Dynamic trees (Steator and Tarjan 83)

Operations that we do on the trees

maketree(v)
$\mathrm{w}=$ findroot (v)
$(\mathrm{w}, \mathrm{c})=\operatorname{mincost}(\mathrm{v}) \quad($ can do maxcost (v) instead $)$
$\operatorname{addcost}(\mathrm{v}, \mathrm{c})$
$\operatorname{link}(\mathrm{v}, \mathrm{w}, \mathrm{c}(\mathrm{v}, \mathrm{w}))$
cut(v)
evert(v)

Applications

Incremental Minimum Spanning Forest

Maintain a minimum spanning forest of a graph to which we insert edges

Add an edge (v,w)

Discover if v and w are in the same component by comparing
findroot(v) and findroot(w)

Add an edge (v,w)

If v and w are in different components then add (v, w) to the forest by $\operatorname{link}(\mathrm{v}, \mathrm{w}, \mathrm{c}(\mathrm{v}, \mathrm{w}))$

Add an edge (v,w)

If v and w are in different components then add (v, w) to the forest by
evert(v), and $\operatorname{link}(\mathrm{v}, \mathrm{w}, \mathrm{c}(\mathrm{v}, \mathrm{w}))$

Add an edge (v,w)

What if v and w are in same component?

Add an edge (v,w)

We have to figure out if $\mathrm{c}(\mathrm{v}, \mathrm{w})$ is smaller than the largest cost of an edge along the tree path between v and w.

Add an edge (v,w)

Find the largest edge along the tree path from v to w by evert(v) follows by maxcost(w)

Add an edge (v,w)

If $\mathrm{c}(\mathrm{v}, \mathrm{w})<\mathrm{c}(\mathrm{x}, \mathrm{y})$ then $\operatorname{cut}(\mathrm{x})$ and link(v,w,c(v,w))

Add an edge (v,w)

If $\mathrm{c}(\mathrm{v}, \mathrm{w})<\mathrm{c}(\mathrm{x}, \mathrm{y})$ then $\operatorname{cut}(\mathrm{x})$ and link(v,w,c(v,w))

Application (2)

- Minimum spanning forest with a particular number of blue edges

Suppose we add λ to the weights of the blue edges and compute the MSF

If $\lambda=-\infty$ we will get a MSF with as many blue edges as possible

The blue edges excluded cannot be in any MSF. Black edges included will be in any MSF

Let M be the maximum \# of blue edges in a spanning forest

Imagine we increase λ

At some point we would trade a black edge for a more expensive blue edge

At some point we would trade a black edge for a more expensive blue edge

At some point we would trade a black edge for a more expensive blue edge

Let T be the forest we get with M-1 blue edges

The cost of this forest is $(\mathrm{M}-1) \lambda+\mathrm{c}(\mathrm{T})$

The cost of any other forest T' with (M-1) blue edges is (M-1) $\lambda+\mathrm{c}\left(\mathrm{T}^{\prime}\right)$ $\rightarrow \mathrm{c}(\mathrm{T})<\mathrm{c}\left(\mathrm{T}^{\prime}\right)$

Keep increasing λ we will find the lightest MSF with M- 2 edges and so on..

Keep increasing λ we will find the lightest MSF with M-2 edges and so on..

Keep increasing λ we will find the lightest MSF with M- 2 edges and so on..

The key observation

- We can find the critical values of λ efficiently

Start with a

 spanning forest of the blue subgraph

Process the black edges in increasing order of their weight

Process the black edges in increasing order of their weight

Let e be the current black edge

If e closes a cycle find the blue edge e' of maximum cost on the cycle
$\lambda_{e}=c(e)-c\left(e^{\prime}\right)$ is a critical value

Consider the cut defined by removing e' from the forest

If e closes a cycle find the blue edge e' of maximum cost on the cycle
$\lambda_{e}=c(e)-c\left(e^{\prime}\right)$ is a critical value

For $\lambda<\lambda_{\mathrm{e}}$ the edge e^{\prime} is the smallest crossing it and for $\lambda>\lambda_{e}$ the edge e is the smallest crossing it

Replace e' by e and continue

Invariant: each blue edge of the forest is the smallest blue edge crossing the cut that it defines

Why is this invariant true ?

It is clear if the cut does not change

Why is this invariant true ?

But the cut may change...

Why is this invariant true ?

We have $c\left(e^{\prime \prime}\right) \leq c\left(e^{\prime}\right)$

Why is this invariant true ?

And $c\left(e^{\prime \prime}\right) \leq c\left(e^{\prime}\right) \leq c\left(e^{\prime \prime}\right)$

Invariant: each blue edge of the forest is the smallest blue edge crossing the cut that it defines

Consider the next largest black edge e

Find the largest blue edge e' on the cycle that e closes with the current forest

Consider the next largest black edge e

Find the largest blue edge e' on the cycle that e closes with the current forest
$\lambda_{\mathrm{e}}=c(\mathrm{e})-\mathrm{c}\left(\mathrm{e}^{\prime}\right)$ is a critical value

Replace e' by e and continue

Replace e' by e and continue

Replace e' by e and continue

If the black edge connects two components then it appears in any spanning forest

Add it and continue

- If a black edge closes a cycle of black edges just discard it

Summary

- We identify a set of blue edges that are never in the tree
- We identify a set of black edges always in the tree (say b many)
- Other edges are partitioned into black-blue pairs each with an associated critical λ
- Sort the pairs by λ
- If you want $b+z$ black edges then take the black edges of the first z pairs and the blue edges of the rest
- $\mathrm{O}(\mathrm{mlog}(\mathrm{n}))$ total time

Application (3)

1D Range reporting

Given a set of intervals S on the line, preprocess them to build a structure that allows efficient queries of the from:

Given a point x find all intervals containing it.

Dynamic range reporting + priorities

Given a set of intervals S on the line, each with priority assigned to it, build a structure that allows efficient queries of the from:
Given a point x find interval with minimum priority containing it.
Updates - insert or delete an interval

Motivation - Packet classification

$3 \xrightarrow{\text { Forward to }}$

IP address

Nested intervals, IP prefixes

190.0.*.*

IP address

Extension to 2D

- Query = point in R^{2}
- (Sender IP, receiver IP)
- interval $=$ rectangle with priority

One dimensional data structure for nested intervals

Nested Intervals

$\longrightarrow 2 \longrightarrow 7$

Containment tree:

The parent of interval v is the smallest interval containing v

Nested Intervals

\longrightarrow 5
\qquad

Query:

Starting node $s=$ smallest interval containing the query point

Relevant priorities are on the path from s to the root.
Problem: path may be long...

Hey, dynamic trees know how to do that 4 5

$\longrightarrow 2 \longrightarrow 7 \longrightarrow 1$

We can use a dynamic tree to represent the containment tree.

Query \rightarrow mincost()

Insert

Problem: Updates => Many cuts \& links

Binarization

9

Node $\mathrm{v}=>$ node v
Leftmost child of v => Left child of v

Any other child of $v=>$ right child of its left sibling

Adjust costs:
Left edge => priority of parent
Right edge $=>\infty$

Insert (Cont.)

Constant number of links and cuts

Summary

- Containment tree C

Query $=$ min cost on path from starting point to root

- Represent C by binarized version B
- Represent B by dynamic tree D
- How do you find the point to start the query?
- How do you find the edges to cut ?

How do you start the query?

\uparrow Use a balanced search tree on the endpoints

Min(Mincost(\bigcirc),pri($\bigcirc)$)

query (cont)

\uparrow

Mincost($\boldsymbol{\bullet}$)

Lets implement this data type

maketree(v)
$\mathrm{w}=$ findroot (v)
$(\mathrm{w}, \mathrm{c})=\operatorname{mincost}(\mathrm{v})$
$\operatorname{addcost}(\mathrm{v}, \mathrm{c})$
$\operatorname{link}(\mathrm{v}, \mathrm{w}, \mathrm{c})$
cut(v)
evert(v)

Simple case -- paths

Assume for a moment that each tree T in the forest is a path. We represent it by a virtual tree which is a simple splay tree.

Findroot(v)

Splay at v, then follow right pointers until you reach the last vertex w on the right path. Return w and splay at w.

Mincost(v)

With every vertex x we record $\operatorname{cost}(x)=$ the cost of the edge ($\mathrm{x}, \mathrm{p}(\mathrm{x})$)

We also record with each vertex x mincost $(x)=$ minimum of cost(y) over all descendants y of x.

Mincost(v)

Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

Addcost(v,c)

Rather than storing $\operatorname{cost}(\mathrm{x})$ and $\operatorname{mincost}(\mathrm{x})$ we will store
$\Delta \operatorname{cost}(x)=\operatorname{cost}(x)-\operatorname{cost}(p(x))$
$\Delta \min (\mathrm{x})=\operatorname{cost}(\mathrm{x})-\operatorname{mincost}(\mathrm{x})$

Addcost(v,c) :

Splay at v, $\Delta \operatorname{cost}(\mathrm{v})+=\mathrm{c}$ $\Delta \operatorname{cost}(\operatorname{left}(\mathrm{v}))=\mathrm{c}$
similarly update Δ min

Addcost(v,c) (cont)

Notice that now we have to update $\Delta \operatorname{cost}(\mathrm{x})$ and $\Delta \min (\mathrm{x})$ through rotations

$\Delta \operatorname{cost}^{\prime}(\mathrm{v})=\Delta \operatorname{cost}(\mathrm{v})+\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{w})=-\Delta \operatorname{cost}(\mathrm{v})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{b})=\Delta \operatorname{cost}(\mathrm{v})+\Delta \operatorname{cost}(\mathrm{b})$

Addcost(v,c) (cont)

Update Δ min:

$\Delta \min ^{\prime}(\mathrm{w})=\max \left\{0, \Delta \min (\mathrm{~b})-\Delta \operatorname{cost}^{\prime}(\mathrm{b}), \Delta \min (\mathrm{c})-\Delta \operatorname{cost}(\mathrm{c})\right\}$
$\Delta \min ^{\prime}(\mathrm{v})=\max \left\{0, \Delta \min (\mathrm{a})-\Delta \operatorname{cost}(\mathrm{a}), \Delta \min ^{\prime}(\mathrm{w})-\Delta \operatorname{cost}^{\prime}(\mathrm{w})\right\}$

$\operatorname{Link}(\mathrm{v}, \mathrm{w}, \mathrm{c}), \operatorname{cut}(\mathrm{v})$

Translate directly into catenation and split of splay trees if we talk about paths.

Lets do the general case now.

The virtual tree

- We represent each tree T by a virtual tree V .

The virtual tree is a binary tree with middle children.

Think of V as partitioned into solid subtrees connected by dashed edges

What is the relation between V and T ?

Actual tree

Path decomposition

Partition T into disjoint paths

Virtual trees (cont)

Each path in T corresponds to a solid subtree in V

The parent of a vertex x in T is the successor of x (in symmetric order) in its solid subtree or the parent of the solid subtree if x is the last in symmetric order in this subtree

Virtual trees (cont)

Virtual trees (representation)

Each vertex points to $p(x)$ to its left son $1(x)$ and to its right son $\mathrm{r}(\mathrm{x})$.

A vertex can easily decide if it is a left child a right child or a middle child.

Each solid subtree functions like a splay tree.

The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.
$\Delta \operatorname{cost}(x)=\operatorname{cost}(x)-\operatorname{cost}(p(x))$ or $\operatorname{cost}(x)$ is x is a root of a solid subtree
$\Delta \min (x)=\operatorname{cost}(x)-\operatorname{mincost}(x)($ where mincost is the minimum cost within the subtree)

Splicing

Want to change the path decomposition such that v and the root are on the same path.

Let w be the root of a solid subtree and v a middle child of w

Want to make v the left child of w. It requires:
$\Delta \operatorname{cost}^{\prime}(\mathrm{v})=\Delta \operatorname{cost}(\mathrm{v})-\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{u})=\Delta \operatorname{cost}(\mathrm{u})+\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \min ^{\prime}(\mathrm{w})=\max \left\{0, \Delta \min (\mathrm{v})-\Delta \operatorname{cost}^{\prime}(\mathrm{v}), \Delta \min (\operatorname{right}(\mathrm{w}))-\Delta \operatorname{cost}(\operatorname{right}(\mathrm{w}))\right\}$

Splicing (cont)

What is the effect on the path decomposition of the real tree ?

Splaying the virtual tree

Let x be the vertex in which we splay.
We do 3 passes:

1) Walk from x to the root and splay within each solid subtree

After the first pass the path from x to the root consists entirely of dashed edges

2) Walk from x to the root and splice at each proper ancestor of x.

Now x and the root are in the
same solid subtree
3) Splay at x

Now x is the root of the entire virtual tree.

Example

Actual and virtual trees

Splay at m

Dynamic tree operations

$\mathrm{w}=$ findroot (v) : Splay at v , follow right pointers until reaching the last node w , splay at w , and return w .
$(\mathrm{v}, \mathrm{c})=\operatorname{mincost}(\mathrm{v}):$ Splay at v and use $\Delta \mathrm{cost}$ and $\Delta \min$ to follow pointers to the smallest node after v on its path (its in the right subtree of v). Let w be this node, splay at w .
$\operatorname{addcost}(\mathrm{v}, \mathrm{c})$: Splay at v , increase $\Delta \operatorname{cost}(\mathrm{v})$ by c and decrease $\Delta \operatorname{cost}(\operatorname{left}(\mathrm{v}))$ by c , update $\Delta \min (\mathrm{v})$
$\operatorname{link}(\mathrm{v}, \mathrm{w}, \mathrm{c}(\mathrm{v}, \mathrm{w}))$: Splay at v , update the cost of v to be $\mathrm{c}(\mathrm{v}, \mathrm{w})$ (requires updates to $\Delta \operatorname{cost}(\mathrm{v}), \Delta \min (\mathrm{v}), \Delta \operatorname{cost}(\operatorname{left}(\mathrm{v}))$, and $\Delta \operatorname{cost}($ right(v)), splay at w (so potential does not increase too much when we add v as a child) and make v a middle child of w
cut(v) : Splay at v , break the link between v and right(v), set $\Delta \operatorname{cost}(\operatorname{right}(\mathrm{v}))+=\Delta \operatorname{cost}(\mathrm{v})$

$\operatorname{Cut}(\mathrm{m})$

Splay at m

Cut at m

Dynamic tree (analysis)

It suffices to analyze the amortized time of splay in the virtual tree
Use the access lemma as follows:
The weight assigned to each node/item v is
$1+\sum$ sizes of subtrees (in the virtual tree) rooted at middle children of V

The size of v is the \#elements in v's subtree in the virtual tree

Note: Splices do not affect the size of v

Dynamic tree (analysis)

Analysis of the step (1) of a splay of a node in the virtual tree:
Apply the access lemma to each splay and sum up

Dynamic tree (analysis)

pass 1 takes $3 \operatorname{logn}+\mathrm{k}$
pass 2 takes k
pass 3 takes $3 \operatorname{logn}+1$

How do we get rid of this k ?

Refining the access lemma

Original version: The amortized time to splay a node x in a tree with root t is at most $3(r(t)-r(x))+1=$ $3 \log (\mathbf{s}(\mathbf{t}) / \mathbf{s}(\mathbf{x}))+1$

Modified version: For any constant $\mathrm{c} \geq 1$, the amortized time to splay a node x in a tree with root t is at most $3 \mathrm{c}(\mathbf{r}(\mathbf{t})-\mathrm{r}(\mathbf{x}))+1=3 \mathrm{clog}(\mathbf{s}(\mathbf{t}) / \mathbf{s}(\mathbf{x}))+1-(\ell-1)(\mathrm{c}-1)$, where ℓ is the length of the splay path

Dynamic tree (analysis)

pass 1 takes 3clogn $+k$
pass 2 takes k-1
pass 3 takes 3 clogn $+1-(\mathrm{k}-2)(\mathrm{c}-1)$
$\Rightarrow \mathrm{O}(\log \mathrm{n})$

Proving the modified access lemma

- Same proof, multiply the potential by c:

Potential is: $\mathbf{c} \cdot \sum \mathbf{r}(\mathbf{x})=c^{\cdot} \sum \log _{2}(\mathbf{s}(\mathbf{x}))$

Proof of the access lemma (cont)

(1) zig - zig

amortized time $($ zig-zig $)=2+\Delta \Phi=$
$2+\mathrm{c}\left(\mathrm{r}^{\prime}(\mathrm{x})+\mathrm{r}^{\prime}(\mathrm{y})+\mathrm{r}^{\prime}(\mathrm{z})-\mathrm{r}(\mathrm{x})-\mathrm{r}(\mathrm{y})-\mathrm{r}(\mathrm{z})\right) \leq$
$2+\mathrm{c}\left(\mathrm{r}^{\prime}(\mathrm{x})+\mathrm{r}^{\prime}(\mathrm{z})-\mathrm{r}(\mathrm{x})-\mathrm{r}(\mathrm{y})\right) \leq 2+\mathrm{c}\left(\mathrm{r}^{\prime}(\mathrm{x})+\mathrm{r}^{\prime}(\mathrm{z})-\mathrm{r}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)=$
$2+c\left(r(x)-r^{\prime}(x)+r^{\prime}(z)-r^{\prime}(x)+3\left(r^{\prime}(x)-r(x)\right)\right) \leq$
$2+\mathrm{c}\left(\log \left(\mathrm{s}(\mathrm{x}) / \mathrm{s}^{\prime}(\mathrm{x})\right)+\log \left(\mathrm{s}^{\prime}(\mathrm{z}) / \mathrm{s}^{\prime}(\mathrm{x})\right)\right)+3 \mathrm{c}\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right) \leq$
$2+\mathrm{c}\left(\log \left(\left[\mathrm{s}^{\prime}(\mathrm{x}) / 2\right] / \mathrm{s}^{\prime}(\mathrm{x})\right)+\log \left(\left[\mathrm{s}^{\prime}(\mathrm{x}) / 2\right] / \mathrm{s}^{\prime}(\mathrm{x})\right)\right)+3 \mathrm{c}\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)=$ $3 c\left(r^{\prime}(x)-r(x)\right)-2(c-1)$

Proof of the access lemma (cont)

(2) zig - zag

Same modification

