MEASURE AND CONQUER

Shlomo Waksnine
agenda

- Recurrence equations
- Independent set
- Set cover
 - Dominating set
- Lower bounds
RECURRENCES
We define a linear homogenous recurrence to be a sequence of the form:

\[T(n) = T(n - t_1) + T(n - t_2) + \cdots + T(n - t_r) \]

where \(1 \leq t_i \leq n \).

The vector \(b = (t_1, \ldots, t_r) \) is called the **branching vector**.

The polynom \(p(x) = x^n - x^{n-t_1} - \cdots - x^{n-t_r} \) is called the characteristic polynomial.

Thm: \(T(n) = O^*(\alpha^n) \) where \(\alpha \) is the unique positive real root of \(p \).

\(\alpha \) is called the **branching factor**.
Let $T(n) = T(n - 1) + T(n - 2)$.
The branching vector is $(1, 2)$.
The characteristic polynomial is $x^2 - x - 1$.
The roots are: $\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$.
The branching factor is $\frac{1+\sqrt{5}}{2}$.
Thus, $T(n) = O^*\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$.
measure and conquer

- Every algorithm that uses recursion induces a branching vector for each branch.
- The algorithm induces a tree of its execution.
- Finding the number of leaves is sufficient to find the running time.
- Solving each branch recurrence and take the maximum gives us upper bound.
- We used to analyze algorithms based on a “natural” parameter of the input.
 - Number of vertices in a graph.
- Using a different measure of the input can give better results.
Independent set

- Given a graph $G = (V, E)$, a set $I \subseteq V$ is called independent if there is no edge between each pair in I.
- Our goal is to find the independent set of maximum size.
Every singleton vertex must be in the maximum independent set.
If \(v \) has only one neighbor \(w \), then \(v \) belongs to some maximum independent set.
If $\Delta(G) \leq 2$ then we can find the maximum independent set in polynomial time.

G is composed of trees and cycles.
Independent set - algorithm

1. If \(\exists v \in V \) with \(d(v) = 0 \) then:

 return \(1 + mis(G \setminus \{v\}) \)

2. If \(\exists v \in V \) with \(d(v) = 1 \) then:

 return \(1 + mis(G \setminus N[v]) \)

3. If \(\Delta(G) \geq 3 \) then:

 choose a vertex \(v \) of maximum degree in \(G \)

 return \(\max(1 + mis(G \setminus N[v]), mis(G \setminus \{v\})) \)

4. If \(\Delta(G) \leq 2 \) then:

 return maximum independent set of \(G \) using polynomial time algorithm
The algorithm has only one branch on step 3.

Branching on v means that $d(v) \geq 3$.

Removing v – remove 1 from the original problem size.

Add v to the independent set – remove at least 4 from the original problem size.

3. If $\Delta(G) \geq 3$ then:
 - choose a vertex v of maximum degree in G
 - return $\max(1 + mis(G \setminus N[v]), mis(G \setminus \{v\}))$
simple analysis – cont.

- \(T(n) \leq T(n - 1) + T(n - 4) \).
- The characteristic polynomial is \(x^4 - x^3 - 1 \).
- The branching vector is (1,4).
- The roots are: \(-0.82, 1.3803, 0.22 + 0.91i, 0.22 - 0.91i\).
- Thus the branching factor is \(\tau(1,4) = 1.3803 \).
- \(T(n) = O^*(1.3803^n) \).
- Can we do better?
better analysis

- n_i - number of vertices with degree i.
- Assign weight w_2 to vertices with degree 2.
- Analyze the running time according to the measure:
 \[k(G) = w_2 n_2 + n_{\geq 3} \]
- We analyze the running time with respect to $w_2 = 0.5$.
We have only one branching step.

Suppose the algorithm branches on a vertex v of degree $d \geq 3$:

- **OUT** – the decrease of the measure by discarding v.
- **IN** – the decrease of the measure by adding v to the independent set.
intuition - IN case

$n_2 = 4$

$n_3 = 2$

$n_2 = 0$

$n_3 = 0$
analysis - cont.

- Removing v decreases the measure by 1 in both cases.
- Let u_1, \ldots, u_d be the neighbors of v.
- If $d(u_i) = 2$ then the measure is decreased by 0.5 in both cases.
- If $d(u_i) \geq 3$ then we decrease the measure by 1 in case IN.
- Thus, $IN + OUT \geq 2 + d(v)$.
- Thus, $\tau(IN,OUT) \leq \tau(1,1 + d(v))$.
- If $d(v) \geq 4$, then $\tau(IN,OUT) \leq \tau(1,5) < 1.3248$.
analysis – cont.

- Suppose we branch on v with $d(v) = 3$.
- Each vertex in G has degree 2 or 3.
- Removing v decreases the measure by 1 in both cases.
- OUT – remove v decreases the weight of its neighbors by 0.5.
- IN – remove the neighbors of v decreases the measure by 0.5 or 1.
- Thus, $OUT, IN \geq 1 + 3 \cdot 0.5 = 2.5$.
- Thus, $\tau(OUT, IN) \leq \tau(2.5,2.5) < 1.3196$.
- The running time of the algorithm is $O^*(1.3248^n)$.
SET COVER
set cover

- \mathcal{U} – set of elements (universe).
- \mathcal{S} – collection of (non-empty) subsets of \mathcal{U}.
- A set cover of $(\mathcal{U}, \mathcal{S})$ is a subset $\mathcal{S}' \subseteq \mathcal{S}$ which covers \mathcal{U}:
 \[\bigcup_{S \in \mathcal{S}'} S = \mathcal{U} \]
- Our goal is to find a set cover \mathcal{S}' with minimum cardinality.
- We assume that \mathcal{S} covers \mathcal{U}.
set cover - example

- \{S_1, S_4, S_5, S_6\} is a cover
- \{S_3, S_4, S_5\} is a minimum cover
If there are two distinct sets S and R in \mathcal{S}, $S \subseteq R$, then there is a minimum set cover which does not contain S.

Thus:

$$\text{msc}(\mathcal{S}) = \text{msc}(\mathcal{S} \setminus \{S\})$$
If there is an element \(u \) of \(U \) which belongs to a unique \(S \in \mathcal{S} \), then \(S \) belongs to every set cover.

Thus:

\[
\text{msc}(\mathcal{S}) = 1 + \text{msc}(\text{del}(S, \mathcal{S}))
\]

where:

\[
\text{del}(S, \mathcal{S}) = \{Z \mid Z = R \setminus S \neq \emptyset, R \in \mathcal{S}\}
\]
For a given MSC instance S such that all the subsets S of S are of cardinality two, MSC can be solved in polynomial time.

- Reduction to maximum matching.

$\mathcal{U} = \{1, 2, 3, 4, 5\}$

$\mathcal{S} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 5\}, \{4, 5\}\}$

$MSC(S) = \{\{1, 3\}, \{2, 4\}, \{4, 5\}\}$ or $MSC(S) = \{\{1, 3\}, \{2, 4\}, \{3, 5\}\}$
set cover - algorithm

Algorithm $\text{msc}(S)$.

Input: A collection S of subsets of a universe U.
Output: The minimum cardinality of a set cover of S.

1. if $|S| = 0$ then
 return 0
2. if $\exists S, R \in S$ with $S \subset R$ then
 return $\text{msc}(S \backslash \{S\})$
3. if $\exists u \in U(S)$ such that there is a unique $S \in S$ with $u \in S$ then
 return $1 + \text{msc}(\text{del}(S, S))$
4. choose a set $S \in S$ of maximum cardinality
5. if $|S| = 2$ then
 return $\text{poly-msc}(S)$
6. if $|S| \geq 3$ then
 return $\min(\text{msc}(S \backslash \{S\}), 1 + \text{msc}(\text{del}(S, S)))$

Fig. 6.4 Algorithm msc for MSC
set cover - analysis

- n_i - number of subsets $S \in \mathcal{S}$ of cardinality i.
- m_j - number of elements $u \in U$ with frequency j.
- We analyze the running with respect to the following measure:

$$k(S) = \sum_{i \geq 1} w_i n_i + \sum_{j} v_j m_j$$
To simplify the analysis we make the following assumptions:

- $w_i \leq w_{i+1}$
- $v_j \leq v_{j+1}$
- $w_1 = v_1 = 0$
- $w_i = v_i = 1$ for $i \geq 6$.
- $\Delta(w_i) \geq \Delta(w_{i+1})$ for $i \geq 2$ ($\Delta(w_i) = w_{i+1} - w_i$).
Let $\ell(k)$ be the number of leaves in the search tree generated by the algorithm to solve a problem of measure k.

- Conditions 2 and 3 implies $\ell(k) \leq \ell(k - w_{|S|})$.
- Condition 5 implies that $\ell(k) = 1$.
- Condition 6 implies two subproblems:
 - $S_{OUT} = S \setminus S$
 - $S_{IN} = \text{del}(S,S)$

$$k(S) = \sum_{i \geq 1} w_i n_i + \sum_j v_j m_j$$
analyze $S_{IN} = del(S, S)$

- Removing S implies decreasing by $w_{|S|}$.
- $r_{\geq i} = \sum_{j \geq i} r_j$ - number of elements of S of frequency at least i.
- Removing $u \in S$ with frequency i implies decreasing by v_i.
- Overall: $\sum_{i \geq 2} r_i v_i = \sum_{i=2}^5 r_i v_i + r_{\geq 6}$

$$k(S) = \sum_{i \geq 1} w_i n_i + \sum_j v_j m_j$$
analyze $S_{IN} = del(S, S)$

- Let R be a set sharing an element u with S.
 - $|R| \leq |S|$
 - By removing u, the cardinality of R is reduced by one.
 - Hence, implies a reduction of the size of S_{IN} by $\Delta w_{|R|} \geq \Delta w_{|S|}$.

- Overall:
 $$\Delta w_{|S|} \sum_{i \geq 2} (i - 1) r_i \geq \Delta w_{|S|} \left(\sum_{i=2}^{6} (i - 1) r_i + 6 \cdot r_{\geq 7} \right)$$

- Hence, $\Delta k_{IN} \geq w_{|S|} + \sum_{i=2}^{5} r_i v_i + r_{\geq 6} + \Delta w_{|S|} \left(\sum_{i=2}^{6} (i - 1) r_i + 6 \cdot r_{\geq 7} \right)$

$k(S) = \sum_{i \geq 1} w_i n_i + \sum_{j} v_j m_j$
analyze $S_{OUT} = S \setminus S$

- The overall decrease in the measure is:

$$\Delta k_{OUT} \geq w_{|S|} + \sum_{i=2}^{6} r_i \Delta v_i + \Delta k'$$

- Where:

$$\Delta k' = \begin{cases}
0, & r_2 = 0 \\
v_2 + w_2, & r_2 = 1 \\
\begin{array}{l}
v_2 + \min\{2w_2, w_3\} = w_3, \\
v_2 + \min\{3w_2, w_2 + w_3\} = w_2 + w_3, \\
v_2 + \min\{3w_2, w_2 + w_3, w_4\} = w_4,
\end{array} & r_2 = 2, |S| = 3 \\
\begin{array}{l}
\min\{2w_2, w_3, w_4\}, \\
\min\{3w_2, w_2 + w_3, w_4\}, \\
2w_2 + w_3, \\
3w_2, \\
w_2 + w_3, \\
w_2 + w_3 + w_4, \\
w_2 + w_3 + w_4 + w_5
\end{array} & r_2 \geq 3, |S| \geq 4
\end{cases}$$
Notice that $\Delta w_{|S|} = 0$ for $|S| \geq 7$.

Hence it is sufficient to restrict ourselves to the recurrences for the cases $3 \leq |S| \leq 7$.

Need to find optimal $(w_2, w_3, w_4, w_5, v_2, v_3, v_4, v_5)$.

For each combination of the values of $|S|$ and $r_2, ..., r_{|S|}$.

Which yields branching factor $\alpha < 1.2353$.

Thus, the overall running time is $O^*(\ell(k)) = O^*(1.2353^{|U|+|S|})$.

\begin{align*}
w_i &= \begin{cases}
0.377443 & \text{if } i = 2, \\
0.754886 & \text{if } i = 3, \\
0.909444 & \text{if } i = 4, \\
0.976388 & \text{if } i = 5,
\end{cases} \\
\text{and } v_i &= \begin{cases}
0.399418 & \text{if } i = 2, \\
0.767579 & \text{if } i = 3, \\
0.929850 & \text{if } i = 4, \\
0.985614 & \text{if } i = 5,
\end{cases}
\end{align*}
from set cover to dominating set

\[\mathcal{U} = \{1, 2, 3, 4, 5\} \]
\[\mathcal{S} = \{\{1, 2, 3\}, \{2, 1, 3, 4\}, \{3, 1, 2, 5\}, \{4, 2, 5\}, \{5, 3, 4\}\} \]
from set cover to dominating set

- D is a dominating set of G if and only if $\{N[v] | v \in D\}$ is a set cover of $\{N[v] | v \in V\}$.
- $|U| = |S| = |V| = n$
- Thus, we can solve minimum dominating set problem with $O^*(1.2353^{2n}) = O^*(1.5259^n)$
LOWER BOUNDS
lower bounds

- What we did is to find upper bound on the running time of the algorithm.
- It is useful to find a lower bound.
 - Tells us how good is our analysis.
independent set

1. If \(\exists v \in V \) with \(d(v) = 0 \) then:
 return \(1 + mis(G \setminus \{v\}) \)

2. If \(\exists v \in V \) with \(d(v) = 1 \) then:
 return \(1 + mis(G \setminus N[v]) \)

3. If \(\Delta(G) \geq 3 \) then:
 choose a vertex \(v \) of maximum degree in \(G \)
 return \(\max(1 + mis(G \setminus N[v]), mis(G \setminus \{v\})) \)

4. If \(\Delta(G) \leq 2 \) then:
 return maximum independent set of \(G \) using polynomial time algorithm
independent set

Define $G_n = (V, E)$ such that $V = [n]$ and $(i, j) \in E$ if and only if $|i - j| = 2$.
G₇ execution

- Add 3 to the independent set induces subproblem of the form G_{n-5}.
- Removing 3 induces subproblem of the form G_{n-3}.
- $T(n) = T(n - 5) + T(n - 3)$.
- The running time is $\Omega(1.19386^n)$.