High-dimension Gaussians

Separating Gaussians
Fitting Spherical Gaussian to Data

Amit Waisel
Separating Gaussians

• Heterogeneous data coming from multiple sources
• Gaussian mixture model \(p(x) = w_1 p_1(x) + w_2 p_2(x) \)
• Parameter estimation problem: given access to samples from the overall density \(p \), reconstruct the parameters for the distribution (mean and variance for each distribution: \(\mu_1, \mu_2, \sigma_1, \sigma_2 \))

• Mixed-density function
 • Gaussian \(p_i \) has its own mean \(\mu_i \) and variance \(\sigma_i \)
 • Defines the probability to sample Gaussian’s \(p_i \)’s distribution
MVN – Multivariant Normal Distribution

• Defined over vectors, not scalars
• Intuition: each coordinate in the random vector is sampled from a normal distribution
K-means

- We are given \(n \) vectors \(x_1, \ldots, x_n \) and a number \(k \)
- We would like to partition the vectors into \(k \) sets, and with each set we associate a “center” \(\mu_i \)
- The goal is to minimize the objective function
 \[
 \min_{\mu_1, \ldots, \mu_k, S_1, \ldots, S_k} \sum_{j=1}^k \sum_{i \in S_j} \|x_i - \mu_i\|^2
 \]
- We assumed that each point has to be classified to a specific cluster.
 - This is a “hard” decision, since we need to decide for each point a single cluster.
 - We have to make some assumptions (distance between the means), in order to make this problem easier
GMM - Gaussian Mixture Model

- We have k Gaussian distributions, and a mixing distribution.
 - The mixing distribution gives a probability to each cluster
- To generate a point, we sample a Gaussian given the mixture distribution, and then sample the selected Gaussian to generate the point
GMM - Gaussian Mixture Model

- We have k unknown clusters S_1, \ldots, S_k where $S_i \sim N(\mu_i, \sigma_i^2)$
- Each point originates from cluster j with probability p_j
- The density function for cluster j is $f_j(x) = \frac{1}{d} \cdot e^{-\frac{(x-\mu_j)^2}{2\sigma_j^2}}$
Separating Gaussians

- Original objective: separate the samples into their original Gaussian distributions
- Women can be high, men can be low – and we might not be able to know for sure if a specific sample belongs to a male or a female.
 - We can’t know for sure (with high probability) whether a point belongs to a specific Gaussian
- Alternative objective:
 - More difficult: mixture of two Gaussians in high-dimensions \((d\)-dimension space\), rather than 1-dimensional
 - Easier: we assume the means are well-separated compared to the variances
Separating Gaussians

• We will focus on a mixture of two spherical unit-variance Gaussians whose means are separated by a distance $\Omega\left(\frac{1}{d^4}\right)$
 • Goal: Prove that using those assumptions, we can know with high confidence the origin of a given sample. This is k-means with $k = 2$.

• Simple solution: Calculate the distance between all pairs of points.
 • Points whose distance apart is smaller are from the same Gaussian
 • Points whose distance is larger are from different Gaussians
Sample distances – one Gaussian

• Reminder: Gaussian Annulus Theorem
 • For a \(d \)-dimensional spherical Gaussian with unit variance in each direction, for any \(\beta \leq \sqrt{d} \), all but at most \(3e^{-c_1\beta^2} \) of the probability mass lies within the annulus \(\sqrt{d} - \beta \leq |x| \leq \sqrt{d} + \beta \), where \(c \) is a fixed positive constant
 • A fixed value for \(\beta \) is good for fixed number of sampled points

• Reminder: Volume near the equator
 • For any unit-length vector \(\nu \) defining “north”, most of the volume of the unit ball lies in the thin slab of points whose dot-product with \(\nu \) has magnitude \(O \left(\frac{1}{\sqrt{d}} \right) \)
 • At least \(1 - \frac{2}{c} e^{-\frac{c^2}{2}} \) fraction of the volume of the \(d \)-dimensional unit ball, has \(|x_1| \leq \frac{c}{\sqrt{d-1}} \)
Sample distances – one Gaussian

• Most of the Gaussian’s probability mass lies on an annulus of width $O(\beta)$ at radius \sqrt{d} from the origin

• Most of its probability mass lies in a $O\left(\frac{1}{\sqrt{d}}\right)$-width slab on the equator
 • For simplicity – assume it is a constant, $O(1)$
Sample distances – one Gaussian

• Consider one spherical unit-variance Gaussian centered at the origin
 • $\mu = (0, ..., 0)$
 • $\sigma^2 = 1$

 • Density function is $f(x) = \frac{1}{\sqrt{2\pi}^d} \cdot e^{-\frac{x^2}{2}}$ (for $e^{-\frac{x^2}{2}} = \prod_i e^{-\frac{x_i^2}{2}}$)

• Almost all of the mass is within the slab $\{x| -\text{const} \leq x_1 \leq \text{const}\}$
Sample distances – one Gaussian

• Pick a random point x from the Gaussian
• Rotate the coordinate system to make the first axis align with x
• Pick an independent sample y
 • y is located on the equator, with high probability, considering x as the north pole
 • y’s component along x’s direction, is $O(1)$ with high probability
Sample distances – one Gaussian

• y is nearly-perpendicular to x
 • $|x - y|^2 \approx |x|^2 + |y|^2$

• x is considered as the “north pole”
 • $x = (\sqrt{d} \pm O(\beta), 0,0,\ldots,0)$

• y is nearly on the equator, we can further rotate the coordinate system so that the component of y that is perpendicular to the axis of the “north pole”, is in the second coordinate
 • $y = (O(1), \sqrt{d} \pm O(\beta), 0,0,\ldots,0)$

• $|x - y|^2 = 2d \pm O(\beta \sqrt{d})$ with high probability
Sample distances – two Gaussians

• Consider two spherical unit-variance Gaussians with centers \(p, q \) separated by a distance \(\Delta \)
• We want to prove that every two random points, each selected from a different Gaussian, will have significant distance between them

 \[
 \approx \sqrt{\Delta^2 + 2d} \pm O(\beta \sqrt{d})
 \]
• Pick \(x \) from the 1st Gaussian and rotate the coordinate system so \(x \) will be the north pole

 • Let \(z \) be the north pole of the 2nd spherical Gaussian, using the same coordinate system
• Pick \(y \) from the 2nd Gaussian

 • Most of the 2nd Gaussian’s mass is within \(O(1) \) of the equator perpendicular to \(q – z \)
 • Most of the 2nd Gaussian’s mass is within \(O(1) \) of the equator perpendicular to \(q – p \)
Sample distances – two Gaussians

- The distance $|z - y|$ is $O(\sqrt{2d})$
 - Two samples from the same Gaussian
- High-dimension Pythagorean Theorem

$$|x - y|^2 \approx \Delta^2 + |z - q|^2 + |q - y|^2 \approx \Delta^2 + 2d \pm O(\beta \sqrt{d})$$
 - $|z - q|^2 \approx |q - y|^2 \approx (\sqrt{d} \pm O(\beta))^2 \approx d \pm O(\beta \sqrt{d}) + \beta^2$
Sample distances - assumptions

• We have to ensure that the distance between two points picked from the same Gaussian are closer to each other, than two points picked from different Gaussians
 • The upper limit of the distance between a pair of points from the same Gaussian is at most the lower limit of the distance between points from different Gaussians
• Squared-distance between two points picked from the same Gaussian
 • $2d \pm O(\beta \sqrt{d})$
• Squared-distance between two points picked from different Gaussians
 • $\Delta^2 + 2d \pm O(\beta \sqrt{d})$
• $2d \pm O(\beta \sqrt{d}) \leq \Delta^2 + 2d \pm O(\beta \sqrt{d})$ holds for $\Delta \in \omega\left(d^{\frac{1}{4}}\right)$, as needed
Separating Gaussians - algorithm

• Calculate all pairwise distances between points
• The cluster of smallest pairwise distances must come from a single Gaussian
 • Remove these points
• The remaining points come from the second Gaussian
• We used a constant β. What happens if we take n samples?
 • Any fixed β will not be good enough. β has to be dependent on n
 • $\beta = O(\sqrt{\ln n})$ is a good value for the annulus-theorem equation
 • The probability to sample the annulus is $1 - 3e^{-c_1\beta^2} = 1 - \frac{3}{n^{c_1}} = 1 - \frac{1}{poly(n)}$
Sample distances – one Gaussian, \(n \) samples

- \(y \) is nearly-perpendicular to \(x \)
 - \(|x - y|^2 \approx |x|^2 + |y|^2\)
- \(x \) is considered as the “north pole”
 - \(x = (\sqrt{d} \pm O(\sqrt{\ln n}), 0,0,...,0)\)
- \(y \) is nearly on the equator, we can further rotate the coordinate system so that the component of \(y \) that is perpendicular to the axis of the “north pole”, is in the second coordinate
 - \(y = (O(1), \sqrt{d} \pm O(\sqrt{\ln n}), 0,0,...,0)\)
- \(|x - y|^2 = 2d \pm O(\sqrt{\ln n} \sqrt{d})\) with high probability
Sample distances – two Gaussians, n samples

- The distance $|z - y|$ is $O(\sqrt{2d})$
 - Two samples from the same Gaussian
- High-dimension Pythagorean Theorem
 - $|x - y|^2 \approx \Delta^2 + |z - q|^2 + |q - y|^2 \approx \Delta^2 + 2d \pm O(\sqrt{\ln n} \sqrt{d}) + O(\ln n)$
 - $|z - q|^2 \approx |q - y|^2 \approx (\sqrt{d} \pm O(\sqrt{\ln n}))^2 \approx d \pm O(\sqrt{\ln n} \sqrt{d}) + O(\ln n)$
Sample distances – assumptions, n samples

• We have to ensure that the distance between two points picked from the same Gaussian are closer to each other, than two points picked from different Gaussians
 • The upper limit of the distance between a pair of points from the same Gaussian is at most the lower limit of the distance between points from different Gaussians

• Squared-distance between two points picked from the same Gaussian
 • $2d \pm O(\sqrt{\ln n} \sqrt{d})$

• Squared-distance between two points picked from different Gaussians
 • $\Delta^2 + 2d \pm O(\sqrt{\ln n} \sqrt{d})$

• $2d \pm O(\sqrt{\ln n} \sqrt{d}) \leq \Delta^2 + 2d \pm O(\sqrt{\ln n} \sqrt{d})$ holds for $\Delta \in \omega \left((d \cdot \ln n)^{\frac{1}{4}} \right)$
Fitting a Spherical Gaussian to Data

• Given d-dimensional sample points x_1, \ldots, x_n, our objective is to find a spherical Gaussian that best fits those points
 • Find the distributions’ mean μ and variance σ^2
• Let f be a Gaussian with mean μ and variance σ^2
 • μ is a d-dimensional vector, containing the mean values for each dimension
Fitting a Spherical Gaussian to Data

• f’s density function is $f(x) = \frac{1}{(\sqrt{2\pi\sigma^2})^d} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ (remember: x, μ are vectors)

• Definition: MLE (Maximal Likelihood Estimator) of a set samples x_1, \ldots, x_n is the density function f that maximizes the above probability density

• We want the Gaussian which gives us the highest probability to get the data $x_1, \ldots x_n$ under its density function $f(x)$.
 • The density function becomes a function of μ, σ instead of x, because we want to maximize the likelihood

 • $F(\mu, \sigma) = f(x_1, \ldots, x_n) = \frac{1}{(2\pi\sigma^2)^\frac{d}{2}} \cdot \prod_{i=1}^{n} \left[e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \right]$ where x_1, \ldots, x_n are vectors
MLE— mean value μ

• Let x_1, \ldots, x_n be samples in d-dimensional space. We will prove that $(x_1 - \mu)^2 + \cdots + (x_n - \mu)^2$ is minimized when μ is the centroid of x_1, \ldots, x_n

 • Why minimize? $F(\mu, \sigma) = c \cdot e^{-\frac{(x_1-\mu)^2+\cdots+(x_n-\mu)^2}{2\sigma^2}}$, so maximizing F's value is minimizing $(x_1 - \mu)^2 + \cdots + (x_n - \mu)^2$

• Proof: We would like to find the minimal point of the sum, by finding its derivative

 • Note that every part of the sum is a vector, its first coordinate is the derivative by μ_1.
 • Each row is a different derivative, and we have d derivatives in total
 • $-2(x_1 - \mu) - \cdots - 2(x_n - \mu) = 0$
 • Solving for μ gives $\mu = \frac{1}{n}(x_1 + \cdots + x_n)$
MLE – variance \(\sigma^2 \)

• We would like to find the MLE of \(\sigma^2 \) for \(f \).

• Let \(\mu \) be the real centroid.

• Let \(\nu = \frac{1}{2\sigma^2} \) and \(a = \sum_{i=1}^{n} (x_i - \mu)^2 \) (for simplicity).

• The density function is now \(f(x) = \left[\frac{\nu}{\pi} \right]^{dn} \cdot e^{-av} \)

 • To find its maximal value, we will find the derivative of \(\ln f(x) \)

 • \(\frac{dn}{2\nu} - a = 0 \)

 • \(\sigma = \frac{\sqrt{a}}{\sqrt{nd}} \)

• \(\sigma \) is the square root of the average coordinate distance squared of the samples to their mean (the definition of standard deviation!)