Incremental cycle detection
The problem

- Start with n singleton vertices
- Add m edges one by one
- If a cycle is created report and stop
Example
Example
Straightforward solution

When an edge \((v,w)\) is added, search (DFS,BFS) from \(w\).

If \(v\) is reached report a cycle

Total work \(O(m^2)\)
Topological order

Maintain a topological order of the graph
Topological order

Maintain a topological order of the graph
Topological order

Use the topological order to prune the search.
Topological order

Use the topological to prune the search
Topological order

Need to fix the topological order
Order maintenance

• Keep the topological order in an order maintenance data structure

• Move the vertices between v and w including w right after v, keeping them in topological order
Another example
Analysis

- Define an arc \((x, y)\) and a vertex \(v\) to be related if there is a path containing them both.
For each arc \((x,y)\) traversed by the search, \(v\) was not related to \((x,y)\) before the search, and becomes related to the arc after the search.

\[\Rightarrow O(nm)\] time
Two-way search

F={w}

B={v}
Two-way search

F=\{w\} \quad B=\{v\}

Traverse compatible pairs of arcs \((u,v)\) and \((x,y)\) such that \(u < y\)
Two-way search

F={w,h} B={v,d}
Two-way search

F={w,h} B={v,d}
Two-way search

F={w,h,c} B={v,d,g}
Two-way search

Order F from left to right and B from right to left

$F=\{w,c,h\}$

$B=\{v,g,d\}$
Two-way search

F={w,c,h} B={v,g,d}
Two-way search

\[F = \{ w, c, f, h \} \]

\[B = \{ v, g, e, d \} \]
Two-way search

Stop when there are no more compatible pairs of arcs, or when the two searches collided, in which case a cycle is detected.
Reordering

\(F = \{w, c, f, h\} \)

\(B = \{v, g, e, d\} \)
Reordering

\[F = \{ w, c, f, h \} \]

\[B = \{ v, g, e, d \} \]
Reordering

\[F = \{w, c, f, h\} \]

\[B = \{v, g, e, d\} \]
Two-way search
Two-way search

F={h} B={v}
Two-way search

F={h} B={v}
Two-way search

F={h,j} B={v,d}
Two-way search

\[F = \{ h, j \} \quad B = \{ v, d \} \]
Since \(j > v \) we just do reordering as in the one way version, putting all green guys straight after \(v \)
Correctness

• Case analysis to show that topological order is maintained if a cycle is not created (homework)
Efficiency

Thm: When inserting a sequence of m arcs, two-way search traverses $O(m^{3/2})$ arcs

Proof: Define (x,y) and (u,v) to be related if there is a directed path containing both of them

Assuming no cycle is formed. All pairs of green and blue edges that we traversed are not related before the insertion of (v,w) and related after
All pairs of green-blue arcs become related

\[F = \{ w, c, f, h \} \]
\[B = \{ v, g, e, d \} \]
Efficiency

Thm: When inserting a sequence of \(m \) arcs, two-way search traverses \(O(m^{3/2}) \) arcs.

Proof (cont): We insert \(m \) arcs. Insertion \(i \) triggers a search of \(k_i \) pairs of arcs.

Small insertion \(\equiv k_i \leq m^{1/2} \)

Large insertion \(\equiv k_i > m^{1/2} \)

Total arc scanned by small insertions = \(m \times m^{1/2} = m^{3/2} \)
Large insertions

Proof (cont): Let \(j_1, j_2, \ldots \) be the large insertions. Insertion \(j_i \) contributes \((k_{ji})^2 \) new related pairs. So

\[
\sum_i (k_{ji})^2 \leq \binom{m}{2}
\]

But

\[
m^{1/2} \sum_i (k_{ji}) \leq \sum_i (k_{ji})^2
\]

So

\[
\sum_i (k_{ji}) \leq m^{3/2}
\]
Conclusion

Thm: When inserting a sequence of m arcs, two-way search traverses $O(m^{3/2})$ arcs

All searches traverse $O(m^{3/2})$ pairs

It takes $O(\log(n))$ time to traverse a pair (we have to maintain F and B as heaps..)

Total time $\Rightarrow O(m^{3/2}\log(n))$
One way search for dense graphs

• For each vertex u, maintain $k(u) \leq \text{size}(u)$ (= # predecessors of u)

• For each arc (u,v), $k(u) < k(v)$

\Rightarrow $k(u)$ is a weak topological numbering
Inserting an arc \((v, w)\)

- If \(k(v) < k(w)\) do nothing, otherwise

 ![Diagram](image)

- If a cycle is formed we need to detect it. As we search for it we can increase \(k()\) values of vertices

![Diagram](image)
Avoid looking at large neighbors

• Each vertex maintains a heap of its outgoing neighbors

• At x we have \(x_1, x_5, x_3, x_2, x_4 \) in a heap with keys:
 \(k(x_1) = 2, k(x_5) = 3, k(x_3) = 3, k(x_2) = 4, k(x_4) = 4 \)
“Pay” for search by increasing $k()$ values

- $k(x)$ increases, say from 2 to 3

- Need to update $k(x_1), k(x_5), k(x_3)$ to $1+k(x)$...
“Pay” for search by increasing \(k() \) values

- \(k(x) \) increases, say from 2 to 3

Using the heaps we avoid looking at neighbors that need not change
Update backwards?

- When $k(x)$ increases, do we increase its key in the heaps of its in-neighbors?

- Here x_1, x_3, x_5 have no other in-neighbors, but

```
k(x_1) = 2 \rightarrow 4
k(x_5) = 3 \rightarrow 4
k(x_3) = 3 \rightarrow 4
k(x_2) = 4
k(x_4) = 4
```
Without backward updates

- When x_5 updates $k(x_4)$ to 5

- We will not update the increase of the key of x_4 in the heaps of x_3 and x
Be lazy don’t update backwards

• So \(x_3 \) thinks it has to update \(x_4 \) but it discovers that it does not

⇒ futile forward updates

\[
k(x_1) = 4
k(x_5) = 4
k(x_3) = 4
k(x_2) = 4
k(x_4) = 4 \Rightarrow 5
\]
Summary so far

• When we add an arc \((v,w)\) where \(k(w) < k(v)\) we update \(k(w)\) to \(k(v) + 1\)
• Each vertex that changes propagates the change to successors he thinks are no larger than its new value
• If we reach \(v\) then a cycle is formed
Summary so far

• When we add an arc \((v,w)\) where \(k(w) < k(v)\) we update \(k(w)\) to \(k(v) + 1\)

• Each vertex that changes propagates the change to successors he “thinks” are no larger than its new value

• If we reach \(v\) then a cycle is formed
When v talks to w it wants to increase w as much as possible

- Maybe even above $k(v) + 1$.

Lemma: If $\text{size}(x_i) \geq s$, $i=1,\ldots,j$, then $\text{size}(v) \geq s + j$

proof:
How do we use it?

\[k(y_1) \geq k(y_2) \geq \ldots \geq k(y_i) \]

\(v \) maintains the nodes \(y_i \), with an edge \((y_i, v)\) in a data structure sorted by \(k(y_i) \) (at the time \(y_i \) last updated \(v \))
How do we use it?

\[k(y_1) \geq k(y_2) \geq \ldots \geq k(y_i) \]

By the Lemma:

For any \(j \), \(\text{size}(v) \geq k(y_j) + j \)

\[\implies \text{So we can set } k(v) = \max_j \{ k(y_j) + j \} \]
More precisely

\[k(y_1) \geq k(y_2) \geq \ldots \geq k(y_i) \]

Each time some \(y \) tried to update \(v \) we update the list above and then set

\[k(v) = \max_j \{k(v), k(y_j) + j\} \]
More precisely

\[k(y_1) \geq k(y_2) \geq \ldots \geq k(y_i) \]

Then \(y \) updates the new \(k(v) \) in its heap of outgoing arcs

\[k(v) = \max_j \{k(v), k(y_j) + j\} \]
Remaining questions

• Which data structure should we use to maintain incoming arcs sorted by $k(y)$ at v?

• How many updates could there be in the worst case?
How many updates?

- There are at most n updates that really increase $k(v) \implies O(n^2)$ total

- How many futile update are there? (y thinks $k(v)$ is no larger than $k(y)$ but discovers that it is in fact larger and $k(v)$ does not change)
Futile updates to v

• Let $k'(v) \leq k(y)$ be the value that y thinks v has, and let $k(v) > k(y)$ the value that v really has

• Associate the interval $[k'(v), k(v)]$ with this futile update

• Map this interval to $\text{LCA}(k'(v), k(v))$
A balanced binary tree over the values of $k(v)$
A balanced binary tree over the values of \(k(v) \)

How many intervals could map to a node?
Number of updates

• Look at a node with 2^i leaf descendants
• Only one update from a particular node y
• At most 2^i different nodes: After 2^i nodes y had tried to update v, with $k(y) > k'(v)$ then $k(v)$ should is not in this subtree anymore
Conclusion

- $O(n \log(n))$ futile updates
- $O(n^2 \log(n))$ updates overall
A data structure to update \(k(v) \)

\[
k(y_1) \geq k(y_2) \geq \ldots \ldots \geq k(y_i)
\]

A dynamic balanced binary search tree over \(y_1, y_2, \ldots, y_i \)
A dynamic balanced binary tree over the values of \(k(y_j) \)

In each node \(v \) we maintain the size of \(T_v \) and

\[
\text{Max}_{y \in T_v} \{ k(y) + \# \text{ precede } y \text{ in } T_v \}
\]
Summary

• At the root we have the value we need
• It takes $O(\log(n))$ time to update the tree
• $O(n^2 \log^2 n)$ total time