Exercise 3.1 Recall that a group is a set G with an associative operation \times and an unit element $id \in G$ such that $id \times g = g \times id = g$ for all $g \in G$. Furthermore, for each element $g \in G$ there exists an inverse $g^{-1} \in G$ such that $g^{-1} \times g = g \times g^{-1} = id$. Assume G is finite.

Given a distribution μ on G we define a random walk P_μ on G as follows. It is a Markov chain with state space G which moves by multiplying the current state on the left by a random element of G, selected according to μ. That is $P_\mu(g, h \times g) = \mu(h)$ for all $g, h \in G$.

a) Prove that the uniform distribution on G is a stationary distribution of P_μ.

b) Prove that P_μ is irreducible if $S = \{g \in G \mid \mu(g) > 0\}$ generates G.

c) Suppose that $G = S_n$ is the set of permutations of $1, 2, \ldots, n$, and \times is the composition of permutations. Assume μ is a uniform distribution on the transpositions. (A transposition is a permutation that swaps 2 different elements and maps all other elements to themselves.) Is P_μ irreducible? Is P_μ aperiodic?

Exercise 3.2 Let P be an irreducible Markov chain with n states.

a) For two states x and y, let τ_{xy} be number of steps that we do starting from x until the first time we get to y. Prove that $E(\tau_{xy})$ is finite for any two states x and y.

b) Prove that the stationary distribution of P is unique. (You do not need to prove that P has a stationary distribution.)

(Hint: One way to do this is by proving that the rank of $P - I$ is $n - 1$.)

Exercise 3.3 Let P be a Markov chain obtained from an undirected, non-bipartite, d-regular (all vertices are of the same degree d) and connected graph. (i.e. P picks a neighbor uniformly at random from the d neighbors of v)

a) Prove that P is irreducible and aperiodic.

b) Prove that for any probability distribution x^0, $||x^0 P^t - \pi||_2 \leq |\lambda_2|^t$, where π is the stationary distribution of P and λ_2 is the second largest eigenvalue of P in absolute value. ($|| \cdot ||_2$ is the Euclidean L_2 norm).

c) Prove that the mixing time of P is at most $[\log(4\sqrt{n})/ \log(1/|\lambda_2|)]$.

Exercise 3.4 In the Traveling Salesman Problem (TSP) we are given a set $\{1, \ldots, n\}$ of n cities and the distances $d(i, j)$ between any pair i, j of cities. Our goal is to find a permutation π_1, \ldots, π_n of the cities that minimized $\sum_{i=1}^n d(\pi_i, \pi_{i+1})$ (where we define $\pi_{n+1} = \pi_1$). A popular local search algorithm for TSP, called 2OPT, defines two permutations π^1 and π^2 as neighbors if π^2 can be obtained from π^1 by reversing an interval. I.e. if there exist two indices k and ℓ, $1 \leq k < \ell \leq n$, such that $\pi^2_j = \pi^1_{j+\ell-k}$ for $k \leq j \leq \ell$ and $\pi^2_j = \pi^1_j$ for $j < k$ and $j > \ell$. Describe a simulated annealing algorithm for TSP which is based on a random walk on the graph which is defined by this local search scheme. Write down the transition matrix of the underlying chain at a fixed temperature T. Prove that this chain is irreducible.
Exercise 3.5 Let $S = \{s_1, s_2, s_3, s_4\}$ and let $f : S \rightarrow \mathbb{R}$ be given by $f(s_1) = 1$, $f(s_2) = 2$, $f(s_3) = 0$, $f(s_4) = 2$. Suppose we want to find the minimum of $f(s_i)$ using simulated annealing.

a) Construct the Metropolis chain for the Boltzmann distribution with respect to f with parameter T using an underlying chain which is a random walk on the cycle $(s_1, s_2), (s_2, s_3), (s_3, s_4), (s_4, s_1)$ (when at s_i you choose each of your two neighbors with the same probability). Write the transition probabilities for this Metropolis chain.

b) Suppose we set the temperature at step k to be T_k, what is the probability, P_n, that if we start at state s_1, we never leave s_1 during the first n steps.

c) Suppose that $T_k = 1/(2 \ln(k + 1))$ for $k = 1, 2, \ldots$, what is $\lim_{n \rightarrow \infty} P_n$? Is it good or bad?