
 - If $x_{\pi(i)}$ or $\bar{x}_{\pi(i)}$ appears in G as unit clause:
 - Set $u_{\pi(i)}$ to 1 or 0, respectively.
 - Else
 - Set $u_{\pi(i)} = y_{\pi(i)}$
 - $G := G \mid x_{\pi(i)} = u_{\pi(i)}$
- return u

Function $\text{Search}(G, I)$

- for I times:
 - $\pi \sim U(S_n)$
 - $y \sim U(\{0,1\}^n)$
 - $u = \text{Modify}(G, \pi, y)$
 - If u satisfy G, return u
 - return “unsatisfiable”
Modify function example

\[\pi = id, \ y = (1, 1, 1, 0) \]

\[G = \]

\[(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \]
\[\land (x_1 \lor x_2 \lor \overline{x}_4) \]
\[\land (x_1 \lor \overline{x}_2 \lor \overline{x}_4) \]
\[\land (x_2 \lor \overline{x}_3 \lor \overline{x}_4) \]
\[\land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \]
\[\land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \]
\[\land (\overline{x}_1 \lor x_2 \lor x_4) \]
\[\land (\overline{x}_1 \lor x_2 \lor \overline{x}_4) \]
\[\land (x_1 \lor x_2 \lor x_4) \]
\[\land (x_1 \lor x_3 \lor x_4) \]
Modify splits the variable space

Denote by $\text{Forced}(\pi, y)$ the set of variables that are forced by $\text{Modify}(\pi, y)$.
Carchtarizing $Modify^{-1}(z)$

Lemma 1: If z is a satisfying assignment then $Modify(\pi, y) = z$ if and only if y and z agree on all variables outside $Forced(\pi, z)$.

\[
\begin{align*}
 z &= (1,0,1,0,1,1) \\
 Forced &= \{x_1, x_3, x_4\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible y</td>
<td>0,1</td>
<td>0</td>
<td>0,1</td>
<td>0,1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof

• W.l.o.g assume that $z = 1^n$ and $\pi = id$.
• Assume y agrees with z on all variables outside of forced.
 • Let i be the first index that y is 0. Then $x_i \in Forced(\pi, z)$. Also, until step i Modify assigned the same variables given y and given z. Since z is satisfiable, x_i must be forced to 1.
 • Continue by induction on the zeros of y.
• Assume $y_i \neq z_i$ ($y_i = 0$) and that $x_i \notin Forced(\pi, z)$ for some i.
 • Let i be the first that satisfies the above. Then x_i is not forced under y as well.
 • Hence, we’ll set it to 0.
• Let z be a unique satisfying assignment.
• Let τ the probability with respect to random π and y that $Modify(\pi, y) = z$.

Lemma 2: We can bound τ by

$$\tau \geq 2^{-n + E_\pi[|Forced(\pi, z)|]}$$
Proof of lemma 2

By lemma 1, for fixed π

$$P(\text{Modify}(G, \pi, y) = z) = \frac{2^{|\text{Forced}(\pi, z)|}}{2^n}$$

Taking the expectation over π

$$\tau = 2^{-n}E_\pi[2^{|\text{Forced}(\pi, z)|}] \geq 2^{-n+E_\pi[|\text{Forced}(\pi, z)|]}$$

Where the last inequality if Jensen's inequality for the convex function 2^x
Critical clauses

- We say that C is a **critical clause for** v if
 - $v \in C$, and
 - Flipping the value of v at z, flips C as well.

 ➢ If z is unique then each variable have at least one critical clause.

$G = (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_4) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_4) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_4) \land (\overline{x}_1 \lor x_2 \lor x_4)$

$z = (1,1,1,1)$

- Diagram showing the logical relationships between x_1, x_2, x_3, x_4.
• Note that \(v \in \text{Forced}(G, \pi, z) \) if and only if \(v \) is the last variable with respect to \(\pi \) in some critical clause.

\[
(x_1 \lor x_2 \lor \overline{x_3}) \quad (x_1 \lor x_2 \lor \overline{x_3})
\]

• What can we say about \(P_{\pi}(v \in \text{Forced}(G, \pi, z)) \) when \(z \) is unique?

\[
P_v := P_{\pi}(v \in \text{Forced}(\pi, z)) \geq \frac{1}{k}
\]

Hence,

\[
\tau \geq 2^{-n + E_{\pi}[[\text{Forced}(\pi,z)]]}
= 2^{-n + \sum_v E_{\pi}[1_{\{v \in \text{Forced}(\pi,z)\}}]}
= 2^{-n + \sum_v P_v}
\geq 2^{-\left(1 - \frac{1}{k}\right)n}
\]
PPZ Algorithm for unique SAT

PPZ(F)

• For $n2(1 - \frac{1}{k})^n$ times:
 • $\pi \sim U(S_n)$
 • $y \sim U(\{0,1\}^n)$
 • $u = \text{Modify}(\pi, y)$
 • If u satisfy F, return u
• return “unsatisfiable”

• If there is no solution then PPZ return “unsatisfiable”
• If there is a unique solution we return “unsatisfiable” with probability at most

$$\left(1 - 2^{-(1 - \frac{1}{k})^n}\right)^{n2(1 - \frac{1}{k})^n} \leq e^{-n}$$

$\blacklozenge (1 - x \leq e^{-x})$
• For $k=3$ run time is $\mathcal{O}^*(1.587^n)$

We only used the fact that there exist a critical clause for each variable
Adding critical clauses

• One critical clause
 \[C_1 = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \]
 \[P_1 = \frac{1}{3} \]

• Two critical clauses
 \[C_2 = (x_1 \lor \overline{x_4} \lor \overline{x_5}) \]
 \[P_1 = \frac{7}{15} \]

• \(F \) might contain only 1 critical clause per variable

• Consider \(C_1 = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \) and \(C_2 = (x_2 \lor \overline{x_4} \lor \overline{x_5}) \)

• Let's add to \(F \) the clause \((x_1 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \)

• Another critical clause without changing the set of solutions!

• Can we always add critical clauses?
Resolving clauses

• We say that C_1 and C_2 are conflict on v, if one contains v and the other contain \bar{v}.

\[
(x_1 \lor \bar{x_2} \lor \bar{x_3}), (x_2 \lor \bar{x_4} \lor \bar{x_5})
\]

• We say that C_1 and C_2 are resolvable if they conflict on exactly one variable.

• In the case above, the resolvent of C_1 and C_2 is defined by

\[
R(C_1, C_2): = D_1 \lor D_2
\]

where D_i is obtained by omitting the variable v from C_i

\[
(x_1 \lor \bar{x_3} \lor \bar{x_4} \lor \bar{x_5})
\]
Can we always add critical clauses?

• Assume \(z = 1^n \) is a unique solution
• \(C_1 = (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \)

• So consider a clause that is not satisfied under \(001^{n-2} \)

\(x_2 \in C_2: \)

\[
C_2 = (x_2 \lor \overline{x}_4 \lor \overline{x}_5)
\]

\(R(C_1, C_2) = (x_1 \lor \overline{x}_3 \lor x_4 \lor \overline{x}_5) \)

\(C_2 = (x_1 \lor x_2 \lor \overline{x}_5) \)

\(R(C_1, C_2) = (x_1 \lor \overline{x}_3 \lor \overline{x}_5) \)

\(x_2 \notin C_2: \)

\[
C_2 = (x_1 \lor \overline{x}_4 \lor \overline{x}_5).
\]

That is another critical clause for \(x_1 \).
PPSZ Algorithm

Function \(\text{Resolve}(F, s) \)
- while \(F \) has a resolvable pair such that \(R(C_1, C_2) \notin F \) and \(|R(C_1, C_2)| \leq s \):
 - \(F := F \land R(C_1, C_2) \)
- Return \(F \)
- This adds at most \((2n)^s\) new clauses
- If \(s = o(n/\log(n)) \) then \(n^s = 2^{o(n)} \)

PPSZ(\(F \))
- \(F_s = \text{Resolve}(F, s) \)
- For \(I \) times:
 - \(\pi \sim U(S_n) \)
 - \(y \sim U(\{0,1\}^n) \)
 - \(u = \text{Modify}(F_s, \pi, y) \)
 - If \(u \) satisfy \(F \), return \(u \)
- return “unsatisfiable”

\(s \) and \(I \) will be determined later

We need a way to track how much critical clauses Resolve add
Admissible tree

• We say that a rooted tree is **admissible** if
 • The root is labeled as variable
 • The rest of the nodes are either labeled as variable or unlabeled
 • For any path from the root to a leaf, each variable appears at most once
Critical clause tree

• A cut is a set of nodes A that does not include the root, and any path from the root to a leaf goes through A.

• We say that an admissible tree is a critical clause tree for (v, G, z) if
 • The root is labeled with v
 • For any cut A, there exist a critical clause $C(A)$ for (v, G, z) such that
 $$\text{var}(C(A)) \subseteq \text{var}(A) \cup \{v\}$$
Example

- We say that an admissible tree is a critical clause tree for v if
 - The root is labeled with v
 - For any cut A, there exist a critical clause $C(A)$ for v such that $\text{var}(C(A)) \subseteq \text{var}(A) \cup \{v\}$

$F = (x_1 \lor x_2 \lor x_3) \lor (x_1 \lor x_2 \lor x_4) \lor (x_1 \lor \neg x_2 \lor \neg x_4) \lor (x_2 \lor x_3 \lor x_4) \lor (\neg x_1 \lor \neg x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_2 \lor x_4) \lor (\neg x_1 \lor x_2 \lor x_4) \lor (x_1 \lor x_2 \lor x_4) \lor (x_1 \lor x_3 \lor x_4)$

Not a critical clause tree with respect to F!
What about F_S?

$F = (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \\
(x_1 \lor x_2 \lor \overline{x}_4) \\
(x_1 \lor \overline{x}_2 \lor \overline{x}_4) \\
(x_1 \lor \overline{x}_2 \lor x_3) \\
(x_2 \lor \overline{x}_3 \lor \overline{x}_4) \\
(\overline{x}_1 \lor \overline{x}_2 \lor x_3) \\
(\overline{x}_1 \lor \overline{x}_2 \lor x_4) \\
(\overline{x}_1 \lor x_2 \lor \overline{x}_4) \\
(\overline{x}_1 \lor x_2 \lor x_4) \\
(x_1 \lor x_2 \lor x_4) \\
(x_1 \lor \overline{x}_3 \lor \overline{x}_4) \\
(\overline{x}_3 \lor x_4) \\
(x_1 \lor x_3 \lor x_4)$

A critical clause tree for F_S
Existence of critical clause tree

Lemma 4

For any variable v and $s \geq k^d$ ($d \leq n$) there exist a critical clause tree for (v, F_s) of maximum degree $k - 1$ and uniform depth d.

- d will be determined later
Proof of Lemma 4

Fix \(v \) and \(z \). W.l.o.g \(z = 1^n \). We’ll grow a tree in following way:

- \(T_0 \) consist of the node \(v \)
- Given \(T_{i-1} \), if all the leaves are of depth \(d \), stop. Otherwise,
 - Choose a leaf \(b_i \) of depth \(< d \)
 - Let \(P_i \) the path from the root to \(b_i \).
 - \(z \oplus P_i \) is not a solution!
 - Let \(C_i \) be a clause that is not satisfied under \(z \oplus P_i \)
 - Add the variables \(\text{var}(C_i) \setminus P_i \) as childes of \(b_i \)
 - If empty add unlabeled child
Proof cont

• Choose a leaf b_i of depth $< d$
• Let P_i the path from the root to b_i.
• C_i is not satisfied under $z \oplus P_i$
• Add $\text{var}(C_i) \setminus P_i$ as childes of b_i
 • If empty add unlabeled child

$z = (1, 1, 1, 1)$
$z \oplus P_i = (0, 0, 0, 0)$

$F =
(x_1 \lor \overline{x_2} \lor \overline{x_3})$
(x_1 \lor x_2 \lor \overline{x_4})
(x_1 \lor \overline{x_2} \lor \overline{x_4})
(x_2 \lor \overline{x_3} \lor \overline{x_4})$
(\overline{x_1} \lor \overline{x_2} \lor x_3)
(\overline{x_1} \lor \overline{x_2} \lor x_4)
(\overline{x_1} \lor x_2 \lor x_4)
(\overline{x_1} \lor x_2 \lor \overline{x_4})$
(x_1 \lor x_2 \lor x_4)
(x_1 \lor x_3 \lor x_4)
We’ll show that T_i is critical clause tree for any i.

A tree is admissible if

- The root is labeled as variable
- The rest of the nodes are either labeled as variable or unlabeled
- For any path from the root to a leaf, each variable appears at most one time

At the end of the process we get also uniform depth d.

Remains to show that for any cut A, there exist a critical clause $C(A)$ for (v, F_s) such that

$$\text{var}(C(A)) \subseteq \text{var}(A) \cup \{v\}$$
Proof cont

• T_0 and T_1 is trivial
• Let $N = T_i \setminus T_{i-1}$
• Let A a cut in T_i (w.l.o.g A is minimal)
• Let $A' = A \setminus N$ (w.l.o.g $N \subseteq A$)
• For any $j \in P_i \setminus \{v\}$, $A_j = A' \cup \{j\}$ is a cut in T_{i-1}
• **Case 1**: If for some j, $\text{var}(A_j) \subseteq \text{var}(A')$ then
 \[
 \exists C(A_j) \in F_s:
 \]
 \[
 \text{var} \left(C(A_j) \right) \subseteq \text{var}(A_j) \cup \{v\}
 \subseteq \text{var}(A') \cup \{v\}
 \subseteq \text{var}(A) \cup \{v\}
 \]

\[F = \]
\[
(x_1 \lor \overline{x_2} \lor \overline{x_3})
\]
\[
(x_1 \lor x_2 \lor \overline{x_4})
\]
\[
(x_1 \lor \overline{x_2} \lor \overline{x_4})
\]
\[
(x_2 \lor \overline{x_3} \lor \overline{x_4})
\]
\[
(x_1 \lor \overline{x_2} \lor \overline{x_3})
\]
\[
(x_2 \lor \overline{x_3} \lor \overline{x_4})
\]
\[
(x_1 \lor \overline{x_2} \lor x_3)
\]
\[
(x_2 \lor \overline{x_3} \lor \overline{x_4})
\]
\[
(x_1 \lor x_2 \lor \overline{x_4})
\]
\[
(x_1 \lor x_2 \lor x_4)
\]
\[
(x_1 \lor x_3 \lor \overline{x_4})
\]
Proof cont

• **Case 2**: For all $j \in P_i$, $\text{var}(A_j) \notin \text{var}(A')$
 i.e. $r_j \notin \text{var}(A')$ (where r_j is j’s variable)

• Let the clause C_i that was used in the construction of T_i

• $C_i = R \lor U$ where R consist negation of variables from N, and $U \subseteq P_i$
 (positively)
Case 2 cont

• Let $P_i = (v, r_1, \ldots, r_t)$

• By reverse induction for any $j = t, \ldots, 0$
 $\exists D_j = R_j \lor S_j \lor U_j \in F_s$ s.t
 • R_j is negation of variables from N
 • S_j consist negation of variables from A'
 • $U_j \subseteq \{v, r_1, \ldots, r_j\}$ (positively)

• Given the above,
 • $D_0 = R_0 \lor S_0 \lor U_0$ where $U_0 \subseteq \{v\}$
 • U_0 can’t be empty since then D_0 is all negation of variables
 ➢ D_0 is the desired critical clause
Reverse induction proof

• **Base** \((j = t)\): take \(S_t = \emptyset, R_t = R\) and \(U_t = U\). That is, \(D_t = C_i\)

• **Step**: Assume \(D_{j+1} = R_{j+1} \lor S_{j+1} \lor U_{j+1} \in F_s\)
 - \(R_{j+1}\) consist of \textit{negation} of variables from \(N\)
 - \(S_{j+1}\) consist of \textit{negation} of variables from \(A'\)
 - \(U_{j+1} \subseteq \{v, r_1, ..., r_j, r_{j+1}\}\) (positively)

• If \(r_{j+1}\) does not appear in \(U_{j+1}\), take \(D_j = D_{j+1}\)

• Otherwise, \(r_{j+1} \in U_{j+1}\), (w.l.o.g, \(\overline{r_{j+1}} \in C(A_{j+1})\)) and the rest of \(r_l\) does not appear in \(C(A_{j+1})\).

• \(C(A_{j+1})\) and \(D_{j+1}\) are resolvable

• \(D_j = R(C(A_{j+1}), D_{j+1})\)
Using critical clause trees

• We established the **existence** of critical clause tree. We’ll use that to get a lower bound on P_v

• We only take in consideration the critical clauses the that associated with cuts of the tree.

\[P_v \geq P(\text{\textit{v} is last in } C(A) \text{ for some cut } A \text{ in } T) \]

Where T is a critical clause tree for \textit{v}
Using critical clause trees

Lemma 5
If there is a critical clause tree for \((v, G)\) with maximum degree \(k - 1\) and depth \(d\), then

\[
P_v \geq \frac{\mu_k}{k - 1} - \epsilon_k^{(d)}
\]

where

\[
\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+\frac{1}{k-1})}
\]

and

\[
\epsilon_k^{(d)} = \frac{3}{(d-1)(k-1)+2}
\]

• For \(k = 3\), \(\mu_3 = 4 - 4 \ln(2) \approx 1.226\)
Using critical clause trees

Lemma 5 (for $k = 3$)
If there is a critical clause tree for (v, G) with maximum degree 2 and depth d, then

$$P_v \geq \frac{\mu}{2} - \frac{1}{d}$$

where $\mu = 4 - 4 \ln(2) \approx 1.226$
Proof technique

- Create a random permutation in the following way:
 - Map each variable to a random value $\alpha(v) \sim U(0,1)$
 - Sort the variables with respect to α
Proof technique

• Given this tree, \(v \) is forced if

 \((x_1 \text{ and } x_3 \text{ are before } v) \text{ Or } (x_2 \text{ is before } v) \)

 \(\text{And } (x_4 \text{ and } x_6 \text{ are before } v) \text{ Or } (x_5 \text{ is before } v) \)

• Fix \(\alpha(v) = r \), denote

 \[p_i = p(\alpha(x_i) \leq r) = r \]

 the probability for the event above, given \(r \) is

 \[(1 - (1 - p_1p_3)(1 - p_2))(1 - (1 - p_4p_6)(1 - p_5)) \]

 \[= (r + (1 - r)r^2)^2 \]

• Averaging over \(r \), \(P_v \geq \frac{31}{70} \)
Simplifications

- Each node has exactly $k - 1$ children
- All nodes are labeled
- All variables are different
- This is the “hard” case
Proof

• Given admissible tree T rooted at v, define

$$Q_T(r) := P(\exists A, \forall w \in A, \alpha(w) < r)$$

• If T is a critical clause tree then

$$P_v \geq \int_{0}^{1} Q_T(r) dr$$
Proof cont

• Let T be an admissible tree rooted at v
• Let v_1 and v_2 be v’s children
• Let T_1, T_2 be the admissible sub-trees rooted v_1, v_2
• $E_i = (\exists A \in T_i, \forall w \in A, \alpha(w) < r)$

\[
Q_T(r) = P\left((\alpha(v_1) < r \lor E_1) \land (\alpha(v_2) < r \lor E_2)\right)
\]
\[
= P(\alpha(v_1) < r \lor E_1) \cdot P(\alpha(v_2) < r \lor E_2)
\]
\[
= \left(P(\alpha(v_1) < r \lor E_1)\right)^2
\]
\[
= \left(r + (1 - r)Q_{T_1}(r)\right)^2
\]
Proof cont

\[Q_d(r) = (r + (1 - r)Q_{d-1}(r))^2 \quad (Q_0 = 0) \]

- What is the limit \(Q_d(r) \) ? (as \(d \to \infty \))
 - The minimal fixed point:

\[
\min\left\{ \left(\frac{r}{1-r} \right)^2, 1 \right\}
\]

Hence

\[
\frac{\mu_3}{2} = \lim_{d \to \infty} \int_0^1 Q_d(r) \, dr = \int_0^1 \min\left\{ \left(\frac{r}{1-r} \right)^2, 1 \right\} \, dr
\]

\[
= 2 - 2 \ln(2) \approx 0.6137
\]

\[f(x) = (r + (1 - r)x)^2 \]
Proof cont

• \(R(r) = \min \left\{ \left(\frac{r}{1-r} \right)^2, 1 \right\} \)

• \(\mu = \int_0^1 R(r) \, dr \)

• \(\Delta_d(r) = R(r) - Q_d(r) \)

\[
\Delta_d(r) = R(r) - \left(r + (1 - r)Q_{d-1}(r) \right)^2 \\
= \left(r + (1 - r)R(r) \right)^2 - \left(r + (1 - r)(R(r) - \Delta_{d-1}(r)) \right)^2 \\
= (1 - r)\Delta_{d-1}(r) \left(2r + 2(1 - r)R(r) - (1 - r)\Delta_{d-1}(r) \right) \\
\leq 2(1 - r)(r + (1 - r)R(r))\Delta_{d-1}(r)
\]
Proof cont

\[\Delta_d(r) \leq \left(2(1 - r)(r + (1 - r)R(r)) \right)^d \]

- For \(0 \leq r \leq 1/2 \), the RHS is \((2r)^d\)
- For \(1/2 \leq r \leq 1 \), the RHS is \((2(1 - r))^d\)

\[\int_0^1 \Delta_d(r) \leq \frac{1}{d + 1} \leq \frac{1}{d} \]

- \(\Delta_d(r) = R(r) - Q_d(r) \)

\[P_v \geq \int_0^1 Q_d(r) \geq \frac{\mu}{2} - \frac{1}{d} \]
Wrapping up

PPSZ(F)

• $F_S = \text{Resolve}(F, s)$

• For I times:
 • $\pi \sim U(S_n)$
 • $y \sim U([0,1]^n)$
 • $u = \text{Modify}(F_s, \pi, y)$
 • If u satisfy F, return u

• return “unsatisfiable”

\[
\tau \geq 2^{-n+E\pi[\text{Forced}(\pi,z)]} = 2^{-n+\sum_v P_v} \geq 2^{-\left(1 - \frac{\mu}{2} + \frac{1}{d}\right)n}
\]

• Resolve takes $O(n^S)$

• $s = \log(n)$
 ➢ Resolve takes $O\left(2^{\log^2(n)}\right)$
Wrapping up

• To get critical clause tree of depth d we need $s \geq k^d$

• For $s = \log(n)$ we can get $d = \Omega(\log(\log(n)))$

• $\tau \geq 2^{-\left(1-\frac{\mu}{2} + \frac{c}{\log(\log(n))}\right)n}$

• Take $I = n2^{\left(1-\frac{\mu}{2} + \frac{c}{\log(\log(n))}\right)n}$

• Probability of success is at least $1 - e^{-n}$

• Complexity is

\[
poly(n)2^{\left(1-\frac{\mu}{2} + \frac{c}{\log(\log(n))}\right)n} + 2^{o(n)}
= O^*(2^{0.3862n + o(n)})
= O^*(1.308^n)
\]
Concluding remarks

• For unique k-SAT, we get complexity of

$$O^* \left(2^{\left(1 - \frac{\mu_k}{k-1} \right)n} \right)$$

• Where $\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+\frac{1}{k-1})}$

• This can be generalized for general k-SAT (Hertli, 2011)

• Can be improved for unique 3-SAT (Hansen et al. 2019)

• Still an open problem if we can get better than 2^n for general SAT