
1

Dynamic trees (Steator and Tarjan 83)

2

Operations that we do on the trees

maketree(v)

w = findroot(v)

(w,c) = mincost(v) (can do maxcost(v) instead)

addcost(v,c)

link(v,w,c(v,w))

cut(v)

evert(v)

3

Applications

4

Incremental Minimum Spanning Forest

Maintain a minimum spanning forest of a graph to which we

insert edges

5

6

Add an edge (v,w)

7

Discover if v and

w are in the same

component by

comparing

findroot(v) and

findroot(w)

v

w

Add an edge (v,w)

8

If v and w are in

different

components

then add (v,w)

to the forest by

link(v,w,c(v,w))

v

w

Add an edge (v,w)

9

v

w

If v and w are in

different

components

then add (v,w)

to the forest by

evert(v), and

link(v,w,c(v,w))

Add an edge (v,w)

10

What if v and

w are in same

component ?

v

w

Add an edge (v,w)

11

We have to figure out

if c(v,w) is smaller

than the largest cost

of an edge along the

tree path between v

and w.

v

w

Add an edge (v,w)

12

Find the largest edge

along the tree path

from v to w by

evert(v) follows by

maxcost(w)

v

w
x

y

Add an edge (v,w)

13

If c(v,w) < c(x,y)

then cut(x) and

link(v,w,c(v,w))

v

w
x

y

Add an edge (v,w)

14

If c(v,w) < c(x,y)

then cut(x) and

link(v,w,c(v,w))

v

w
x

y

Application (2)

• Minimum spanning forest with a particular

number of blue edges

15

16

17

21

Suppose we add

λ to the weights

of the blue edges

and compute the

MSF

If λ = −∞ we

will get a MSF

with as many

blue edges as

possible

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

22

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

23

The blue edges

excluded cannot

be in any MSF.

Black edges

included will be

in any MSF

Let M be the

maximum # of

blue edges in a

spanning forest

24

Imagine we increase λ

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

25

At some point we

would trade a black

edge for a more

expensive blue edge

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

26

At some point we

would trade a black

edge for a more

expensive blue edge

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

27

At some point we

would trade a black

edge for a more

expensive blue edge

Let T be the forest we

get with M-1 blue

edges

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

28

The cost of this forest

is (M-1)λ + c(T)

The cost of any other

forest T’ with (M-1)

blue edges is

(M-1)λ + c(T’)

 c(T) < c(T’)

+λ

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

29

Keep increasing λ we

will find the lightest

MSF with M-2 edges

and so on..

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

30

Keep increasing λ we

will find the lightest

MSF with M-2 edges

and so on..

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

31

Keep increasing λ we

will find the lightest

MSF with M-2 edges

and so on..

+λ

+λ

+λ
+λ

+λ +λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ

+λ
+λ

The key observation

• We can find the critical values of λ

efficiently

32

33

Start with a

spanning forest of

the blue subgraph

34

Process the black

edges in increasing

order of their

weight

35

Process the black

edges in increasing

order of their

weight

Let e be the current

black edge
e

36

If e closes a cycle

find the blue edge

e’ of maximum

cost on the cycle

e

e’

λe = c(e) – c(e’) is

a critical value

Consider the cut

defined by

removing e’

from the forest

37

If e closes a cycle

find the blue edge

e’ of maximum

cost on the cycle

e

e’

λe = c(e) – c(e’) is

a critical value

For λ < λe the

edge e’ is the

smallest crossing

it and for λ > λe

the edge e is the

smallest crossing

it

38

Replace e’ by e and

continue

e

e’

39

Invariant: each

blue edge of the

forest is the

smallest blue edge

crossing the cut

that it defines
e

Why is this invariant true ?

40

It is clear if the cut does not change

Why is this invariant true ?

41

But the cut may change…

Why is this invariant true ?

42

We have c(e’’) ≤ c(e’)

e’

e’’

Why is this invariant true ?

43

And c(e’’) ≤ c(e’) ≤ c(e’’’)

e’

e’’

e’’’

44

Invariant: each

blue edge of the

forest is the

smallest blue edge

crossing the cut

that it defines
e

45

Consider the next

largest black edge e

e

Find the largest

blue edge e’ on the

cycle that e closes

with the current

forest

46

Consider the next

largest black edge e

e

Find the largest

blue edge e’ on the

cycle that e closes

with the current

forest

e’

λe = c(e) – c(e’) is

a critical value

47

e

e’

Replace e’ by e

and continue

48

Replace e’ by e

and continue

49

Replace e’ by e

and continue

If the black edge

connects two

components then

it appears in any

spanning forest

Add it and

continue

• If a black edge closes a cycle of black edges

just discard it

50

Summary

• We identify a set of blue edges that are never in the tree

• We identify a set of black edges always in the tree (say b

many)

• Other edges are partitioned into black-blue pairs each with

an associated critical λ

• Sort the pairs by λ

• If you want b + z black edges then take the black edges of

the first z pairs and the blue edges of the rest

• O(mlog(n)) total time

51

Application (3)

52

1D Range reporting

Given a set of intervals S on the line, preprocess them to

build a structure that allows efficient queries of the from:

Given a point x find all intervals containing it.

0

x

Dynamic range reporting + priorities

Given a set of intervals S on the line, each with priority

assigned to it, build a structure that allows efficient queries of

the from:

Given a point x find interval with minimum priority

containing it.

0

x

5

1
7

3
9

Updates – insert or delete an interval

IP address

block

Forward to

Interface A
Forward to

Interface B

block &

report to Bill

B A

1

2

3 3

Motivation – Packet classification

Nested intervals, IP prefixes

IP address

block

Forward to

Interface A

Forward to

Interface B

2

3 3

190.0.*.* 190.1.*.*

190.0.1.*

Extension to 2D

• Query = point in R2

– (Sender IP, receiver IP)

• interval = rectangle with priority

 5

9

7

One dimensional data structure for

nested intervals

1

5

7
9

4

2
2

Nested Intervals

1

5

7
9

4

7 2 1

2 9

5

4

2
2

Containment tree:

The parent of interval v is the smallest

interval containing v

1

9

5

4

Query:

Starting node s = smallest interval containing the

query point

Relevant priorities are on the path from s to the root.

Nested Intervals

1

5

7
9

4

7 2

2

2
2

Problem: path may be long…

Hey, dynamic trees know how to do

that

1

5

7
9 2

4

7 2 1

2 9

5

4

2

We can use a dynamic tree to represent the

containment tree.

Query  mincost()

Insert

Problem: Updates => Many cuts & links

Binarization

1

5

7
9 2

2

4

7 2 1

2 9

5

4

Leftmost child of v => Left child

of v

Any other child of v => right

child of its left sibling
9

7

5

∞ ∞

∞

Adjust costs:

Left edge => priority of parent

Right edge => ∞

Node v => node v

Insert (Cont.)

Constant number of links and cuts

Summary

• Containment tree C

–Query = min cost on path from starting point to

root

• Represent C by binarized version B

• Represent B by dynamic tree D

• How do you find the point to start the query ?

• How do you find the edges to cut ?

How do you start the query ?

1
5

7
9 2

2

4

7

9

Use a balanced search tree on the endpoints

1

Min(Mincost(),pri())

query (cont)

1
5

7
9 2

2

4

7

9

1

Mincost()

68

Lets implement this data type

maketree(v)

w = findroot(v)

(w,c) = mincost(v)

addcost(v,c)

link(v,w,c)

cut(v)

evert(v)

69

Simple case -- paths

Assume for a moment that each tree T in the forest is a path.

We represent it by a virtual tree which is a simple splay tree.

b

a
c

e
d

f

b

a c

e

d

f

70

Findroot(v)

Splay at v, then follow right pointers until you reach the last

vertex w on the right path. Return w and splay at w.

71

Mincost(v)

With every vertex x we record cost(x) = the cost of the edge

(x,p(x))

We also record with each vertex x mincost(x) = minimum of

cost(y) over all descendants y of x.

b

a c

e

d

f
1,1

3,1

2,2

7,1

4,4

, 

72

Mincost(v)

Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

y

x

B A

C

x

y

C B

A

73

Addcost(v,c)

Rather than storing cost(x) and mincost(x) we will store

cost(x) = cost(x) - cost(p(x))

min(x) = cost(x) - mincost(x)

b

a c

e

d

f
1,-2,0

3,-4,2

2,-1,0

7,7,6

4,-3,0

, , 0

Addcost(v,c) :

Splay at v,

cost(v) += c

cost(left(v)) -= c

similarly update

min

74

Addcost(v,c) (cont)

Notice that now we have to update cost(x) and min(x)

through rotations

w

v

B A

C

v

w

C B

A

cost’(v) = cost(v) + cost(w)

cost’(w) = -cost(v)

 b b

cost’(b) = cost(v) + cost(b)

75

Addcost(v,c) (cont)

w

v

B A

C

v

w

C B

A

min’(w) = max{0, min(b) - cost’(b), min(c) - cost(c)}

min’(v) = max{0, min(a) - cost(a), min’(w) - cost’(w)}

 b b

Update min:

76

Link(v,w,c), cut(v)

Translate directly into catenation and split of splay trees if we

talk about paths.

Lets do the general case now.

77

The virtual tree

• We represent each tree T by a virtual tree V.

The virtual tree is a binary tree with middle children.

left right middle

What is the relation between V and T ?

Think of V as partitioned into solid subtrees connected by

dashed edges

78

Actual tree

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

79

Path decomposition

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

Partition T into

disjoint paths

80

Virtual trees (cont)

b

c

e

h

k

o n

a i

f

l

q

p

g

d

j

m

t

s u

v

w

r

Each path in T

corresponds to a solid

subtree in V

The parent of a vertex

x in T is the successor

of x (in symmetric

order) in its solid

subtree or the parent

of the solid subtree if

x is the last in

symmetric order in

this subtree

81

Virtual trees (cont)

b

c

e

h

k

o n

a i

f

l

q

p

g

d

j

m

t

s u

v

w

r

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

82

Virtual trees (representation)

Each vertex points to p(x) to its left son l(x) and to its right son

r(x).

A vertex can easily decide if it is a left child a right child or a

middle child.

Each solid subtree functions like a splay tree.

83

The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.

cost(x) = cost(x) - cost(p(x)) or cost(x) is x is a root of a solid

subtree

min(x) = cost(x) - mincost(x) (where mincost is the minimum

cost within the subtree)

84

Splicing

Want to change the path decomposition such that v and the root

are on the same path.

Let w be the root of a solid subtree and v a middle child of w

Want to make v the left child of w. It requires:

cost’(v) =  cost(v) -  cost(w)

w

Right(w) v u

w

Right(w) u v

==>

cost’(u) =  cost(u) +  cost(w)

min’(w) = max{0, min(v) - cost’(v), min(right(w))- cost(right(w))}

85

Splicing (cont)

What is the effect on the path decomposition of the real tree ?

w

right v u

w

right u v



w

u

v

b

a

w

u

v

b

a



86

Splaying the virtual tree

Let x be the vertex in which we splay.

We do 3 passes:

1) Walk from x to the root and splay within each solid subtree

w

v

x

After the first pass the path

from x to the root consists

entirely of dashed edges

2) Walk from x to the root and splice at each proper ancestor of x.

Now x and the root are in the

same solid subtree

3) Splay at x

Now x is the root of the entire

virtual tree.

Example

87

88

Actual and virtual trees

z

e

b

o

c

f

n

a

i

k

l

q

p

g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

89

Splay at m

z

e

b

o

c

f

n

a

i

k

l

q

p

g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

90

Splay at m

z

e

b

o

c

f

n

a

i

k

l

q

p

g

d

s

t

j r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

91

Splay at m

z

e

b

o

c

f

n

a

i

k

l

q

p

g

d

s

t

j r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

92

Splay at m

z

e

b

o

c

f
n

a

i

k

l

q

p

g

d

s

t

j r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

93

Splay at m

z

e

b

o

c

f
n

a

i

k

l

q

p

g

d

s

t

j r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

94

Splay at m

z

e

b

o

c

f

n

a

i

k l

q

p

g

d

s

t

j r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x v

w

95

Splay at m

z

e

b

o

c

f

n

a

i

k l

q

p g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

96

Dynamic tree operations

w = findroot(v) : Splay at v, follow right pointers until reaching

the last node w, splay at w, and return w.

(v,c) = mincost(v) : Splay at v and use cost and min to follow

pointers to the smallest node after v on its path (its in the right

subtree of v). Let w be this node, splay at w.

addcost(v,c) : Splay at v, increase cost(v) by c and decrease

cost(left(v)) by c, update min(v)

link(v,w,c(v,w)) : Splay at v, update the cost of v to be c(v,w)

(requires updates to cost(v), min(v), cost(left(v)), and

cost(right(v)), splay at w (so potential does not increase too

much when we add v as a child) and make v a middle child of w

cut(v) : Splay at v, break the link between v and right(v), set

cost(right(v)) += cost(v)

97

Cut(m)

z

e

b

o

c

f

n

a

i

k

l

q

p

g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

98

Splay at m

z

e

b

o

c

f

n

a

i

k l

q

p g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

99

Cut at m

z

e

b

o

c

f

n

a

i

k l

q

p g

d

s

t

j

r

m

u

b

c

e

h k

o n

a

i

f

l

q

p

g

d

j

m

t

s

u

v

w

r

x

z

h x

v

w

It suffices to analyze the amortized time of splay in the virtual tree

Use the access lemma as follows:

The weight assigned to each node/item v is

1 + ∑sizes of subtrees (in the virtual tree) rooted at middle children of

v

The size of v is the #elements in v’s subtree in the virtual tree

Dynamic tree (analysis)

101

v

w(v)

Note: Splices do not

affect the size of v

Dynamic tree (analysis)

1

1

() ()()
3log 3log 3log

() () ()

()
3log

()

k x

k

k

s T s Ts T
k

s x s x s x

s T
k

s x

     
         

   

 
 

 

102

x

x1

xk

Analysis of the step (1) of a splay of a node in the virtual tree:

Apply the access lemma to each splay and sum up

k=#solid subtree along the path

Dynamic tree (analysis)

103

pass 1 takes 3logn + k

pass 2 takes k

pass 3 takes 3logn + 1

How do we get rid of this k ?

Refining the access lemma

104

Original version: The amortized time to splay a node

x in a tree with root t is at most 3(r(t) - r(x)) + 1 =

3log(s(t)/s(x)) + 1

Modified version: For any constant c ≥ 1, the amortized

time to splay a node x in a tree with root t is at most

3c(r(t) - r(x)) + 1 = 3clog(s(t)/s(x)) + 1-(l-1)(c-1), where l

is the length of the splay path

Dynamic tree (analysis)

105

pass 1 takes 3clogn + k

pass 2 takes k-1

pass 3 takes 3clogn + 1 – (k-2)(c-1)

 O(log n)

Proving the modified access lemma

• Same proof, multiply the potential by c:

106

Potential is: c∙∑r(x) = c∙∑log2(s(x))

108

Proof of the access lemma (cont)

amortized time(zig-zig) = 2 +  =

2 + c(r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z)) 

2 + c(r’(x) + r’(z) - r(x) - r(y))  2 + c(r’(x) + r’(z) - r(x) - r(x))=

2 + c(r(x) - r’(x) + r’(z) - r’(x) + 3(r’(x) – r(x))) 

2 + c(log(s(x)/s’(x)) + log(s’(z)/s’(x))) + 3c(r’(x) – r(x)) 

2 + c(log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s’(x)))+ 3c(r’(x) - r(x)) =

 3c(r’(x) - r(x)) - 2(c-1)

z

y

x

A B

C

D

x

y

z

D C

B

A

==>
(1) zig - zig

109

Proof of the access lemma (cont)

z

y

x

B C

A

D

x

z

D C

==>
(2) zig - zag

y

B A

Same modification

