Computation Tree Logic (CTL)
CTL

Syntax

• P - a set of atomic propositions, every $p \in P$ is a CTL formula.
• f, g, CTL formulae, then so are $\neg f$, $f \land g$, EXf, $A[fUg]$, $E[fUg]$

E, A – path quantifiers, X, U, G, F – temporal operators

Interpreted over a tree of states:

• EXf - f holds in some immediate successor
• $A[fUg]$ - every path has a prefix that satisfies $[fUg]$
CTL Model (Kripke model)

\[M = (S, s_I, R, L) \]

- \(S \) is a finite set of states, \(s_I \in S \) is the initial state
- \(R \subseteq S \times S \) s.t. \(\forall u \in S. \exists v \in S. (u,v) \in R \) (total)
- \(L : S \rightarrow 2^{\text{AP}} \)

Example: \(\text{AP} = \{p,q,r\} \)
Example: XR Control Program

\{\text{@open, stop}\}

\{\text{Tout, @open, stop}\}

\{\text{Tout, Tin}\}

\{\text{Tin, open↓, @close}\}

\{\text{Tin, open!, @close}\}

\{\text{Tout, Tin}\}

\{\text{close!, go}\}

\{\text{open!}\}

\{\text{Tin, @close}\}
The infinite computation tree spanned by a model $M=(S,s_i,R,L)$

- root $s_0=s_i$
- $s \rightarrow t$ is an arc in the tree iff $(s,t) \in R$.

A path is: $s_0, s_1, s_2, \ldots \in S^\omega$ s.t. $\forall i. (s_i, s_{i+1}) \in R$
CTL Semantics

w.r.t a given model \((S, s_I, R, L)\) and a state \(s \in S\):

\[
\begin{align*}
s \models p & \iff p \in L(s) \\
s \models \neg f & \iff \text{not } s \models f \\
s \models f \land g & \iff s \models f \text{ and } s \models g \\
s \models \text{EX} f & \iff \exists s'. (s, s') \in R \text{ and } s' \models f \\
s \models \text{A}[f \cup g] & \iff \text{for every path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \\
& \quad \exists k \geq 0. \ s_k \models g \land \forall i. 0 \leq i < k \implies s_i \models f \\
s \models \text{E}[f \cup g] & \iff \text{for some path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \\
& \quad \exists k \geq 0. \ s_k \models g \land \forall i. 0 \leq i < k \implies s_i \models f
\end{align*}
\]

- \(f\) is \textit{satisfiable} iff there exists a model \((S, s_I, R, L)\) such that \(s_I \models f\)
- \(f\) is \textit{valid} iff \(f\) is \textit{satisfiable} by every model \((S, s_I, R, L)\)
Derived Operators

AX(f) ≡ ¬EX¬f
 f holds at all next states

AF(f) ≡ A[true U f]
 f holds in the future of every path

EF(f) ≡ E[true U f]
 f holds in the future of some path

AG(f) ≡ ¬EF(¬f)
 every state in every path satisfies f

EG(f) ≡ ¬AF(¬f)
 for some path every state satisfies f
A note on temporal wff

Syntax: \(\text{EXf, A}[f\text{Ug}], \text{E}[f\text{Ug}] \)

- \(\text{E, A} \) – path quantifiers
- \(\text{X, U, G, F} \) – temporal operators

Structure of a formula: \((\text{path})(\text{temporal})[\text{formula}]\)

- \(\text{E, A} \) – path quantifiers
- \(\text{X, U, G, F} \) – temporal operators

♥ \(\text{EF(Gu)} \) is not a wff, only \(\text{EF(EGu)} \) or \(\text{EF(AGu)} \)

♥ \(\text{A(fUg)} \) cannot be derived from \(\text{E(fUg)} \) since \(\neg \text{E}(\neg(f\text{Ug})) \) is not wff (since \(\neg(f\text{Ug}) \) is not wff)
Properties Expressed in CTL

- Every *req* is followed by *ack* (not 1-1): $\text{AG}(\text{req} \rightarrow \text{AF ack})$
- It is possible to get to a state where *started* holds but *ready* does not hold.
 \[
 \text{EF}(\text{started} \land \neg \text{ready})
 \]
- From any state it is possible to get to the *restart* state.
 \[
 \text{AG EF restart}
 \]
- Processes P,Q are not in their critical section simultaneously
 \[
 \text{AG}(\neg(\text{Pc} \land \text{Qc}))
 \]
- A process that asks to enter the critical section, eventually gets there
 \[
 \text{AG}(\text{PE} \rightarrow \text{AF(Pc)})
 \]
- Processes strictly alternate in access to the critical section
 \[
 \text{AG(Pc} \rightarrow \text{A}(\text{PcU}(\neg \text{Pc} \land \text{A}(\neg \text{PcUQc}))))
 \]
Assertions:

• 50 seconds minimal delay between trains.
 \[\text{AG}(\text{Tin} \Rightarrow \text{AX} \neg \text{Tin} \land \text{AXAX} \neg \text{Tin} \land \ldots \land \text{AX..AX} \neg \text{Tin}) \]

• It takes a train 6 seconds to arrive at the signal
 \[\text{AG}(\text{Tin} \Rightarrow \text{AX}(\text{AX}(\text{AX}(\text{AX}(\text{AX}(\text{AX}(\text{AtSignal}))))))) \]
 however, we could write \[\text{AG}(\text{Tin} \Rightarrow \text{AX}^6(\text{AtSignal}) \]
 like we did in LTL
LTL vs. CTL

- Different models - A CTL tree defines a subset of models of LTL
- Expressivity – Define LTL satisfied on Kripke model if satisfied by every path.

- LTL cannot distinguish behaviors that generate same path, therefore cannot express ‘possibility’.
- CTL is sensitive to the branching structure

Thus, “it is always possible to get tea after inserting a coin” is expressible in CTL: \(\text{AG(coin } \rightarrow \text{EXtea)} \) but not in LTL
satisfies $\Diamond \Box p$ but not $\text{AFAG}p$. -- no single F state

Similarly,

- $\Box \Diamond p \rightarrow \Diamond q$
- $\Diamond (p \land \neg p)$

not expressible in CTL
AGEFp - not expressible in LTL

Suppose $A\phi$ is equivalent to AGEFp
- (a) satisfies AGEFp hence $A\phi$
- (b)-paths \subseteq (a)-paths hence (b) satisfies $A\phi$
- However (b) does not satisfy AGEFp
CTL*

Allows any LTL formula to be preceded by A or E.

Exm.

\[E(p \lor Xq), \ A(Fq \land Gp) \]

CTL* is more powerful than CTL and LTL but Model checking is PSPACE-complete in size of formula.
CTL Model Checking problem:

Given a program model \((S, s_0, R, L)\) and a CTL formula \(f\), determine if \(s_0 \models f\).

Model-checking < Satisfiability

Semantic search: Given, \(M=(S,s_0,R,L)\), every formula is identified with the set of states that satisfy the formula (false \(\rightarrow \emptyset\), true \(\rightarrow S\)). So, given \(f\),

- find the set \(S' \subseteq S\) of all states in \(S\) that satisfy \(f\).
- Check if \(s_0 \in S'\).
• Given \((S, s_0, R, L)\), and \(f\), find the set \(S' \subseteq S\) of all states in \(S\) that satisfy \(f\).

Simple for formulae:

\[
\{ s \mid s \models p \} = \{ s \mid p \in L(s) \} \quad \text{-- } p \text{ atomic}
\]

\[
\{ s \mid s \models f \land g \} = \{ s \mid s \models f \} \cap \{ s \mid s \models g \}
\]

\[
\{ s \mid s \models \neg f \} = S - \{ s \mid s \models f \}
\]

\[
\{ s \mid s \models \text{EX} f \} = \{ s \mid \exists t \in S \text{ s.t. } (s,t) \in R \land t \models f \}
\]

The problem arises with \(A(qUr)\) and \(E(qUr)\).
Fix-points

- Fix-point: $\tau(x)=x$

- Given a set S, a functional $\tau: 2^S \rightarrow 2^S$ is:
 - monotonic iff $P \subseteq Q \Rightarrow \tau[P] \subseteq \tau[Q]$
 - \cup-continuous iff $P_1 \subseteq P_2 \subseteq \ldots \Rightarrow \tau[\cup P_i]=\cup \tau[P_i]$
 - \cap-continuous iff $P_1 \supseteq P_2 \supseteq \ldots \Rightarrow \tau[\cap P_i]=\cap \tau[P_i]$

- Theorem (Tarski)

 Monotonic τ have least and greatest fix-points:

 \[
 \text{lfp}(\tau) = \bigcap \{Z : \tau[Z]=Z\},
 \]

 \[
 \text{gfp}(\tau) = \bigcup \{Z : \tau[Z]=Z\},
 \]

 \[
 \text{lfp}(\tau) = \bigcup \tau^i[\emptyset], \ i=0,1,\ldots \text{ if } \tau \text{ is also } \cup\text{-continuous}
 \]

 \[
 \text{gfp}(\tau) = \bigcap \tau^i[S], \ i=0,1,\ldots \text{ if } \tau \text{ is also } \cap\text{-continuous}
 \]
Lemma: $\text{EF}f = f \lor \text{EX}(\text{Eff})$ (satisfied by same states)

\Rightarrow $\text{EF}f$ is a fix-point of $\tau[Z] = f \lor \text{EX} Z$

Lemma: $f \lor \text{EX} Z$ is monotonic, \cup-continuous and \cap-continuous

\Rightarrow by Tarski: $\text{lfp}(f \lor \text{EX} Z) = \lor(f \lor \text{EX} \text{false})^I$

Lemma: $\text{EF}f$ is a least fix-point of $\tau[Z] = f \lor \text{EX} Z$

$\Rightarrow \text{EF}f = \Box(f \square \text{EX} \text{false})^i$
Fixpoints of CTL Operators (Clark-Emerson)

<table>
<thead>
<tr>
<th>$\tau[Z]$</th>
<th>lfp</th>
<th>computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g \lor (f \land \text{AXZ})$</td>
<td>$A[fUg]$</td>
<td>$\cup(g \lor (f \land \text{AX false}))^i$</td>
</tr>
<tr>
<td>$g \lor (f \land \text{EXZ})$</td>
<td>$E[fUg]$</td>
<td>$\cup(g \lor (f \land \text{EX false}))^i$</td>
</tr>
<tr>
<td>$f \lor \text{AXZ}$</td>
<td>$\text{AFF}f$</td>
<td>$\cup(f \lor \text{AX false})^i$</td>
</tr>
<tr>
<td>$f \lor \text{EXZ}$</td>
<td>$\text{EFF}f$</td>
<td>$\cup(f \lor \text{EX false})^i$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\tau[Z]$</th>
<th>gfp</th>
<th>computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \land \text{AXZ}$</td>
<td>$\text{AG}f$</td>
<td>$\cap(f \land \text{AX true})^i$</td>
</tr>
<tr>
<td>$f \land \text{EXZ}$</td>
<td>$\text{EG}f$</td>
<td>$\cap(f \land \text{EX true})^i$</td>
</tr>
</tbody>
</table>

where $i \leq \lvert S \rvert$ (S is finite)

Recall $\text{AX}(f) \equiv \neg \text{EX} \neg f$
Example: EFp

\[\tau(\text{false}) = p \lor \text{EX } \text{false} = p \]

\[\tau^2(\text{false}) = p \lor \text{EX } p \]

\[\tau^3(\text{false}) = p \lor \text{EX}(p \lor \text{EX } p) \]

the Kripke model
Example: $EGy = \bigcap (y \land EX \text{ true})^i$

$[EG(y)] =$

$[y] \cap EX[S] = \{s_0,s_1,s_2,s_4\} = E_0$

$\cap [y] \cap EX[E_0] = \{s_0,s_1,s_2,s_4\} \cap \{s_0,s_2,s_3,s_4,s_5,s_6\} = \{s_0,s_2,s_4\} = E_1$

$\cap [y] \cap EX[E_1] = \{s_0,s_1,s_2,s_4\} \cap \{s_0,s_2,s_3,s_4,s_6\} = \{s_0,s_2,s_4\} = E_1$
Example: $\text{EF}(x=z \land y \neq z) = \bigcup((x=z \land y \neq z) \lor \text{EX} \text{false})^i$

$[\text{EF}(x=z \land y \neq z)] =$

$[(x=z \land y \neq z)] \cup \text{EX}[\emptyset] = \{s_4, s_5\} = \text{E}_0$

$\cup [\text{E}_0] \cup \text{EX}[\text{E}_0] = \{s_4, s_5\} \cup \{s_6\} = \{s_4, s_5, s_6\} = \text{E}_1$

$\cup (\text{EX}[\text{E}_1] = \{s_6, s_7\}) = \{s_4, s_5, s_6, s_7\} = \text{E}_2$

$\cup (\text{EX}[\text{E}_2] = \{s_6, s_7, s_5\}) = \{s_4, s_5, s_6, s_7\}$
Algorithm (sketch)
1. Construct A, the set of sub-formulae of f.
2. For $i=1,...,|f|$, label every state $s \in S$ with the sub-formulae of length i that are satisfied by s.
3. Check if s_0 is labeled by f.

At stage i the algorithm employs the information gathered in earlier stages (in particular path formulae look at the information of the next states).
Model Checking Algorithm

Given $M=(S, s_0, R, L)$, and a CTL formula f

for $j=0$ to $\text{length}(f)$

for each sub-formula g of f of length j

case (--- structure of g)

p: nothing (--- S is already labeled with propositions)
$q \land r$: $\forall s \in S$: if $q \in L(s)$ and $r \in L(s)$ then add $q \land r$ to $L(s)$
$\neg q$: $\forall s \in S$: if $q \notin L(s)$ then add $\neg q$ to $L(s)$
$\text{EX}q$: $\forall s \in S$: if $\exists t$ s.t. $(s,t) \in R$ and $q \in L(t)$ then add $\text{EX}q$ to $L(s)$
$A(q \lor r)$: $\text{AU-check}(q, r)$
$E(q \lor r)$: $\text{EU-check}(q, r)$

if $f \in L(s_0)$ then output=true, else output=false.
Checking state satisfiability for $A(q,Ur)$, $E(q,Ur)$

AU-check (q, r)

for each $s \in S$, if $r \in L(s)$ then add $A(q,Ur)$ to $L(s)$

for $j=1$ to $|S|$

for each $s \in S$,

if $q \in L(s)$ and $A(q,Ur) \in L(t)$ for all t s.t. $(s,t) \in R$

then add $A(q,Ur)$ to $L(s)$

EU-check (q, r)

for each $s \in S$, if $r \in L(s)$ then add $E(q,Ur)$ to $L(s)$

for $j=1$ to $|S|$

for each $s \in S$,

if $q \in L(s)$ and $E(q,Ur)$ to $L(t)$ for some t s.t. $(s,t) \in R$

then add $E(q,Ur)$ to $L(s)$

Complexity: $O(|\varphi| \cdot |S|^2)$
Fairness Assumption

Strong fairness: a transition that is enabled i.o. is taken i.o
- LTL: ($\square \diamond \varphi \rightarrow \square \diamond \psi$) - - $\square \diamond \psi$ private case, $\varphi=$True

Weak fairness: a transition that is continuously enabled is taken i.o
- LTL: ($\diamond \square \varphi \rightarrow \square \diamond \psi$)

\Rightarrow Rule out traces that are unrealistic or provide for unfair service (starvation).

$\square \diamond (T_{Red} \& P_{Green})$
& $\square \diamond (P_{Red} \& T_{Green})$

Fairness assumptions are not in CTL
Fair Semantics for CTL

Strong Fairness constraint:

\[S_{fair} = \bigwedge_i (\square \square \varphi_i \rightarrow \square \varphi_i) \land \bigwedge_j (\Diamond \square \varphi_j \rightarrow \square \Diamond \psi_j), \varphi_i, \psi_i, \varphi_j, \psi_j, \text{CTL formulae.} \]

For a model \(M = (S, s_I, R, L) \) and \(s \in S \):

\[\text{FairPaths}(s) = \{ \pi \in \text{Paths}(s) \mid \pi \models S_{fair} \} \]

Fair semantics w.r.t. \(S_{fair} \)

\[s \models_F p \quad \text{iff} \quad s \models p \]

\[s \models_F \neg f \quad \text{iff} \quad \text{not } s \models_F f \]

\[s \models_F f \land g \quad \text{iff} \quad s \models_F f \land s \models_F g \]

\[s \models_F \exists x f \quad \text{iff} \quad \exists s'. (s, s') \in R \text{ and } s' \models f \land \pi \models \text{FairPaths}(s), \]

\[s \models_F E[p \cup q] \quad \text{iff} \quad \exists \pi = (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \pi \models \text{FairPaths}(s), \]

\[\exists k \geq 0. s_k \models q \land \forall i. 0 \leq i < k \Rightarrow s_i \models p \]

\[s \models_F A[p \cup q] \quad \text{iff} \quad \forall \pi = (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \pi \models \text{FairPaths}(s), \]

\[\exists k \geq 0. s_k \models q \land \forall i. 0 \leq i < k \Rightarrow s_i \models p \]
Model Checking under Farness Constraints

- How to check: \(\pi \in \text{FairPaths}(s) \) ?

- Observation: \(\pi \in \text{FairPaths}(s) \) iff \(\forall j \geq 0 \ \pi^j \in \text{FairPaths}(\pi_j) \)

- Hence, redefine fair semantic:

\[
\begin{align*}
 & s |=_F p & \text{iff} & s |=_p \\
 & s |=_F \neg f & \text{iff} & \neg s |=_F f \\
 & s |=_F f \land g & \text{iff} & s |=_F f \land s |=_F g \\
 & s |=_F \exists f & \text{iff} & \exists s'. (s,s') \in R \land s' |=_ f \land \text{FairPaths}(s') \neq \emptyset \\
 & s |=_F \forall f \text{U} g & \text{iff} & \text{for every path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \\
 & & & \exists k \geq 0. s_k |=_ g \land \forall i. 0 \leq i < k \Rightarrow s_i |=_ f \\
 & & & \land \text{FairPaths}(s_k) \neq \emptyset \\
 & s |=_F \exists f \text{U} g & \text{iff} & \text{for some path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \\
 & & & \exists k \geq 0. s_k |=_ g \land \forall i. 0 \leq i < k \Rightarrow s_i |=_ f \\
 & & & \land \text{FairPaths}(s_k) \neq \emptyset
\end{align*}
\]
Computation of $\text{FairPaths}(s) \neq \emptyset$

- Let: $S_{fair} = (\Box \Diamond \varphi \rightarrow \Box \Diamond \psi)$ where φ, ψ are CTL formulae.

 $\pi \models S_{fair}$ iff $\exists k \geq 0$, $n \geq k$, s.t. $\pi = s_0 \ldots s_{k-1}(s_k \ldots s_n)^\omega$

 and: $\forall k \leq i \leq n. s_i \not\models \varphi$ or $\exists k \leq j \leq n. s_j \models \psi$

- Computation of $\text{FairPaths}(s) \neq \emptyset$ w.r.t. $S_{fair} = (\Box \Diamond \varphi \rightarrow \Box \Diamond \psi)$

For a model $M = (S, s_I, R, L)$:

- Let $a, b, fair$ be new fresh variables

- Compute $Sat(\varphi) = \{ s \in S \mid s \models \varphi \}$ then $\forall s \in Sat(\varphi). L(s) := L(s) \cup \{a\}$

- Compute $Sat(\psi) = \{ s \in S \mid s \models \psi \}$ then $\forall s \in Sat(\psi). L(s) := L(s) \cup \{b\}$

- Decompose M into a graph of maximal SCCs.

- For each SCC, if for all states $s \in \text{SCC}$, $a \not\in L(s)$, or otherwise there exists a state $s' \in \text{SCC}$ s.t. $b \not\in L(s')$, mark the SCC as $fair$

- For each $s \in S$ if there exists a path from s to a $fair$ SCC then $L(s) \cup \{fair\}$
Computation of $\text{FairPaths}(s) \neq \emptyset$

- Hence, redefine fair semantic:

 \[
 s \models_F p \quad \text{iff} \quad s \models p
 \]

 \[
 s \models_F \neg f \quad \text{iff} \quad \neg s \models_F f
 \]

 \[
 s \models_F f \land g \quad \text{iff} \quad s \models_F f \land s \models_F g
 \]

 \[
 s \models_F \text{E}_f \quad \text{iff} \quad \exists s'. (s, s') \in R \land s' \models (f \land \text{fair})
 \]

 \[
 s \models_F \text{A}[f \land g] \quad \text{iff} \quad \text{for every path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \exists k \geq 0. s_k \models g \land \forall i. 0 \leq i < k \Rightarrow s_i \models (f \land \text{fair})
 \]

 \[
 s \models_F \text{E}[f \land g] \quad \text{iff} \quad \text{for some path } (s_0, s_1, \ldots) \text{ s.t } s_0 = s, \exists k \geq 0. s_k \models g \land \forall i. 0 \leq i < k \Rightarrow s_i \models (f \land \text{fair})
 \]

Thus, ‘fair’ model checking requires pre-processing of the model that extends the states labeling, then normal model checking algorithm.
• For a model with N states and M transitions and a CTL formula f and a CTL fairness constraint, still linear time: $O(|f| \cdot (N + M))$.

• In the general case, with k fairness constraints, the labeling must be carried out separately for each constraint and the final labeling is the conjunction of the separate labeling. The complexity is then $O(|f| \cdot (N + M) \cdot k)$.
A(qU^{\leq k} r) - at all paths r holds within k t.u. and q holds at all states until then.

E(qU^{\leq k} r) - at some path r holds within k t.u. and q holds at all states until then.

Semantics (fixed rate progress approach):

\(s_0 \models A(qU^{\leq k} r) \) iff for every path \((s_0, s_1, \ldots)\)

\(\exists i. \ 0 \leq i \leq k \land s_i \models r \land \forall j. \ 0 \leq j < i \Rightarrow s_j \models q \)

\(s_0 \models E(qU^{\leq k} r) \) iff exists path \((s_0, s_1, \ldots)\) and

\(\exists i \geq 0. \ 0 \leq i \leq k \land s_i \models r \land \forall j. \ 0 \leq j < i \Rightarrow s_j \models q \)
Given $M=(S, s_0, R, L)$, and a CTL formula f

for $j=0$ to $\text{length}(f)$

for each sub-formula g of f of length j

case (structure of g)

p:

$q \land r$:

$\neg q$:

$\text{EX}q$:

$\text{A}(qUr)$:

$\text{A}(qU^{\leq k}r)$: $\text{AU-check}(\text{min}(k,|S|), q, r)$

$\text{E}(qUr)$:

$\text{E}(qU^{\leq k}r)$: $\text{EU-check}(\text{min}(k,|S|), q, r)$

if $f \in L(s_0)$ then output=true, else output=false.
A(qU≤kr):

AU-check (max_len, q, r) -- max_len= \text{min}(k, |S|)

for each \(s \in S \), if \(r \in L(s) \) then add \(A(qU^{\leq 0}r) \) to \(L(s) \)

for \(len=1 \) to \(\text{max}_\text{len} \)

for each \(s \in S \),

if \(q \in L(s) \) and for every \(t \) such that \((s, t) \in R \)

there is \(j \leq len-1 \) s.t. \(A(qU^{\leq j}r) \in L(t) \)

then add \(A(qU^{\leq len}r) \) to \(L(s) \)

for each \(s \in S \),

if \(A(qU^{\leq j}r) \in L(s) \) for some \(j \leq \text{max}_\text{len} \)

then replace by \(A(qU^{\leq \text{max}_\text{len}}r) \) to \(L(s) \)

Note \(j<\text{max}_\text{len} \) can occur when \(|S|>k \)
\textbf{EU-check (max_len, q, r)} -- \textit{max_len} = \textit{min}(k, |S|)

\begin{enumerate}
\item for each \(s \in S \), if \(r \in L(s) \) then add \(E(qU^{\leq 0}r) \) to \(L(s) \)
\item for \(\text{len}=1 \) to \(\text{max_len} \)
\begin{enumerate}
\item for each \(s \in S \),
\begin{enumerate}
\item if \(q \in L(s) \) and
\begin{enumerate}
\item \(E(qU^{\leq \text{len}-1}r) \in L(t) \) for some \(t \) such that \((s,t) \in R \)
\end{enumerate}
\end{enumerate}
then add \(E(qU^{\leq \text{len}}r) \) to \(L(s) \)
\item for each \(s \in S \),
\begin{enumerate}
\item if \(E(qU^{\leq j}r) \in L(s) \) for some \(j \leq \text{max_len} \)
\begin{enumerate}
\item then replace by \(E(qU^{\leq \text{max_len}}r) \) to \(L(s) \)
\end{enumerate}
\end{enumerate}
\end{enumerate}
\end{enumerate}
\end{enumerate}
In order to express fixed delays, we need:

\[A(qU^k r) - \text{at all paths } r \text{ holds at } k \text{ t.u. and } q \text{ holds at all states until then.} \]

\[E(qU^k r) - \text{at some path } r \text{ holds at } k \text{ t.u. and } q \text{ holds at all states until then.} \]

Semantics (fixed rate progress approach):

\[s_0 \models A(qU^k r) \iff \text{for every path } (s_0, s_1, \ldots) \]
\[s_k \models r \land \forall j. \ 0 \leq j < k \Rightarrow s_j \models q \]

\[s_0 \models E(qU^k r) \iff \text{exists path } (s_0, s_1, \ldots) \text{ and} \]
\[s_k \models r \land \forall j. \ 0 \leq j < k \Rightarrow s_j \models q \]

Model checking same idea as for \(\leq k \)
Railroad Crossing in Real-Time CTL

Assertions:

• 50 seconds minimal delay between trains.
 \[\text{AG}(\text{Tin} \Rightarrow \neg \text{EF}^{\leq 50}\text{Tin}) \]

• It takes a train 6 seconds to arrive at the signal.
 \[\text{AG}(\text{Tin} \Rightarrow \text{AF}^6\text{AtSignal}) \]

• Train exits XR within 15 to 25 seconds.
 \[\text{AG}((((\text{Twait} \land \text{AX}(\neg \text{Twait})) \lor \text{AX}((\text{AtSignal} \land \neg \text{Twait}))) \Rightarrow \text{AG}^{\leq 16} \neg \text{Tout} \land \text{AF}^{\leq 26}\text{Tout})) \]

Requirements:

• Train at the signal is allowed to continue within 10 seconds.
 \[\text{AG}((\text{AtSignal} \Rightarrow \text{AF}^{\leq 5}(\neg \text{Twait}))) \]

• The gate is open whenever the crossing is empty for more than 10 seconds.
 \[\text{AG}(\neg \text{E}(\text{Tcr}^{0}\text{U}=^{10}\neg \text{Open})) \]
Symbolic Model Checking

Symbolic representation with Boolean formulae of:

- the model (program)
- CTL formula

thus avoiding the state explosion problem.

∴ Model Checking reduces to Boolean formulae manipulation.

The idea: Given a model \((S,R,L)\) over \(P\) (set of atomic propositions),

- Represent every state \(s \in S\) by a Boolean formula over \(P\) that is satisfied exactly by \(L(s)\)
- Represents \(R\) in terms of the Boolean formulas corresponding to source and destination states.
Program Representation - Example I

\[S \equiv \neg p \]
\[S' \equiv p \]
\[R \equiv (\neg p \land p') \lor (p \land p') \lor (p \land \neg p') \]
\[\equiv (\neg p \lor p) \land p' \lor (p \land \neg p') \]
\[\equiv p' \lor (p \land \neg p') \]
\[\equiv (p' \lor p) \land (p' \lor \neg p') \]
\[\equiv (p \lor p') \]
S0 ≡ \neg(v_0 \lor v_1), \quad S1 ≡ v_0 \land \neg v_1,
S2 ≡ \neg v_0 \land v_1, \quad S3 ≡ v_0 \land v_1
R \equiv (v_0' \leftrightarrow \neg v_0) \land (v_1' \leftrightarrow (v_0 \oplus v_1))
CTL Symbolic Representation

- \(p \in P \) , \(\neg f \) , \(f \land g \) , are Boolean formulae.
- We show Boolean representation for: \(\text{EX}f \) , \(\text{A}[f \lor g] \) , \(\text{E}[f \lor g] \)

EX\(f \)

- Let \(v_1,...,v_n \in P \) be the atomic propositions in \(f \), then:

 \[
 \exists (v_1,...,v_n).f = \lor (a_1,...,a_n) \in \{0,1\}^n \ f(a_1,...,a_n)
 \]

- Then, \(\text{EX}f \) is represented by the formula

 \[
 \exists (v_1',...,v_n').(R \land f'(v_1',...,v_n'))
 \]

\(\text{EX}\neg p \)

\[
\text{EX}\neg p = \exists p'. R \land f(p')
\]
\[
= \exists p'. (p \lor p') \land \neg p'
\]
\[
= \exists p'. (p \land \neg p')
\]
\[
= (p \land \neg \text{false}) \lor (p \land \neg \text{true}) = p
\]
EX(v₀ ∧ v₁)
= ∃(v₀', v₁'). R ∧ (v₀' ∧ v₁')
= ∃(v₀', v₁'). (¬v₀ ∧ v₁ ∧ v₀' ∧ v₁')
= ∃(v₁'). (¬v₀ ∧ v₁ ∧ false ∧ v₁') ∨ (¬v₀ ∧ v₁ ∧ true ∧ v₁')
= ∃(v₁'). (¬v₀ ∧ v₁ ∧ v₁')
= (¬v₀ ∧ v₁ ∧ false) ∨ (¬v₀ ∧ v₁ ∧ true)
= (¬v₀ ∧ v₁)
For other CTL operators use their fixed point representation in terms of EX.

Example: computation of EFp
- recall EFp = ∪τ^i(false) where τ(y)= p ∨ EXy
 τ^1(false) = p ∨ EXfalse = p
 τ^2(false) = τ(p) = p ∨ EXp = p ∨ ∃p'.(p ∨ p') ∧ p' = true
 τ^3(false) = τ(true) = p ∨ EXtrue = true
Computation of $\text{EF}(v_0 \land v_1)$

\[\tau^1(\text{false}) = (v_0 \land v_1) \lor \text{EXfalse} = (v_0 \land v_1) \]

\[\tau^2(\text{false}) = \tau(v_0 \land v_1) = (v_0 \land v_1) \lor \text{EX}(v_0 \land v_1) = (v_0 \land v_1) \lor (\neg v_0 \land v_1) = v_1 \]

\[\tau^3(\text{false}) = \tau(v_1) = (v_0 \land v_1) \lor \text{EX}v_1 = (v_0 \lor v_1) \]

\[\tau^3(\text{false}) = \tau(v_0 \lor v_1) = (v_0 \land v_1) \lor \text{EX}(v_0 \lor v_1) = \text{true} \]
Symbolic Model Checking Algorithm

eval(f)

{ Case (f)
 p : return p
 \neg g: return \neg eval(g)
 g \lor h: return eval(g) \lor eval(h)
 EXg: return \exists v'.(R \land p')
 E(gU h): return evalEU(eval(g),eval(h),false))
 EGg: return evalEGG(eval(g),true) }
Graphical representation of Boolean formulae obtained from ordered decision trees.

Ordered Decision Tree of $a \land b \lor c \land d$
Apply in bottom-up manner:

- Combine isomorphic sub-trees into a single tree
- Eliminate nodes whose left and right children are isomorphic
 - Linear time
 - Size of resulting graph depends on variable ordering
Example - Step 1: node elimination
Example - Step 1: isomorphic trees
Example - Step 1: Final BDD
Properties of BDDs

• Canonical representation of formulae, enables simple comparison.
• Logical operators: \neg, \land, \lor, EX are computed w.r.t. BDD quadratic time.