Dynamic trees (Steator and Tarjan 83)

Operations that we do on the trees

maketree(v)

w = findroot(v)

(w,c) = mincost(v) (can do maxcost(v) instead)
addcost(v,c)

link(v,w,c(v,w))

cut(v)

evert(v)

Applications

Incremental Minimum Spanning Forest

Maintain a minimum spanning forest of a graph to which we
Insert edges

Add an edge (v,w)
Discover if v and Vv
w are In the same
component by ’
comparing
flndroot(v) and

‘ 5 RF

Add an edge (v,w)

If v and w are In v
different

components

then add (v,w)

to the forest by
link (v,w,c(v,w)) F ’ ’

Add an edge (v,w)

If v and w are In V
different

components

then add (v,w)

to the forest by
, and
link(v,w,c(v,w)) f' ’ ”

Add an edge (v,w)
What if v and
W are in same
component ?

W

“)

“’ ”’

4/ eY
R

Add an edge (v,w)

We have to figure out Vv
If c(v,w) is smaller

than the largest cost ’
of an edge along the

tree path between v W
and w.

5 R%
L

11

Add an edge (v,w)

Find the largest edge Vv
along the tree path ’

from v to w by

evert(v) follows by

maxcost(w)
12

Add an edge (v,w)

If c(v,w) < c(X,y) Y

W " b ”
Ny P
A

link(v,w,c(v,w))

If c(v,w) < c(X,y)
then cut(x) and
link(v,w,c(v,w))

Add an edge (v,w)

Vv

Application (2)

« Minimum spanning forest with a particular
number of blue edges

15

Suppose we add
A to the weights
of the blue edges
and compute the
MSF

If A=—o0we
will get a MSF
with as many
blue edges as
possible

+)\ +A

+A

21

22

The blue edges
excluded cannot
be in any MSF.
Black edges
Included will be
In any MSF

Let M be the

maximum # of
blue edges in a
spanning forest

e

23

Imagine we increase A

24

At some point we
would trade a black
edge for a more
expensive blue edge

+A +A

+A

25

At some point we
would trade a black
edge for a more
expensive blue edge

+A +A

+A

26

At some point we
would trade a black
edge for a more
expensive blue edge

Let T be the forest we
get with M-1 blue
edges

+ +A

+A

27

The cost of this forest
IS (M-1)A + ¢(T)

The cost of any other
forest T’ with (M-1)
blue edges is

(M-DA + ¢(T)

= ¢(T) <c(T)

+A

+A

+A

28

Keep increasing A we
will find the lightest

MSF with M-2 edges
and so on..

+ +A

+A

29

Keep increasing A we
will find the lightest

MSF with M-2 edges
and so on..

+ +A

+A

30

Keep increasing A we
will find the lightest

MSF with M-2 edges
and so on..

+ +A

+A

31

The key observation

« We can find the critical values of A
efficiently

32

Start with a
spanning forest of
the blue subgraph

33

Process the black
edges In increasing
order of their
weight

34

Process the black
edges In increasing
order of their
weight

Let e be the current
black edge

35

If e closes a cycle
find the blue edge
e’ of maximum
cost on the cycle

A, =c(e)—c(e’)is
a critical value

Consider the cut
defined by
removing €’
from the forest

36

If e closes a cycle
find the blue edge
e’ of maximum
cost on the cycle

A, =c(e)—c(e’)is
a critical value

For A <A\, the
edge e’ 1s the
smallest crossing
It and for A > A,
the edge e Is the
smallest crossing
It

37

Replace e’ by e and
continue

38

Invariant: each
blue edge of the
forest is the
smallest blue edge
crossing the cut
that it defines

39

Why Is this invariant true ?

-\

It is clear if the cut does not change

40

Why Is this invariant true ?

—

_ I

But the cut may change...

41

Why Is this invariant true ?

We have c(e””) <c(e’)

42

Why Is this invariant true ?

And c(e”) <c(e’) < c(e”)

43

Invariant: each
blue edge of the
forest is the
smallest blue edge
crossing the cut
that it defines

44

Consider the next
largest black edge e

Find the largest
blue edge e’ on the
cycle that e closes
with the current
forest

45

Consider the next
largest black edge e

Find the largest
blue edge e’ on the
cycle that e closes
with the current
forest

A, =c(e)—c(e’)is
a critical value

46

Replace ¢’ by ¢
and continue

47

Replace ¢’ by ¢
and continue

Replace e’ by e
and continue

If the black edge
connects two
components then
It appears in any
spanning forest

Add 1t and
continue

49

» |If a black edge closes a cycle of black edges
just discard it

50

Summary

We identify a set of blue edges that are never in the tree

We identify a set of black edges always in the tree (say b
many)

Other edges are partitioned into black-blue pairs each with
an associated critical A

Sort the pairs by A

If you want b + z black edges then take the black edges of
the first z pairs and the blue edges of the rest

O(mlog(n)) total time

51

Application (3)

52

1D Range reporting

Given a set of intervals S on the line, preprocess them to
build a structure that allows efficient queries of the from:

Given a point x find all intervals containing it.

Dynamic range reporting + priorities

Given a set of intervals S on the line, each with priority
assigned to it, build a structure that allows efficient queries of
the from:

Given a point x find interval with minimum priority
containing it.

Updates — insert or delete an interval

Motivation — Packet classification

A

om
o 3 L0'71°0°061
f T W
o - 0°€1L'0°061
T
- 0°21L°0°061
™ - 0°11°0°061
-0°01L°0°061
- L 060061
L 0'8°0°061
ol< L 0°2°0°061
i=lks =
5|8 0 L 0'9°0°061
| = s L 0'G°0°061
4 ol
ol 5|9
5 - 070061
—i
L 0'€°0°06l
~ l - 02006l
L 0'1°0°061
o™

|P address

Nested intervals, IP prefixes

190.0.* * 190.1.*.*

3 Forward to Forward to
Interface A Interface B

2 block

190.0.1.*
IP address

: : I : : : preeeees : : pesneees —errrees : :
o o 9 0w O L0
S - <\! S &
S o N L3 o
S = S X
o Qo -
A o o
o o

v

Extension to 2D

« Query = point in R?
— (Sender IP, receiver IP)
* Interval = rectangle with priority

5

One dimensional data structure for
nested intervals

Nested Intervals

Containment tree:

The parent of interval v is the smallest
Interval containing v

Nested Intervals

UEry.

Starting node s = smallest interval containing the
query point

Relevant priorities are on the path from s to the root.

Problem: path may be long...

Hey, dynamic trees know how to do
that

5

2 9
2 7

We can use a dynamic tree to represent the
containment tree.

Query =» mincost()

Insert

Problem: Updates => Many cuts & links

Binarization

Node v => node v

Leftmost child of v => Left child
of v

Any other child of v => right
child of its left sibling

Adjust costs:
Left edge => priority of parent
Right edge => «

Insert (Cont.)

oy fodey

Constant number of links and cuts

Summary

Containment tree C

Query = min cost on path from starting pointto —
root

Represent C by binarized version B
Represent B by dynamic tree D

How do you find the point to start the query ?
How do you find the edges to cut ?

How do you start the query ?

—4

2 9 5
2 7 1

I Use a balanced search tree on the endpoints

HENECOOOO .

Min(Mincost(@),pri(@))

guery (cont)

—4

HENECOOOO .

Mincost(@)

Lets implement this data type

maketree(v)

w = findroot(v)
(w,c) = mincost(v)
addcost(v,c)
link(v,w,C)

cut(v)

evert(v)

68

Simple case -- paths

Assume for a moment that each tree T in the forest is a path.
We represent it by a virtual tree which is a simple splay tree.

=
(@
S
®
@

()

69

Findroot(v)

Splay at v, then follow right pointers until you reach the last
vertex w on the right path. Return w and splay at w.

70

Mincost(v)

With every vertex x we record cost(x) = the cost of the edge
(X,p(x))

We also record with each vertex x mincost(x) = minimum of
cost(y) over all descendants y of x.

71

Mincost(v)

Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

A

72

Addcost(v,c)

Rather than storing cost(x) and mincost(x) we will store

Acost(x) = cost(Xx) - cost(p(x))
Amin(x) = cost(x) - mincost(x)

A
L ®
3 (&)
@‘D@@

@. /7,6

3,-4,2

) (o) 4,-3,0
1,-2,0 '/ ’}2,-1,0
@ © ® 0, x,0

Addcost(v,c) :
Splay at v,
Acost(v) +=¢
Acost(left(v)) -=

similarly update
Amin
73

Addcost(v,c) (cont)

Notice that now we have to update Acost(x) and Amin(Xx)
through rotations

T

Acost’(v) = Acost(v) + Acost(w)
Acost’(w) = -Acost(V)
Acost’(b) = Acost(v) + Acost(b)

74

Addcost(v,c) (cont)

Update Amin:

A £

Amin’(w) = max {0, Amin(b) - Acost’(b), Amin(c) - Acost(c)}
Amin’(v) = max {0, Amin(a) - Acost(a), Amin’(w) - Acost’(w)}

75

Link(v,w,c), cut(v)

Translate directly into catenation and split of splay trees if we
talk about paths.

Lets do the general case now.

76

The virtual tree

» We represent each tree T by a virtual tree V.

The virtual tree i1s a binary tree with middle children.

left mlddle right
Think of V as partitioned into solid subtrees connected by

dashed edges

What is the relation between VVand T ?

77

Actual tree

@
0,

e
@/@ é\@\@\
ﬁ) NN

N

®\

78

Partition T Into
disjoint paths

Path decomposition

®
®
@{@ \
® O
i/ W @'%

79

Virtual trees (cont)

EachpathinT
corresponds to a solid
subtree in V

The parent of a vertex
X In T Is the successor
of x (in symmetric
order) in its solid
subtree or the parent
of the solid subtree if W Y

X 1s the Igstin | olRo
symmetric order in

this subtree

80

i/ &
of “<s>\®\
W

RS

.
“"
.t

Virtual trees (cont)

@ /®\
© @f\
© @
N © 5
® ®\ 0
Y
s P
W
@
@ ®

o .

Virtual trees (representation)

Each vertex points to p(x) to its left son |(x) and to its right son
r(x).

A vertex can easily decide if it is a left child a right child or a
middle child.

Each solid subtree functions like a splay tree.

82

The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.

Acost(x) = cost(x) - cost(p(x)) or cost(x) Is x Is a root of a solid
subtree

Amin(x) = cost(x) - mincost(x) (where mincost is the minimum
cost within the subtree)

83

Splicing

Want to change the path decomposition such that v and the root
are on the same path.

et w be the root of a solid subtree and v a middle child of w

==>

" Right(w)

) Right(w)

Want to make v the left child of w. It requires:
Acost’(v) = A cost(Vv) - A cost(w)

Acost’(u) = A cost(u) + A cost(w)

Amin’(w) = max {0, Amin(v) - Acost’(v), Amin(right(w))- Acost(right(w))}
84

Splicing (cont)

What is the effect on the path decomposition of the real tree ?

85

Splaying the virtual tree

Let X be the vertex in which we splay.
We do 3 passes:

1) Walk from X to the root and splay within each solid subtree

After the first pass the path o)

from x to the root consists

entirely of dashed edges ,'@
X

2) Walk from x to the root and splice at each proper ancestor of x.

Now X and the root are in the
same solid subtree

3) Splay at x

Now X is the root of the entire
virtual tree. 86

Example

87

Actual and virtual trees

88

Splay at m

89

Splay at m

90

Splay at m

91

Splay at m

92

Splay at m

93

Splay at m

94

Splay at m

95

Dynamic tree operations

w = findroot(v) : Splay at v, follow right pointers until reaching
the last node w, splay at w, and return w.

(v,c) = mincost(v) : Splay at v and use Acost and Amin to follow
pointers to the smallest node after v on its path (its in the right
subtree of v). Let w be this node, splay at w.

addcost(v,c) : Splay at v, increase Acost(v) by c and decrease
Acost(left(v)) by c, update Amin(v)

link(v,w,c(v,w)) : Splay at v, update the cost of v to be c(v,w)
(requires updates to Acost(v), Amin(v), Acost(left(v)), and
Acost(right(v)), splay at w (so potential does not increase too
much when we add v as a child) and make v a middle child of w

cut(v) : Splay at v, break the link between v and right(v), set
Acost(right(v)) += Acost(v) 96

97

Splay at m

98

Cutatm

99

Dynamic tree (analysis)
It suffices to analyze the amortized time of splay in the virtual tree
Use the access lemma as follows:
The weight assigned to each node/item v is

1 + Y 'sizes of subtrees (in the virtual tree) rooted at middle children of
Y

=* he size of v IS the #elements In v’s subtree in the virtual tree

Note: Splices do not
affect the size of v

101

Dynamic tree (analysis)

Analysis of the step (1) of a splay of a node in the virtual tree:

Apply the access lemma to each splay and sum up

/\ k=#solid subtree along the path

S(T,) +o +3Iog(S<T1)J+3Iog£S(TX))+ks
s(X,) s(x,) s(x)

(),

S(X)

102

Dynamic tree (analysis)

pass 1 takes 3logn + k
pass 2 takes k
pass 3 takes 3logn + 1

How do we get rid of this k ?

103

Refining the access lemma

Original version: The amortized time to splay a node
X In a tree with root t i1s at most 3(r(t) - r(x)) + 1 =

3log(s(t)/s(x)) +1

Modified version: For any constant ¢ > 1, the amortized
time to splay a node x in a tree with root t is at most
3c(r(t) - r(x)) + 1 = 3clog(s(t)/s(x)) + 1-(¢-1)(c-1), where ¢
IS the length of the splay path

104

Dynamic tree (analysis)

pass 1 takes 3clogn + k
pass 2 takes k-1
pass 3 takes 3clogn + 1 — (k-2)(c-1)

=> O(log n)

105

Proving the modified access lemma

« Same proof, multiply the potential by c:

Potential is: ¢-> r(x) = ¢ log,(s(x))

106

Proof of the access lemma (cont)

(1) zig - zig
==>

amortized time(zig-zig) =2 + A® =

2+c(r(x)+r'(y) +r'(2) - r(x) - r(y) - 1(2)) <
2+c(r’(x)+1'(2)-1(x)-1(y)) < 2+c(r’(x)+r'(2)-r(x)-r(x))=
2+c(r(x) - r'(x) +1'(z) -r’(x) +3(r’(x) - r(x))) <

2 + c(log(s(x)/s’(x)) + log(s’(z)/s’(x))) + 3c(r’(x) — r(x)) <

2 + ¢(log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s’(x)))+ 3c(r’(x) - r(x)) =
3c(r’(x) - r(x)) -2(c-1)

108

Proof of the access lemma (cont)

(2) zig - zag
==>

Same modification

109

