Due Thursday 8.2.2007. Please keep a copy.

1. Let $A = \{a_1, a_2, \ldots, a_n\}$ be a set of distinct items totally ordered such that $a_i < a_j$ iff $i < j$. Assume that over a long sequence of m accesses to items in A, a_i is accessed $q(i) \geq 1$ times. Describe an algorithm to find a binary search tree T where each item a_i resides in a leaf of T such that if we serve the accesses using T, each time going from the root to the corresponding leaf, the total time its takes to serve the whole sequence is minimized. Prove 1) that your algorithm indeed constructs a tree that minimizes the total access time. 2) As tight upper bound as you can, on the total time it takes to serve the sequence using T. 3) An upper bound on the running time of your algorithm for constructing T. (Any polynomial time algorithm would be fine.)

2. We define the following variation on the splay algorithm. This variation looks 3 steps (edges) towards the root from the node x and applies one of the rules in Figure 1 (or their mirror image) if possible. If it is not possible to apply one of the rules in Figure 1 we apply one of the regular zig-zig, zig-zag, or zig rules (Note that zig or zig-zig would apply only if x is at distance 1 or 2 from the root, respectively).

Prove that the access lemma holds for this variation as well (with a different constant).

3. On a set of n nodes we perform a sequence of operations, each of which is one of the followings.
 (a) $\text{insert}(u, v)$: Adds an edge between u and v.
 (b) delete - oldest: Removes the edge that was inserted first among the edges currently in the graph.
 (c) $\text{connected}(u, v)$: Answers true if there is a path from u to v in the current graph. Otherwise answers false.
Describe a data structure that supports these operations and analyze its performance. (A structure supporting each operation in $O(\log n)$ amortized time would receive maximum score.)

4. We define the following data structure representing a string s to answer $occ(\sigma, i)$ queries. Recall that $occ(\sigma, i)$ should return the number of occurrences of σ up to and including position i. We put a binary tree T over the symbols in Σ (each symbol is at a leaf, the order does not matter). At the root r we store a bit vector B_r of length n where $B_r[i] = 0$ if the character $s[i]$ is stored at the left subtree of r and $B_r[i] = 1$ otherwise.

Similarly, for a node v let Σ_v be the set of characters in the subtree of v. Let s_v be the substring obtained from s by deleting all characters not in Σ_v. We store at v a bit vector B_v of length $|s_v|$, such that $B_v[i] = 0$ if the character $s_v[i]$ is in the left subtree of v and $B_v[i] = 1$ otherwise.

a) Analyze the space required by this data structure.

b) Show how to add auxiliary information to T without significantly changing the space taken by the data structure so that you can perform $occ(\sigma, i)$ queries efficiently. Describe the algorithm for answer an $occ(\sigma, i)$ query and analyze it.

5. Find a data structure to represent sorted lists such that 1) you can concatenate two sorted lists in $O(\log \log n)$ worst case time where n is the length of the larger list, and 2) You can search for the predecessor of a key x in a list of length n in $O(\log n)$ worst case time.

6. Show how to extend dynamic trees to support the operation $lca(u, v)$. This operation assumes that u and v are in the same actual tree and returns the lowest common ancestor of u and v in their tree.

Try to get a running time of $O(\log n)$ without hurting the running time of the other operations.

7. We propose the following data structure for the union-find problem. We represent each set by a tree of depth exactly 2. Each leaf contains an item which is at distance exactly 2 from the root. Each internal node in the tree maintains 1) the number of children it has, 2) a pointer to its parent, 3) a pointer to a singly linked list containing its children. We maintain the following invariants:

1. Each node other than the root has between 1 and $2 \log n$ children.

2. Say a child of the root is full if it has at least $\log n$ children. At most one child of the root is not full.

A find returns the root and takes $O(1)$ time. We implement union of two sets with roots x and y as follows. Assume without loss of generality that x has at least as many children as y. We make each full child v of y, a child of x. (This requires inserting v into the list of children of x, changing its parent to be x, and updating the number of children of x.) Let x' and y' be the non-full children of x and y, respectively. If either x' or y' does not exist, we make the other non-full child the non-full child of x. Otherwise, assume without loss of generality that x' has at least as many children as y'. We make every child of y' a child of x'. Node x' remains a child of x which is possibly not full.

Prove that a sequence of m union and find operations on a sequence of n elements takes $O(m + n \log \log n)$ time.