Distance Oracles
Goal

- A compact data structure
- Can answer queries of the form dist?(u,v)
 (preprocessing time is also interesting)
The trivial extreme cases

• Pre-compute all answers
 Size: $O(n^2)$, Query: $O(1)$

• Run Dijkstra/BFS at query time
 Size: $O(m)$, Query: $O(m + n \log(n))$
An immediate lower bound

\[\# \text{ graphs on } \{1, 2, ..., n\} = 2^{\binom{n}{2}} \]

Data structures for different graphs must be different:
If \((u,v) \in G_1\) but \((u,v) \notin G_2\) then
\[\delta_{G_1}(u,v) = 1 \text{ and } \delta_{G_2}(u,v) \neq 1 \]

\(\Rightarrow \) Some graphs must have a data structure of \(\Omega(n^2)\) bits
Allow approximate answers

- Stretch \((2k-1)\) for some \(k > 1\)
- Lets start with \(k=2\), so we want distance estimates such that:
 \[
 \delta(u,v) \leq \text{dist?}(u,v) \leq 3\delta(u,v)
 \]
Sample centers

\[A_0 \leftarrow V ; \quad A_1 \leftarrow \text{sample}(A_0, n^{-1/2}) ; \]
Sample centers

\[A_0 \leftarrow V ; \; A_1 \leftarrow \text{sample}(A_0, n^{-1/2}) ; \]
Sample centers

\[A_1 \leftarrow \text{sample}(V, n^{-1/2}) ; \]

Note that \(E(|A_1|) = \sqrt{n} \)
Information per vertex v

$p_1(v) = \text{The closest center to } v$
Information per vertex \(v \)

\[B_0(v) \leftarrow \{ w \in V - A_1 | \delta(v, w) < \delta(v, p_1(v)) \} \]

Note that \(E(|B_0(v)|) \leq \sqrt{n} \)
Information per vertex v

$B_0(v) \leftarrow \{w \in V - A_1 \mid \delta(v, w) < \delta(v, p_1(v))\}$

$B_1(v) \leftarrow A_1$

$B(v) \leftarrow B_0(v) \cup B_1(v)$
Information per vertex v

Save $B(v)$ in a hash table together with $\delta(v,u)$ for every $u \in B(v)$

Save $p_1(v)$ and $\delta(v,p_1(v))$

$O(n \sqrt{n})$ space
if $u \in B(v)$ then return $\delta(v, u)$
if $u \in B(v)$ then return $\delta(v,u)$
else return $\delta(v,p_1(v)) + \delta(u,p_1(v))$
\[\delta(v, p_1(v)) + \delta(u, p_1(v)) \leq \delta(v, u) + \delta(u, p_1(v)) \]
\[\leq \delta(v, u) + \delta(u, v) + \delta(v, p_1(v)) \]
\[\leq \delta(v, u) + \delta(u, v) + \delta(v, u) \]
Larger k

- Stretch \((2k-1)\) for some \(k \geq 1\)
 \[
 \delta(u,v) \leq \text{dist}(u,v) \leq (2k-1)\delta(u,v)
 \]
A hierarchy of centers

$A_0 \leftarrow V; A_i \leftarrow \text{sample}(A_{i-1}, n^{-1/k}), 1 \leq i \leq (k-1)$;
$k = 3$

$A_0 \leftarrow V$;
$A_1 \leftarrow \text{sample}(A_0, n^{-1/3})$; $E(|A_1|) = n^{2/3}$
$k=3$

$A_0 \leftarrow V$; $A_2 \leftarrow \text{sample}(A_1, n^{-1/3})$; $E(|A_2|) = n^{1/3}$
$A_0 = \bullet$
$A_1 = \bullet$
$A_2 = \bullet$

Pivots

$p_1(v)$
\[A_0 = \cdot \]
\[A_1 = \cdot \]
\[A_2 = \cdot \]

Pivots

\[p_2(v) \]

\[p_1(v) \]
$B_0(v) \leftarrow \{ w \in A_0 - A_1 \mid \delta(v, w) < \delta(v, p_1(v)) \}$
$B_1(v) \leftarrow \{w \in A_1 - A_2 \mid \delta(v, w) < \delta(v, p_2(v))\}$
$$B_2(v) \leftarrow A_2 \quad B(v) \leftarrow B_0(v) \cup B_1(v) \cup B_2(v)$$
The size of the bunch

Order the vertices by their distance from v, the first one sampled into A_1 shows up after $\leq n^{1/k}$ on average.
$\Rightarrow E(|B_0(v)|) \leq n^{1/k}$

Order the vertices of A_1 by their distance from v, the first one sampled into A_2 appears after $\leq n^{1/k}$ on average.
$\Rightarrow E(|B_1(v)|) \leq n^{1/k}$

The expected size of $A_k=B_k(v)$ is $n^{1/k}$
The size of the bunch

Save $B(v)$ in a hash table together with $\delta(v,u)$ for every $u \in B(v)$

Save $p_i(v)$ and $\delta(v, p_i(v))$, $1 \leq i \leq (k-1)$

$O\left(\frac{1}{k}k^{1+\frac{1}{k}}\right)$ space
Query answering algorithm

\[w_0 = u \]

\[w_2 = p_2(u) \in A_2 \]

\[w_1 = p_1(v) \in A_1 \]

\[w_3 = p_3(v) \in A_3 \]
Query answering algorithm

Algorithm \(\text{dist}_k(u,v) \)

\[
\begin{align*}
& w \leftarrow u, i \leftarrow 0 \\
\text{while } w \not\in B(v) \\
& \quad \{ \\
& \quad \quad i \leftarrow i+1 \\
& \quad \quad (u,v) \leftarrow (v,u) \\
& \quad \quad w \leftarrow p_i(u) \\
& \} \\
& \text{return } \delta(u,w) + \delta(w,v)
\end{align*}
\]

Takes \(O(k) \) time
Bound the stretch

\[w_2 = p_2(u) \in A_2 \]

\[w_1 = p_1(v) \in A_1 \]

\[w_3 = p_3(v) \in A_3 \]

\[w_0 = u \]

\[\Delta \]

\[\leq 2\Delta \]

\[\leq 3\Delta \]

\[\leq 4\Delta \]

\[\leq 2\Delta \]

\[\leq 3\Delta \]

\[\leq \Delta \]
Bound the stretch

\[w_i = p_i(u) \in A_i \]
\[w_{i-1} = p_{i-1}(v) \in A_{i-1} \]

\[\leq i\Delta \]
\[\leq (i-1)\Delta \]
Bound the stretch

\[w_{k-1} = p_{k-1}(u) \in A_{k-1} \leq (k-1)\Delta \]

\[w_{i-1} = p_{i-1}(v) \in A_{i-1} \leq (i-1)\Delta \]

\[\Rightarrow \text{Stretch} \leq (2k-1) \]
Easy, if we know all distances from v (run Dijkstra from v)

But this takes $\Omega(m)$ time per vertex $\Rightarrow \Omega(nm)$ total time
More efficient preprocessing
Computing Pivots

Do a shortest path computation from the **super-source**, the **red** ancestor of v in the tree is its pivot
In $O(k)$ applications of Dijkstra’s algorithm we know all pivots.
A vertex w will collect all vertices v such that $w \in B(v)$.
Clusters

\[C(w) \leftarrow \{v \in V \mid \delta(w, v) < \delta(v, A_1) \} \quad w \in A_0 - A_1 \]
Bunches are inverse clusters

Consider $w \in A_0 - A_1$

$w \in B_0(v) \iff v \in C(w)$
$C(w) \leftarrow \{v \in V \mid \delta(w,v) < \delta(v,A_2)\} \quad w \in A_1 - A_2$
Bunches are inverse clusters

Consider $w \in A_1 - A_2$

$w \in B_1(v) \iff v \in C(w)$
Computing clusters

Run Dijkstra from w but relax an edge \((u,v)\) only if \(d(u) + \ell(u,v) < \delta(v,A_1) = \delta(v,p_1(v))\)
Lemma: This application of Dijkstra’s alg. scans exactly the vertices of $C(w)$ giving them correct distance labels.

Proof: (By the def of the alg.) A vertex $v \notin C(w)$ does not get a finite distance label so we do not visit $v.$
Lemma: This application of Dijkstra’s alg. scans exactly the vertices of $C(w)$ giving them correct distance labels.

Proof: If $v \in C(w)$ then every u on the shortest path from w to v is in $C(w)$.
Computing clusters

Proof: If \(v \in C(w) \) then every \(u \) on the shortest path from \(w \) to \(v \) is in \(C(w) \)

If \(\delta(u,p_1(u)) < \delta(w,u) \) then
\[
\delta(u,p_1(u)) + \delta(u,v) < \delta(w,u) + \delta(u,v) = \delta(w,v)
\]

We finish showing that the algorithm scans and give correct labels to all vertices in \(C(w) \) by induction on the hop-distance from \(w \).
Analysis (preprocessing)

Neglecting logarithmic factors the running time is

$$O(\Sigma_w \text{edges}(C(w)))$$

A vertex v appears in $|B(v)|$ clusters and contributes its degree to each so

$$= O(\Sigma_v |B(v)||\text{edges}(v)|) = O(kn^{1/k}m)$$
Stretch/space tradeoff

Let $G=(V,E)$ be a graph with $|V|=n$ and $\text{girth}(G) \geq 2k+2$.

Any subgraph $G'=(V,E')$ of G must have a distinct data structure for stretch $t < 2k+1$.

If $(u,v) \in E'$, then $\delta_{G'}(u,v)=1$. Otherwise $\delta_{G'}(u,v) \geq 2k+1$.

As there are $2^{|E|}$ different subgraphs of G, some subgraphs must have data structures of at least $|E|$ bits.

Conjecture: (Erdös '65) For every $k \geq 1$, there are infinitely many n-vertex graphs with $\Omega(n^{1+1/k})$ edges that have girth $\geq 2k+2$.
Applications

• Routing
• Distance labels
• Spanners