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Dynamic trees (Steator and Tarjan 83) 
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Operations that we do on the trees 

maketree(v) 

w = findroot(v) 

(w,c) = mincost(v)   (can do maxcost(v) instead) 

addcost(v,c) 

link(v,w,c(v,w)) 

cut(v) 

evert(v) 
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Applications 
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Incremental Minimum Spanning Forest 

Maintain a minimum spanning forest of a graph to which we 

insert edges 
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Add an edge (v,w) 
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Discover if v and 

w are in the same 

component by 

comparing 

findroot(v) and 

findroot(w) 

v 

w 



Add an edge (v,w) 
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If v and w are in 

different 

components 

then add (v,w) 

to the forest by 

link(v,w,c(v,w)) 

v 

w 



Add an edge (v,w) 
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v 

w 

If v and w are in 

different 

components 

then add (v,w) 

to the forest by 

evert(v),  and 

link(v,w,c(v,w)) 



Add an edge (v,w) 
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What if v and 

w are in same 

component ? 

v 

w 



Add an edge (v,w) 
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We have to figure out 

if c(v,w) is smaller 

than the largest cost 

of an edge along the 

tree path between v 

and w. 

v 

w 



Add an edge (v,w) 
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Find the largest edge 

along the tree path 

from v to w by 

evert(v) follows by 

maxcost(w) 

v 

w 
x 

y 



Add an edge (v,w) 
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If c(v,w) < c(x,y) 

then cut(x) and 

link(v,w,c(v,w)) 

v 

w 
x 

y 



Add an edge (v,w) 
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If c(v,w) < c(x,y) 

then cut(x) and 

link(v,w,c(v,w)) 

v 

w 
x 

y 



Application (2)  

• Minimum spanning forest with a particular 

number of blue edges 

15 
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Suppose we add 

λ to the weights 

of the blue edges 

and compute the 

MSF 

 

If  λ = −∞ we 

will get a MSF 

with as many 

blue edges as 

possible 
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The blue edges 

excluded cannot 

be in any MSF. 

Black edges 

included will be 

in any MSF 

 

Let M be the 

maximum # of 

blue edges in a 

spanning forest 
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Imagine we increase λ 
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At some point we 

would trade a black 

edge for a more 

expensive blue edge 
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At some point we 

would trade a black 

edge for a more 

expensive blue edge 
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At some point we 

would trade a black 

edge for a more 

expensive blue edge 

 

Let T be the forest we 

get with M-1 blue 

edges 
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The cost of this forest 

is (M-1)λ + c(T) 

 

The cost of any other 

forest T’ with (M-1) 

blue edges is  

(M-1)λ + c(T’) 

 

 c(T) < c(T’) 
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Keep increasing λ we 

will find the lightest 

MSF with M-2 edges 

and so on.. 
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Keep increasing λ we 

will find the lightest 

MSF with M-2 edges 

and so on.. 
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Keep increasing λ we 

will find the lightest 

MSF with M-2 edges 

and so on.. 
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The key observation 

• We can find the critical values of λ 

efficiently 
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Start with a 

spanning forest of 

the blue subgraph 
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Process the black 

edges in increasing 

order of their 

weight 
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Process the black 

edges in increasing 

order of their 

weight 

 

Let e be the current 

black edge 
e 
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If e closes a cycle 

find the blue edge 

e’ of maximum 

cost on the cycle 

e 

e’ 

λe = c(e) – c(e’) is 

a critical value 

Consider the cut 

defined by 

removing e’ 

from the forest 
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If e closes a cycle 

find the blue edge 

e’ of maximum 

cost on the cycle 

e 

e’ 

λe = c(e) – c(e’) is 

a critical value 

For  λ < λe the 

edge e’ is the 

smallest crossing 

it and for λ > λe  

the edge e is the 

smallest crossing 

it 
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Replace e’ by e and 

continue 

e 

e’ 
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Invariant: each 

blue edge of the 

forest is the 

smallest blue edge 

crossing the cut 

that it defines 
e 



Why is this invariant true ? 
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It is clear if the cut does not change 



Why is this invariant true ? 

41 

But the cut may change… 



Why is this invariant true ? 
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We have c(e’’) ≤ c(e’) 

e’ 

e’’ 



Why is this invariant true ? 
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And  c(e’’) ≤ c(e’) ≤ c(e’’’)   

e’ 

e’’ 

e’’’ 
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Invariant: each 

blue edge of the 

forest is the 

smallest blue edge 

crossing the cut 

that it defines 
e 
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Consider the next 

largest black edge e 

e 

Find the largest 

blue edge e’ on the 

cycle that e closes 

with the current 

forest 
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Consider the next 

largest black edge e 

e 

Find the largest 

blue edge e’ on the 

cycle that e closes 

with the current 

forest 

e’ 

λe = c(e) – c(e’) is 

a critical value 
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e 

e’ 

Replace e’ by e 

and continue 
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Replace e’ by e 

and continue 
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Replace e’ by e 

and continue 

If the black edge 

connects two 

components then 

it appears in any 

spanning forest 

 

Add it and 

continue 



• If a black edge closes a cycle of black edges 

just discard it 
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Summary 

• We identify a set of blue edges that are never in the tree 

• We identify a set of black edges always in the tree (say b 

many) 

• Other edges are partitioned into black-blue pairs each with 

an associated critical λ 

• Sort the pairs by λ 

• If you want b + z black edges then take the black edges of 

the first z pairs and the blue edges of the rest 

• O(mlog(n)) total time  
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Application (3) 

52 



1D Range reporting 

Given a set of intervals S on the line, preprocess them to 

build a structure that allows efficient queries of the from: 

 

Given a point x find all intervals containing it. 

0 

x 



Dynamic range reporting + priorities 

Given a set of intervals S on the line, each with priority 

assigned to it, build a structure that allows efficient queries of 

the from: 

Given a point x find interval with minimum priority 

containing it. 

0 

x 

5 

1 
7 

3 
9 

Updates – insert or delete an interval 



IP address 

block 

Forward to 

Interface A 
Forward to 

Interface B 

block  & 

report to Bill  

B A 

1 

2 

3 3 

Motivation – Packet classification 



Nested intervals, IP prefixes 

IP address 

block 

Forward to 

Interface A 

Forward to 

Interface B 

2 

3 3 

190.0.*.* 190.1.*.* 

190.0.1.* 



Extension to 2D 

• Query = point in R2 

– (Sender IP, receiver IP) 

• interval = rectangle with priority 

 

 5 

9 

7 



One dimensional data structure for 

nested intervals 

1 

5 

7 
9 

4 

2 
2 



Nested Intervals 

1 

5 

7 
9 

4 

7 2 1 

2 9 

5 

4 

2 
2 

Containment tree: 

The parent of interval v is the smallest 

interval containing v 



1 

9 

5 

4 

Query:  

Starting node s = smallest interval containing the 

query point 

Relevant priorities are on the path from s to the root. 

Nested Intervals 

1 

5 

7 
9 

4 

7 2 

2 

2 
2 

Problem: path may be long… 



Hey, dynamic trees know how to do 

that 

1 

5 

7 
9 2 

4 

7 2 1 

2 9 

5 

4 

2 

We can use a dynamic tree to represent the 

containment tree. 

Query  mincost() 



Insert  

Problem: Updates => Many cuts & links 



Binarization 

1 

5 

7 
9 2 

2 

4 

7 2 1 

2 9 

5 

4 

Leftmost child of v => Left child 

of v 

Any other child of v => right 

child of its left sibling 
9 

7 

5 

∞ ∞ 

∞ 

Adjust costs: 

Left edge => priority of parent 

Right edge => ∞ 

 

Node v => node v 



Insert (Cont.)  

Constant number of links and cuts 



Summary 

• Containment tree C 

–Query = min cost on path from starting point to 

root 

• Represent C by binarized version B 

• Represent B by dynamic tree D 

• How do you find the point to start the query ? 

• How do you find the edges to cut ? 



How do you start the query ? 

1 
5 

7 
9 2 

2 

4 

7 

9 

Use a balanced search tree on the endpoints 

1 

Min(Mincost(    ),pri(    )) 



query (cont) 

1 
5 

7 
9 2 

2 

4 

7 

9 

1 

Mincost(   ) 
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Lets implement this data type 

maketree(v) 

w = findroot(v) 

(w,c) = mincost(v) 

addcost(v,c) 

link(v,w,c) 

cut(v) 

evert(v) 
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Simple case -- paths 

Assume for a moment that each tree T in the forest is a path. 

We represent it by a virtual tree which is a simple splay tree. 

b
 

a 
c 

e 
d
 

f 

b 

a c 

e 

d 

f 
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Findroot(v) 

Splay at v, then follow right pointers until you reach the last 

vertex w on the right path. Return w and splay at w. 



71 

Mincost(v) 

With every vertex x we record cost(x) = the cost of the edge 

(x,p(x)) 

We also record with each vertex x mincost(x) = minimum of 

cost(y) over all descendants y of x. 

b 

a c 

e 

d 

f 
1,1 

3,1 

2,2 

7,1 

4,4 

,  
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Mincost(v) 

Splay at v and use mincost values to search for the minimum 

Notice: we need to update mincost values as we do rotations. 

y 

x 

B A 

C 

x 

y 

C B 

A 
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Addcost(v,c) 

Rather than storing cost(x) and mincost(x) we will store 

cost(x) = cost(x) - cost(p(x)) 

min(x) = cost(x) - mincost(x) 

b 

a c 

e 

d 

f 
1,-2,0 

3,-4,2 

2,-1,0 

7,7,6 

4,-3,0 

, , 0 

Addcost(v,c) : 

Splay at v,  

cost(v) += c 

cost(left(v)) -= c 

 

similarly update 

min 
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Addcost(v,c) (cont) 

Notice that now we have to update cost(x) and min(x) 

through rotations 

w 

v 

B A 

C 

v 

w 

C B 

A 

cost’(v) = cost(v) + cost(w) 

cost’(w) = -cost(v) 

    b b 

cost’(b) = cost(v) + cost(b) 
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Addcost(v,c) (cont) 

w 

v 

B A 

C 

v 

w 

C B 

A 

min’(w) = max{0, min(b) - cost’(b), min(c) - cost(c)} 

min’(v) = max{0, min(a) - cost(a), min’(w) - cost’(w)} 

    b b 

Update min: 
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Link(v,w,c), cut(v) 

Translate directly into catenation and split of splay trees if we 

talk about paths.  

Lets do the general case now.  
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The virtual tree 

• We represent each tree T by a virtual tree V. 

The virtual tree is a binary tree with middle children. 

left right middle 

What is the relation between V and T ? 

Think of V as partitioned into solid subtrees connected by 

dashed edges 
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Actual tree 

b 

c 

e 

h 

k 

o n 

a 

i 

f 

l 

q p 

g 

d 

j 

m 

t 

s 

u 

v 

w 

r 
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Path decomposition 

b 

c 

e 

h 

k 

o n 

a 

i 

f 

l 

q p 

g 

d 

j 

m 

t 

s 

u 

v 

w 

r 

Partition T into 

disjoint paths 
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Virtual trees (cont) 

b 

c 

e 

h 

k 

o n 

a i 

f 

l 

q 

p 

g 

d 

j 

m 

t 

s u 

v 

w 

r 

Each path in T 

corresponds to a solid 

subtree in V 

The parent of a vertex 

x in T is the successor 

of x (in symmetric 

order) in its solid 

subtree or the parent 

of the solid subtree if 

x is the last in 

symmetric order in 

this subtree 
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Virtual trees (cont) 

b 
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Virtual trees (representation) 

Each vertex points to p(x) to its left son l(x) and to its right son 

r(x). 

A vertex can easily decide if it is a left child a right child or a 

middle child. 

Each solid subtree functions like a splay tree. 
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The general case 

Each solid subtree of a virtual tree is a splay tree. 

We represent costs essentially as before. 

cost(x) = cost(x) - cost(p(x))  or cost(x) is x is a root of a solid 

subtree 

min(x) = cost(x) - mincost(x) (where mincost is the minimum 

cost within the subtree) 
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Splicing 

Want to change the path decomposition such that v and the root 

are on the same path. 

Let w be the root of a solid subtree and v a middle child of w 

Want to make v the left child of w. It requires: 

cost’(v) =  cost(v) -  cost(w) 

w 

Right(w) v u 

w 

Right(w) u v 

==> 

cost’(u) =  cost(u) +  cost(w) 

min’(w) = max{0, min(v) - cost’(v), min(right(w))- cost(right(w))} 
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Splicing (cont) 

What is the effect on the path decomposition of the real tree ? 

w 

right v u 

w 

right u v 

 

w 

u 

v 

  

  

b 

a 

w 

u 

v 

  

  

b 

a 

 
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Splaying the virtual tree 

Let x be the vertex in which we splay. 

We do 3 passes: 

1) Walk from x to the root and splay within each solid subtree 

w 

v 

x 

After the first pass the path 

from x to the root consists 

entirely of dashed edges 

2) Walk from x to the root and splice at each proper ancestor of x. 

Now x and the root are in the 

same solid subtree 

3) Splay at x 

Now x is the root of the entire 

virtual tree. 



Example 

87 
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Actual and virtual trees 
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Splay at m 
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Splay at m 
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Splay at m 
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Splay at m 

z 

e 
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Splay at m 

z 

e 
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Splay at m 

z 

e 

b 

o 

c 

f 
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Splay at m 

z 

e 

b 

o 

c 

f 

n 
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i 
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s 
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Dynamic tree operations 

w = findroot(v) : Splay at v, follow right pointers until reaching 

the last node w, splay at w, and return w. 

(v,c) = mincost(v) : Splay at v and use cost and min to follow 

pointers to the smallest node after v on its path (its in the right 

subtree of v). Let w be this node, splay at w. 

addcost(v,c) : Splay at v, increase cost(v)  by c and decrease 

cost(left(v)) by c, update min(v)  

link(v,w,c(v,w)) : Splay at v, update the cost of v to be c(v,w) 

(requires updates to cost(v), min(v), cost(left(v)), and 

cost(right(v)), splay at w (so potential does not increase too 

much when we add v as a child) and make v a middle child of w 

cut(v) : Splay at v, break the link between v and right(v), set 

cost(right(v)) += cost(v) 
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Cut(m) 

z 

e 

b 

o 

c 

f 

n 

a 

i 

k 

l 

q 

p 

g 

d 

s 

t 

j 

r 

m 

u 

b 

c 

e 

h k 

o n 

a 

i 

f 

l 

q 

p 

g 

d 

j 

m 

t 

s 

u 

v 

w 

r 

x 

z 

h x 

v 

w 



98 

Splay at m 
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Cut at m 
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It suffices to analyze the amortized time of splay in the virtual tree 

Use the access lemma as follows: 

The weight assigned to each node/item v is 

1 + ∑sizes of subtrees (in the virtual tree) rooted at middle children of 

v 

The size of v is the #elements in v’s subtree in the virtual tree 

Dynamic tree (analysis) 
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v 

w(v) 

Note: Splices do not 

affect the size of v 



Dynamic tree (analysis) 
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x 

x1 

xk 

Analysis of the step (1) of a splay of a node in the virtual tree: 

Apply the access lemma to each splay and sum up 

k=#solid subtree along the path 



Dynamic tree (analysis) 
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pass 1 takes  3logn + k      

pass 2 takes  k 

pass 3 takes  3logn + 1 

How do we get rid of this k ? 



Refining the access lemma 
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Original version: The amortized time to splay a node 

x in a tree with root t is at most 3(r(t) - r(x)) + 1 = 

3log(s(t)/s(x)) + 1 

Modified version: For any constant c ≥ 1, the amortized 

time to splay a node x in a tree with root t is at most 

3c(r(t) - r(x)) + 1 = 3clog(s(t)/s(x)) + 1-(l-1)(c-1), where l 

is the length of the splay path 



Dynamic tree (analysis) 
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pass 1 takes  3clogn + k      

pass 2 takes  k-1 

pass 3 takes  3clogn + 1 – (k-2)(c-1) 

 O(log n) 



Proving the modified access lemma 

• Same proof, multiply the potential by c: 
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Potential is:  c∙∑r(x) = c∙∑log2(s(x)) 
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Proof of the access lemma (cont) 

amortized time(zig-zig) = 2 +  = 

2 + c(r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z))   

2 + c(r’(x) + r’(z) - r(x) - r(y))       2 + c(r’(x) + r’(z) - r(x) - r(x))= 

2 + c(r(x) - r’(x) + r’(z)  - r’(x) + 3(r’(x) – r(x)))   

2 + c( log(s(x)/s’(x)) + log(s’(z)/s’(x)) ) + 3c(r’(x) – r(x))  

2 + c( log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s’(x)) )+ 3c(r’(x) - r(x)) = 

 3c(r’(x) - r(x))  - 2(c-1) 

z 

y 

x 

A B 

C 

D 

x 

y 

z 

D C 

B 

A 

==> 
(1) zig - zig 
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Proof of the access lemma (cont) 

z 

y 

x 

B C 

A 

D 

x 

z 

D C 

==> 
(2) zig - zag 

y 

B A 

Same modification 


