Problem 1
/O (a
/U (a)
R'I) Given a minimum cost circulation in a graph G = (V, E) show how to compute node potentials

m(v), v € V, such that all reduced costs with respect to 7w (¢™(¢)) of residual edges are non-negative.
What is the ronning time of your algorithm?

Let G be the residual network of the given min cost circulation. There is no negative cycle (With
respect to the cost function) in Gy (According to a thm we learned in the residual graph of a min
cost circulation there is no negative cycle). Let s be an arbitrary vertex in Gy. Yv € V let 4(v)
denote the shortest path from s to v in Gy (With respect to the cost function). We shall notice that
&(v) is well defined because there are no negative cycles in Gy. Let e = (u.v) be an edge in G/.
Let p, be the shortest path from s to v, and p, the shortest path from s to u. We shall examine
the path from s to v that starts with p, and then continue with e = (u,v). The cost of the path is
d(u) + cle) and we know that the cost of this path is > &(r) because §(v) is the shortest path from
s to v. Therefore: c(e) + d{u) — 8(v) > 0. We shall define 7(v) to be —d(v). Therefore for each
¢ € E(Gy) we have that ¢™(e) = e(e) + n(v) — w(u) > 0.

Because we can have negative weights in Gy we can’t wse dijkstra to compute 6(v). Instead
we shall use Bellman-Ford which has a complexity of O(nm). After ronning Bellman-Ford we have
d(v) and therefore we can compute ¢™(¢) of every edge in G in O(l) time per edge. Therefore the
\E)t-al running time is O(nm).

(b)

Let w(w), » € V be potentials such that there exists a feasible circulation f whose residual edges have
non-negative reduced costs with respect to 7. Given 7 show how to find a mininmunm cost ecirculation
whose residual edges have non-negative reduced cost with respect to 7. What is the running time of

your algorithm 7

Problem 1 [(b)] continued on next page. .. Page 2 of 17

We shall notice some important observations:

1. Let e = (u, v) be an edge such that e € £ or & € B (€ = (v,u)). Then ¢"(e) < 0 = f(e) = ufe)
(Whoii u is the capacity function).

Reasoning: 7 is a potential function such that there exists a feasible circulation f whose residual
edges have non-negative reduced cost. Therefore if the reduced cost of an edge is negative then it
can’t appear in Gy, therefore it must be saturated - f(e) = ule).

2. Let e = (u,v) ho an edfw such that ¢ € E or € € E (¥ = (v,u)). Then

c(e) >0— fle)=—f(%)=- w(
Reasoning: If ¢ (e) > 0 then ¢~ (C) < 0 and if f(e) # —u(€) then f(%€) # u(%e) and therefore
observation (1) does not hold for .

Tl](‘l’(‘f()t‘{‘ in the feasible circulation f, the following holds for each edgee = (u,v) such that
r*EE(:r e € E (e = (v,u)):

e) <0 — e (e) = ()
‘2. c™(e) > 0= fle) = —tL({’)

Therefore, the unly thing left for us is to find the flow for each edge ¢ = (u,v) € E such
that ¢™(e) =0 (¢"(e) =0 <= ¢"(%¢) =0). We know that in order for f to be a feasible circulation
the following must hold: Yv € V 3° f(v,w) = 0. Therefore, we need to find a feasible circulation
such that the flow on every edge with a non zero reduced cost will be according to our observations.
Yo € Vet b(v) = 3 . or w0 f (v, W) - (b(-vyis the previous sum limited to edges with reduced cost
that is not zero). We can reduce this problem to the following one: We shall delete the edges with a
non zero reduced cost from our graph. For every node v € V. b(v) will be the amount of flow that
is contained in v due the edges that we have deleted. We need to find a flow ¢ over the reamaining
edges (those with the zero reduced cost) such that Vo € V@ 37 f(v,w) = —b(v). Therefore the flow
S that is defined on the non zero reduced cost edges according to our abservations and is defined over
the zero reduced cost edges according to g will be feasible and will be according to our observations.

We can find the flow g by defining a new graph H = (V U {s,t}, E, U E; U E;) such that st
are new vertices that are not in V. E, = {e € E|c"(e) = 0}, the capacity of each edge ¢ € E, is
the same as in the original graph. £, = {{s,u)|b{z) > 0} and the capacity of each edge ¢ = (s, u)
in E, is b(u) and B, = {(v.t)|b(v) < 0} and the capacity of each edge ¢ = (v,t) in E; is —b(v).
Now we can simply run the best algorithm that we know for the max flow problem over the new
graph H (With s being the source and ¢ being the sink). [f there is a feasible solution to our
problem (and it's given that such a solution exists) then there is a flow that is saturating all the

edges in F, and in By (And this is of course a max fow because it's equal to a size of a cut -
the ent between s and the other vertices). Therefore the solution to the max flow problem over
H is defining the flow ¢ over the zero reduced cost edges in G, And therefore the flow f that we
defined in end of the previous paragraph is a feasible circulation in G and our observations holds
for the flow f and therefore in the Gy all the edges are with a non negative reduced cost. f is
a feasible circulation and there is a potential function such that all the edges in Gy are with a
non negative reduced cost and therefore according to a thm proved in class, f in a min cost circulation.

Therefore. our algorithm is to build H and then running a max flow algorithm on it. The
result of the max flow algorithm will be used in order to build the min cost circulation f. Building H
is O(m + 1) (Finding the non zero edges is OQ(m) work, computing b(¢) is O(m) work. The number
of edges in H is linear in the size of edges in & (Because £, and F; are linear in the size of V(({))
We can use the max flow algorithm that was learned in class with complexity of O(mn - log(n?/m)).
Building the min cost cireulation f from the max flow solution is O{m). Therefore the total
complexity is O(mn - log(n®/m)).

Page 3 of 17

First we shall prove that we shall end up with a max flow. At iteration, we are choosing an
augmenting path, and augmenting as much flow along the path as possible. Therefore this is a
private case of Ford-Fulkerson algorithin and we know that the Ford-Fulkerson always stops and
finds a max flow when the capacities are integers. Therefore, the algorithm does stop and finds max
How.

We shall now prove that the when the algorithm stops the solution i€ the minx fow with the minimum

cost.

Lemma 1: Let N = (G, u, e, 5.t} be a flow network and let f and f* be two feasible flows such that:
1. They have the same flow value. 2. Cost{f*) < Cost(f). Then the flow f% = (f*—f)(e) is a
circulation in the residual network graph of Ny

Prool: We shall prove that f¥(e) = (f * —f)({:] is a circulationflof in the residual network of
Ny -

1. We shall prove that for any e = (w, :) fBe) = —f%e) (e} = (v,u) iff e = (u,0))
fie) = fx(e) = fle)==[=fx(e)+ fle)] = — [*(_l) — fle™)] = =f8(e™)

2. We shall prove that for any e = (w, v}, 5’(() < r(e) = ule)=fle). fi(e) = fxle)—f(e) < ule)—f(e)
(Because f * (e) < u(e))

3. We shall prove that for any v € V(G): Y ,cvq f3v,w) = 0. Forv € V — {s,t} we
know that 30,y f * (t,w) = Y cve fle,w) = 0 and therefore 35, oy oy 2 (v,w) = 0.
For the source - s, because f and f# are feasible flows with the same fow value then
Yweviey f * (3:0) = Tocviey flsw) = |fl = |f *|. And therefore 3= oy g fP(s,w) = 0.
In the same way we can show that for the sink - ¢ Z”,O,-r_(‘,] T3t w) = 0.

Lemma 2: Let N = (G,u.c.s,t) be a flow network and let f a feasible flow. Then [is a
min cost How (Among all the flows with flow value of | f1) iff the residual graph Ny does not contain
a negative cvele in respect to the cost function. |

Proof: Let Val(f) denote the value of the flow f. If the residual network Ny contains a cycle C of
negative cost, let g be a flow in Ny such that g(e) = min.ccuys(e), for every e € C, and g{e) =0
otherwise. Clearly Val(g) = 0 and Cost(g) < 0. Therefore f + g is a cheaper flow in N of value
Val(f).

Conversely, suppose that f~is a flow in N with Val(f*) = Val(f) and Cost(f*) < Cost(f). The flow
f* — J in the residual network has cost Cost(f™) — Cost(f) < 0. According to Lemma 1, the How
[*—fis a circulation in the residual graph Ny, Therefore, according to the slides from the lecture,
the fact that Cost(f+) — Cost(f) < 0 is enough in order to prove that there exists a negative cycle
in Ny with respect to the cost function.

Lemma 3: Let N = (G.u.¢,s.t) be a flow network and let f be a min cost flow (Of value
Val(f)) in N. Let g be a flow of value ¢ along a cheapest path P from s to t in the residual network
Ny, with respect to the cost function ¢. Then f + g is a min cost of value of (Val(f) + d).

Proof: Let fxbe an arbitrary How of value Val(fs) = Val(f) +6 in N. We need to show
that Cost(f + g) < Cost(f+). We shall consider the flow (f*—f) in the residual network

Npoo Ms value is Val(f + —f) = 4. Any flow in Ny can be decomposed as the sum of Hows

along angmenting paths and cycles in Ny Therefore, the flow 6 can be decomposed to the
e - ;

paths py.....pe such that ZT o flow(p) = ¢ and the cost Cost{f = —f} can be represented

as the sum Cost(f = —f) = Z:C_,'_r{-(.’?f-'(ﬂ,)f?{}-‘;’t(p;). fis a min cost How of value Val(f)
and therefore Ny does not contain negative cost cycles (By Lemma 2). Therefore a cheap-
est path P in the residual network exists. As each path P’ in N; has cost of at least c(P),
we get that Cost{f = —f) = zf':}f!ow{p,-)mmt(pi) > (:(P)Eleﬂuu,-‘(p,) = ¢(P)5. Thus,
Cost(f + g) = Cost(f) + 6c(P) < Cost(f) + Cost(f « —f) = Cost(f+).

Page 5 of 17

We can now prove that when the algorithm stops the solution is the max fow with min cost. We :rzlroadﬂ
showed that the algorithm stops after a final munber of iterations ¢ and that when the algorithm stops

we have a max flow.

We'll show by induction on the number of iterations, that after the i-th iteration. the current
flow f, is a min cost flow (among all the flow with Val(f;)). We shall define the flow in iteration 0 as
the initial flow which is zero in all the edges.

Base: ¢ = 0. fo = 0. We know that all the costs are non-negative and therefore the best cost
that we can wish for is 0. We shall notice that if Ve : f{e) = 0 then we have a 0 flow with a.0 cost, and
therefore it’s a min cost flow (Among the flows with flow value 0).

Step: We shall assume that after the £ — ¢h iteration, fi is a min cost low {among the Aows with flow
value of | fr|). We shall prove that after the (k -+ 1) — th iteration, fiy;is a min cost flow (among all the
flows with a flow value of |fr+1]). We know that f; is a min cost flow (among the flows with flow value
of [fr]) and we know that the algorithm will augment fow along the cheapest path (with respect to the
cost function), and therefore, according to Lemma 3, the new flow fi.; will be a min cost flow (among
the flows with flow value of |fii]).

In the beginning of the answer, we showed that after the last iteration, t, the flow is a maximal

flow. And now we showed that it's a min cost maximal flow.

(b)

Assume the maximum cost of an edge is C and the maximum capacity of an edge is U. Suggest a
concrete implementation of this algorithm and analyse its running time.

Problem 2 [(b)] continued on next page. .. Page 6 of 17

We shall describe the algorithm:
I. Let w(v) be a potential function. Init Yo € V : w(v) = 0. Init f to be zero flow on all the edges.
2. While there is a path from s to ¢ in the residual graph G

(a) Find the shortest paths from s in Gy using Dijkstra according to the reduced cost ¢™(e)

(b) Let (v) be the cost of the shortest path from s to v in Gy according to original cost.
Define w(v) = —8(v)

(¢) Let p be the shortest path from s to ¢ in Gy, Augment as mnch flow along the path as
possible. ‘

Correctness: We are using Dijkstra and therefore we need to make sure that the reduced cost is
non negaitve for edges in Gy. We'll prove that in the beginning of each iteration the reduced cost
are non negative for the edges in Gy. We'll prove this by induction on the number of iterations.

Base: i = 0. The flow is zero. and therefore in Gy we have only edges e € E. We defined
m(v) = 0 and therefore the reduced cost are like the original cost which we know that are non
negative,

Step: - We shall assume that in the beginning of iteration ¢ = k the reduced cost were non

negative for the edges in Gy, Therefore we could run Dijhkstra on the reduced cost ¢™(e) and get
the tree of the shortest paths from s in Gy, Using this tree we can compute d(w) - the cost of the
shortest path from s to v according to the original cost (Look at the paths in the tree and compute
the cost according to the original costs). Qur new potential function is n{v) = —d(v). We know
that 8(r) < 8{u) + c(u,v) - because 6(v) is the cost of the shortest path from s to v.” And therefore:
c™(u,v) = elu,v) + w(v) — w(u) = 0. Now we are augmenting flow according to the shortest path
from s to t. The only edges that will be added to Gy as the result of the augmenting action, are
edges ¢ = (v,u) such that € = (u,v) is an edge on the shortest path from s to ¢ that we used in
order to augment the low. But rr”[{r_') =¢(%¢) = 8(v) + 8(n). And 8(v) is the shortest path from s
to v and §(u) is the shortest path from s to u. But & = (u,v) is on the shortest path from s to ¢
and therefore according to the attributes of the shortest path, we have that §(v) = 8(u) + e(u, v).
Therefore ¢ (F) = () — () = 0. If ¢"(€) = 0 then ¢™(e) = 0 and therefore the edges that

we added 1o Gy have a zero redueed cost, and we know that the other edges that were in Gy had

non-negative zero cost, and therefore in the beginning of the next iteration the reduced cost of the

edges in Gy will be non negative.

Problem 2 continued on next page. .. _ Page 7 of 17

Complexity: We shall notice that in every iteration the reduced cost of an edge is ¢™(e) :T
cle) + 6(u) — o(v). Where §(v) is the shortest path {rom s to v in Gy according to the original
costs. Therefore Yo € V : =C-(n—1) < §(v) € C - (n — 1) (Because the max length of a path is
[V] =1 = n—1 and the cost of every edge in the residual graph is between —C and C. Therefore,
0<c¢™e) < C+2-C-(n—-1)=C-(2n—1). And the cost of a simple path P from s to v in G according
to the reduce cost is 0 < ¢™(P) < ¢(P)+4d8(s)—d(v) =c(P)—8(v) < C-(n—1)+C-(n—1) =C-(2n—-2).
And all the costs are integer, therefore we can use Dial’s implementation for Dijkstra with integral
weights, therefore we shall keep 2C - n buckets and therefore distance updating and finding the min
value will be O(1). Therefore running Dijkstra according to Dial’s implementation will cost us
OC -n+n+m)=0(C-n-+m).

Building the new potential in every iteration is O(n), augmenting the flow and updating Gy is
O(n) and therefore the total cost jn an iteration is O(C - n + m). We need to find an upper bound to
the number of iterations. We know that the capacities are integral and the max capacity value is {/.
Therefore in every iteration we are augmenting at least 1 unit of flow, We know that each cut in the
graph is an upper bound to the max flow. If we'll look on the cut (V — {¢},{¢}) we shall find that the
cut can't be larger than O(U - n). Because at most n — 1 vertices are connected to ¢ and the capacity of
each edge is bound by U. Therefore we can have at most O(U - n) iterations. Therefore the total cost
of the algorithm is O(U - n(C - n + m)).

A final observation: If €' is too large than maybe we should use the regular Dijkstra algorithm
with a Fibonaecci Heap and get O(m + nlogn) work per iteration and then the total costr of the
algorithm will be: O(U - n(nlog(n) + m)). J

Page 8 of 17

m—

We shall define a new graph H which is the same as G except adding two vertices s and ¢,
and we shall add the edges {(s,z)|z € Vi} and the edges {(y.t)ly € V2}. Let ule) denote
the capeity of an edge. We shall define that Ye € E(H) : wu(e) = 1. The cost of every edge
(z,y) such that z € V; and y € V5 will be according to the given c(e) function. The cost of every
edge (s, z) such that = € Vi will be 0. and the cost of every edge (y, t) such that y € V5 will be 0 as well.

The min cost flow problem presented in class is to find a maximum flow of minimum cost.

We shall notice that the maximum flow is at most n. This is because we have the cut ({s}, V(H)—{s})
and its value is n and we know that each cut is an upper bound to the max flow. Furthermore, there
exists an integral flow with value n - for example the flow in which f(e) =1 for every e = (s,) such
that z € V1, f(e) = 1 for every e = (y,t) such that y € V3 and f(¢) =1 for every ¢ = (vy;, v2,) such

thatl <¢ <n (When 7y ; corresponds to the i-th vertex in Vi). Therefore the value of the max flow

is exactly n.

We shall notice that all the capacities in H are integer (Ye : wufe) = 1) and therefore there
exists an integral min cost maximal flow.

Lemmal : Every integral max flow solution in H with cost C corresponds to a perfect mate-
ing in G with cost C.

Proof : Let [be an integral max fow solution. The capacity of every edge in E(H) is 1 and
therefore in an integral solution the flow of each edge e is 0 or 1. We saw before that the value of f
must be 7, therefore f(e) =1 for every ¢ = (s,2) such that € V) and f(e) = 1 for every e = (y,t)
snuch that y € V5 (Otherwise the flow will be less than n and therefore not optimal). Therefore for
evey node 2 € V) there is one unit of flow that enters 1o @, and therefore there must be one unit of
flow that exits from z, and because it is an integral solution there exists exactly one edge ¢ = (7, y)
such that f(e) = 1 and y € V5 (all the rest have O flow). In the same way we can argue that for
every ¥ € V; there exactly one edge e = (z,y) such that f(e) = 1.and « € Vi. Therefore if we’ll
take all the edges ¢ = (z,y) such that f(e) =1 and x € V; and y € Vo we'll get a perfect matching.
Furthermore, the cost of this flow is exactly the cost of the matching that we got.

Lemma?2 : For every perfect matching in G with cost C, we have an integral max How solu-
tion in H with cost C. Let M be a perfect matching solution in G with cost C.

Proof : We shall define the following integral max flow: f(e) = 1 for each ¢ = (s,) and = € V,
f(e) =1 for each e = (y.t) and y € V3 and f(e) = 1 for every ¢ = (i,) such that ¢ € M. For all the
rest f(e) = 0. This is a valid flow because for every x € V; there exactly one unit of flow enters to it
(from s) and exactly one unit of flows exits from it (M is a matching and therefore we have exactly
one edge (x,y) such that f(e) = 1), in the same way we can argue that there is exactly one unit of
flow that enters every ¥ € Vo and there exactly one unit of flow that exists every y € Va. One can
notice that the value of the flow is n and therefore it’s max flow, and the cost of this max flow is
exactly the cost of the perfect matching.

We know that there exists an integral min cost max flow, and we shall denote it by f* and
its cost by ¢+. Therefore we can find it by running the min cost algorithm described in class. By
Lemma 1 this flow corresponds to a matching M»* with tost ex. And by Lemina?2, every other
perfect matching has a cost ¢ < e+, Therefore M+ js the min cost perfect matching and by Lemma 2
we know how to build M from fx,

Problem 3 continued on next page. .. Page 10 of 17

1<)

DCITT TAVICTIT

(b)

A bus which can carry at most 50 people travels along a path through locations 1,2,...,n in this
order. For every 1 <i < n,and 1 < j < n, such that i € j, you are given g;;, which is the maximum
number of people that want to travel from point 7 to point j; and the price f;; for a single ticket that
takes you from point i to point j. Show how to use the minimum cost flow algorithm to find a “plan”
for the bus driver to make maximum profit. A plan means how many people to load/drop at each
location such that it never carries more than 50 people.

Let ' = 50. We shall define the following graph: for each station 1 < ¢ < n we shall define a
vertex r; and a vertex o;. We shall add two vertices s and 1. We shall add an edge (o, r;) for all
1 <i < j < n with capacity ¢;; and cost — f;;, an edge (r;,0;) for each 1 < i < n with capacity C
and cost 0. an edge between (g, ri) for 1 <1 < n with capacity C and cost 0 and the edges (s,r;)

and (t,7,) with capacity C and cost, 0.

We shall notice that the flow can be larger than C (The cut ({s}.V(G) — {s}) has size C
and every cut is an upper bound for a flow). Furthermore, there is a flow with the value C -
fls.8) = C, f(s.8.01)=CTlor1 <i<mnand f(s,,t) = C (The flow on all the other edges will be
zero). Therefore the value of the max flow is C. The capacities are integral and therefore there is a
solntion for the min cost max flow which is integral.

Lemma 1 : Every plan P with cost Cost(P) corresponds to an integral flow f with cost —Cost(P).
Proof « Let P be a plan with cost €. We shall deline an integral flow f: Let f(s,r;) = C. Let
pi; be the number of people that will travel from point i to point j according to the plan, define
f(oi73) = pij. Let Oy = 377, pij, define f(ri,0;) = O;. We shall define now define f(r:, ri;1), for
our convenience we shall define rg = s and r,, ., = t. We already defined f(ry,r;), we shall now define
flry vy) for 1 <4 < nrecursively: LetF; = Z;_l, pji, define f(ri,riv1) = flrio1,ri) + B — O;.
We shall prove that this is a flow: 0 < f(s,r;) = €. DBecause P is a plan we know that
0 < floj.r;) = piy < giy. One can see that O; is the number of people that takes the bus in
point i according to the P. P is a valid plan and therefore 0 < f(r;,0;) = O; < C. One can
see that f(r,_y.ri) is € — §; when {; is the number of people that took the bus in point k < i

and left the bus in point j > 4. Therefore 1, is the mumber of people that are on the bus when
the bus travels from point i — | to point z. We know that P is a valid plan. and therefore
[, + 0, =I5 < C. Therefore C —l; ~O; + E; > 0 = f(risrig1) = r{ti—, 1) + B, — 0, = 0. We
now need to show that for every rj,o, such that 1 < 7 < n, the flow that goes in equal to the
flow that goes out. This is true for r; because we defined that f(ri,r.11) = f(riy,)+ E; — Oy,
therefore flow,,(r;) = flriy,m) + B = flri,rigy) + Oi = flowew(ri). And it is also true for
o, because flow,,(0;) = O; = Z:__l.Hp,_, = flowgy,(0;). One can notice that according to the
definition of f(r;.r;;1). we get that f(r,,t) = C, because in r,, we get that O, = 0 and {,, must
be equal to F,, (All the people that are still on the bus will leave at the final station r,) and
therefore f(rp,t) = C -, +E, + 0, = C -1, + 1, + 0 = C. Therefore we have a valid flow,
and one can see that the cost is only according to the edges (r;,0;) and therefore it’s equal to
— Y1 2. pijfi; = —Cost(P) (The minus is because we defined the cost to be with an opposite
sign to the one given).

Lemma?2 @ Every integral flow f with cost Cost(f) corresponds to a valid plan P with cost
—Cost(f). We shall define a plan P: p,; (The number of people that will go from station i to station
j according to the plan) will be equal to f(o0;, 7). We need to see that this is a valid plan. The flow
is integral and therefore p;; has a logic meaning. pi; = floi,7;) < ulo;,7;) = g;;, and therefore the
number of people that travel from i to j is at most q;;.

Problem 3 continued on next page. .. Page 11 of 17

We need to show that no more that C = 50 people are on the bus at given time. It js enough to
show that when the bus travels from point i to point 7 + | there are at most C' people on the bus.
According to the plan that we derived from the How, the number of people that are on the bus from
point i to point i + 1 is equal to) pyywhen k < ¢ and j > ¢ + 1 (The number of people that took
the bus before station 7 + 1 and that are leaving ths bus after station 7). I will explain why this sum
is at most C, it will not be a formal proof but will explain the idea. We will assume by contradiction
that this number is larger than C. The flow from s to r; is at most C because of the capacity. A
flow that went from o;to 7; (§ > i) can’t return to a node k < j. (This is due to the structure of the
graph). Therefore, the initial flow was at most ', and once that amount of flow goes from & < i to
4 >4+ 1 we can’t use it again in nodes with index< i. Therefore, once we passed C units of flow from
k<itoj>i+1 wedon't bave any more flow to pass from nodes with index < i to nodes with index
> i+ 1 (Without breaking the rule that the flow that goes in equal to the flow that goes out) and
therefore we can't pass more than C units of flow from node & < 7 to a node 7 > ¢ + 1 and therefore
this number if bounded by C. Therefore our plan is a valid plan., and the cost of the plan equal o

Cost(P) =321, Z?:m pijfi; = Z?:l E;:-Hl S, 3)elis 3) = ~Cost(f).

We know that there is a solution of the min cost max flow which is integral. Therefore there
exists an integral min cost max flow f+ with cost ex. According to Lemma 2 f* corresponds to a plan
P with cost —c#. And according to Lemma 1, any other plan P with cost ¢ corresponds to an integral
flow f with a cost —c, such that e+ < —c, and therefore ~cx > ¢. But —cx is the cost of the plan P
and ¢ is the cost of another plan P and therefore Pxthat we found is the plan with the max profit.

Page 12 of 17

Problem 4

'f 6 Consider the dyvnamic connectivity algorithm presented in class. Assume that you get as an input a graph
| G =(V, E) and a spanning forest I, together with a level I(e) for each edge e € E. Suggest an algorithm
-/ that decides if F' and the level function satisfy the invariants of the dynamic connectivity algorithm. Analyze

the running time of your algorithm.

The invariants are:
1. The forest is a maximum spanning forest with respect to the levels of the edges
2. Let Fj be the subforest of edges of level > 17, then each tree in Fj is of size no larger than 3.

We shall use the kruskal algorithm for finding a MST: (The weights are the levels of the edges)
1. Let S be the set of all the edges in G.
2. While S is not empty

(a) Remove an edge with min weight from S

(b)Y If that edge connectes two different trees, then add it to the forest, combining the two trees
into a single tree

(¢} Otherwise, discard that edge

We shall use the following property of Kruskal Alg (I will not prove this but it can be shown): For each
MST there is an order such that the Kruskal Alg will produce the MST when running by that order

Therefore we shall define the following order:

Let 5, be the set of all the edges with weight ¢. Let S7; be the edges in S; that are in F' and let SR;
be the edges in S; that are not in £. Therefore we shall use the following order: 0
O =< STy, SRy, 8T, 5Ra, ..., STiogn. SRiogn >this is a valid order because the edges are ordered
according to their weights. If F is indeed a maximum spanning forest, then the kruskal algo-
rithm should create ' when running on G with the order O. Therefore, we can check invariant 1,
by running the Kruskal algorithm on G with order O, and for every edge e we shall check that
econnectstwodif ferent trees <= Ji : ¢ € §T,. We can notice that in the when we are connecting
two different trees by an edge ¢ and creating a new tree T, we can check that the size of T is < ?’7‘5
(We are iterating over the edges according to O and therefore when creating T by connecting with
e, the tree T will have edges with level < I{e) and therefore we can check invariant two in the same time).

We shall now give a practical implementation, we shall use two data structures:

1. Union — Find: For cach edge we need to check if the two endpoints are in the same free or not, and
if pot then we need to unite them. We shall use the implementation in which % operations on the data
structure will cost us klog™(n). And we shall save in the root of every tree in the union find algorithin,
the size of that tree (The number of elements in the tree), when we are calling union we can update
this value in Q1) without hurting the performance.

2. We shall notice that our weights are integers between | and log(n), and when using kruskal we
are iterating over them in increasing order. Therefore we shall use an array with 1...log(n) cells, and
each cell with contain a pointer to a Jinked list with all the edges with that weight. Creating the data

structure will cost us Ollogn + m),

Problem 4 continued on next page. .. Page 13 of 17

F‘iually the algorithm:
(1) Create U an empty union find DS. Create a singleton set fo every v € V
(2) Create A the DS described in (2).

(3) Insert all the edges in E(F') to A. Now iterate over F(G) and add every edge e that is not in E(F)
to A (Therefore A is according to the order O)

(4) j=0
(5) valid=true
(6) While 4 is not cinpty

(1) If Alj] = null

(A) j=7+1
(B) continue,
(11) Else

(A) Let (u,v) = Alj).
(B) Remove the edge from A[j]
(C) Let inForest =1 <= (u,v) € F.
(D) Let inTheSameTree =1 = (u,v)arcin the same tree according tol/
(E) If inForest @ inTheSameTree # 1
(1) valid = false
(i) break
(Y I inTheSamelree =0
(i) Use union operation in ¢/ in order to unite them.
(ii) Let s be the size of the new tree (after the union)
(ili) If s > 5ty
(a) valid = false
(b) break

(7) return valid

Correcntess: It's easy to see that the algorithm will return wvalid = true —
Fandthelevel function satisfythei nvariantsof the dynamic connectivity algorithm

Complexity: Creating U is O(n). Creating A is O(leg(n) + m). For every ¢. taking e from A is
O(1). Removing is O(1). Checking if A is empty is O(1). Finding if they are in the same tree and union
is O(log xn).

Therefore: O(n + m + log(n) + mlog * (n)) = O(n + mlog * (n)).

Page 14 of 17

DO A&

IO Let S be a set of horizontal segments on the line. The set S satisfies the following “nesting” property: Every

——

two segments s;,52 € S are either digjoint or one contains the other. In addition each segment s has a cost
cfs). Assume that the costs of different segments are different. Note that such a family of segments defines
a natural forest where s is the parent of s, if 5; contains s, and there is no segment s that is contained in
s and contains so. A query is a point ¢ on the line and the answer should be the largest cost of a segment
containing ¢, or an indication that there s no segment containing q.

(a)

Show how to preprocess S into a simple data structure that can answer such queries in O(logn) time
per query. What is the size and the construction time of vour data structure?

We shall use a 10 — Segment Tree that was taught is the beginning of the course. But instead of
saving in every internal node, the labels of the relevant segments, we’ll save only the min cost value
of them. And when we'll call query on a point q, we'll go over the query path and calculate the min
value over the min cost values that will be in the internal nodes along the query path. If in every
internal node, there is no min cost value, then there is no segment in S that contains ¢. Otherwise,
the min value that we computed is the min cost among the segments that contain q.

Correctness: A query on a regular segment tree refurn the list of all the intervals that con-||(a)
tains the point. Thercfore our variation will return the min cost value over all the segments that
contain the query point.

Complexity: Building the segment tree is O{nlogn). Compuiing the min cost in every inter-
nal node does not change the complexity of building the tree, In every node we are only saving the
min-cost value and therefore the size of the structure is O(n). A query is O(logn) because the path
is O(logn) and the operation on every internal node is O(1).

(b)

We want to support also an insert and a delete operations. When we insert a segment we are
gnaranteed that the nesting property is preserved. Deseribe a data structure in which each operation
(insert/delete/and query) takes O{logn) time. (Hint, use dynamic trees and handle high degree
vertices in away similar to the algorithm for maintaining a spanning tree in a dyvnamic planar graph.)

Problem 5 [(b)] continued on next page... Page 15 of 17

My answer will be based on the following paper: “AN OPTIMAL DYNAMIC DATA STRUCTURE
FOR STABBING-SEMIGROUP QUERIES” By PANKAJ K. AGARWAL, LARS ARGE, HAIM
KAPLAN, EYAL MOLAD, ROBERT E. TARJAN, AND KE YL

As stated in the question, we can build a natrual forest I’ such where where s, is the parent
of sy if s) contains s and there is no segment s that is contained in s, and contains s2. Jf a node s
has more than one children then we order its children in increasing order of their left endpoints. We
shall notice that if we’ll add the interval £ = [—o0. 00| to S then £ becomes a tree T'; We shall add
the interval € with cost ¢(£) = oc. We define the weight of an edge ¢ from an interval to its parent to
be ¢(s). It's easy to see that the min cost over the edges on the path from a node s to its root is the
min cost between s and all the intervals that contain s (Because ¢(£) = 00). For a point ¢ let s, be
the smallest interval that contains . Thergfore the answer to our query which we shall denote by
M (q) is equal to min.ecn(s, mye(e).

A weakness of T is that an imsection or deletion of an interval may require insertions and
deletions of many edges. We h_qreofre)eprcseul T by a binary tree B; The nodes of B are the same
as the nodes of T. iele

The root of the tree B is €.

A left child of a node v in B is the first child of v in T, or null if v is a leaf in T. The weight of an
edge between v and its left child is the weight of the interval v.

A right child of a node v in B is the right sibling of v in T, or null if © is the rightmost child of its
parent in T The weight of the edge from v to its right child is 0.

Let IT(s,B) be the path from s to the root B in B. Therefore, according to the defini-
tions of 7' and B, for any node s € B: min.cnegrecle) = min.enpe.mele). Therefore
M(g) = min{min.cne rcle) e(sq)}-

It’s easy to verify that an insertion or a deletion of an interval requires only O{1) msertion
and deletions of edges tof from B.

We maintain B as a dynamic tree data structure. We also store the endpoints of all intervals
in a balanced search tree P. If z is an endpoint of an interval s € S. we store a pointer at the node
of P that stores x to the node of B corresponding to the interval s. The overall size of the structure
is linear.

We shall now describe how to implement quert, insert and delete:

Query:

Let ¢ € R be a query point, we shall compute M(g) as follows; We first find in O{log(n)) time the
predecessor @ of ¢ in P, Suppose in an endpoint of the interval s € 5. We have two cases:

1. z is the right endpoint of the interval s. Therefore s, = p(s). If s, is £, then we return that there
is no segment that contains ¢. Otherwise, M(q) = min,cn.p)c(e), and we use the dynamic tree
operation mincost(s) in order to find the value M(q).

2. z is the left endpoint of the interval 5. Therefore s = s, and M (q) = min{min.cn gycle), c(sq)}.
We shall use mincost(s) in order to compute min s zyc(e) and then we shall return the min value
between the result and e(s,).

The implementation of query takes O(logn) time, because searching in P is O(logn) and mencost
{nperation in dynamic trees is O{logn).

Aﬁo\""\my Hﬂu«\

(b)

Problem 5 continued on next page. .. Page 16 of 17

| Add:

To insert an interval s = [a, 0], we need to update both P and B. We first update B and add to it
a node representing s and then we insert ¢ and b to P. When we add a and b to P, we also store
pointers in the nodes containing them (o the node containing s in B. We first find the predecessor and
successor a~,ab (resp. b~ and b7} of a (resp. &) in P. Suppose e, a’, b~ andbTare the endpoints of
the intervals {17, r~ andr ™. respectively.

We allocate a new node for s and update its children as follows: If a™ > b, then s does not
contain an interval of S, so s is a leaf of T. Otherwise [Tis an interval that s contains and it should be
the leftmost child of s in T, and v~ should be the rightmost child of s in 7. So we make {7 the leftmost
child of s in B by preforming CUT(I™) followed by LINK (I, s, c(s)). The right child of s in B should
be the right sibling of s in 7. 1f s the right endpoint of #*, then s is the rightmost child of its parent
in T so s does not have another child in B. If bTis the left endpoint of 7=, then 7+ should be next
sibling of s in T, so to update B we perform CUT(»") followed by LINK(r*,s,0).

Finally we set the parent of s in 7. If a”is the left endpoint of {7, then s is the leftmost child
of 7 in 7, and we perform link(s,I™,c(l")). Otherwise, [~ is the left sibling of s in 7", and we perform
LINK(s,17,0).

This implementation of insert takes O(logn) time: Searching e ,a™,b7.b" in P is O(logn).
Once we locate them, we perform a constant number of CUT and LINK operations, which also take
Ollogn).

Delete:
To delete an interval s = [o, b]. we need to update both P and B. We shall first find the interval s in B |
by searching a {or b) in P and using the pointer contained in the node that we found.

If 5 is a left child of an interval ¢ in B then s is the leftmost child of ©. We have 3 options:

1. s does not have any children, the we shall CUT'(s), create a null node n and LINK (n, v, e(v)).

2. s has a left child. le. then le is now the leftmost child ofy, therefore, we should perform CUT(lc),
CUT(s), LINK(le,v,c(v)). I s has also a right child, re, then, re js now the right sibling of the
predecessor of s. Therefore we shall find p. the predecessor of s by usingP. And now we shall call
CUT(re), LINK(re.p,0).

3.5 has only a right child re. Therefore re will now be the lettmost child of v, and we shall call CUT (i),
CUT(S), LINK(rc,v,c(v)).

If 5 is a right child of an interval » in Bthen s is the right sibling of ©. We have 3 options:

1. s does not have any children, the we shall CUT(s), create a null node n and LIN K (n,v,0).

2. s has a left child, le, then le is now the right sibling ofv, therefore, we should perform CUT(le),
CUT(s), LINK(le,v.0). [f s has also a right child, re, then, re¢ is now the right sibling of the
predecessor of s, Therefore we shall find p, the predecessor of s by usingP. And now we shall eall
CUT(re), LINK(re,p.0).

3.s has only a right child re. Therefore re will now be the right sibling of v, and we shall call CUT'(r¢).
CUT(S), LINK (r¢,v,0).

This implementation of insert takes O(logn) time: Searching a or b in P is O(logn). Finding a
predecessor of a node v in P is O(logn}. Once we located them, we perform a constant number of CUT
and LIN K operations, which also take O(logn).

Page 17 of 17

