Computational Aspects of Prediction Markets

David M. Pennock and Rahul Sami

December 5, 2012

Presented by: Rami Eitan
Table of contents

1 Prediction Markets
2 Partition model of knowledge
3 Distributed information markets
4 Convergence time bounds
Prediction markets

- Many traders, each holds some partial information.
Prediction markets

- Many traders, each holds some partial information.
- Goal: to aggregate all the traders’ information and learn about the true state of the world.
Many traders, each holds some partial information.

Goal: to aggregate all the traders’ information and learn about the true state of the world.

Ideally the price of a security should converge to a value that reflects all the information about it known to the traders.
Prediction markets

- Many traders, each holds some partial information.
- Goal: to aggregate all the traders’ information and learn about the true state of the world.
- Ideally the price of a security should converge to a value that reflects all the information about it known to the traders.
Computational aspects

- Total number of possible securities.
Computational aspects

- Total number of possible securities.
- Complexity of updating the price after each round.
Computational aspects

- Total number of possible securities.
- Complexity of updating the price after each round.
- How many iterations before the price converge, if at all?
Computational aspects

- Total number of possible securities.
- Complexity of updating the price after each round.
- How many iterations before the price converge, if at all?
Partition model of knowledge

Let Ω be a set of possible states of the world. At any point of time, the world is in exactly one state $\omega \in \Omega$.
Let Ω be a set of possible states of the world. At any point of time, the world is in exactly one state $\omega \in \Omega$.

Each agent i has partial information about the state of the world represented by a collection of subsets of Ω.

David M. Pennock and Rahul Sami

Computational Aspects of Prediction Markets
Let Ω be a set of possible states of the world. At any point of time, the world is in exactly one state $\omega \in \Omega$.

Each agent i has partial information about the state of the world represented by a collection of subsets of Ω.

Agents can distinguish between different subsets of Ω but not between states within the same subset.
Let Ω be a set of possible states of the world. At any point of time, the world is in exactly one state $\omega \in \Omega$.

Each agent i has partial information about the state of the world represented by a collection of subsets of Ω.

Agents can distinguish between different subsets of Ω but not between states within the same subset.

Given n agents, their combined information $\hat{\pi}$ is the coarsest common refinement of the partitions $\pi_1, \pi_2, \ldots, \pi_n$.
Let Ω be a set of possible states of the world. At any point of time, the world is in exactly one state $\omega \in \Omega$.

Each agent i has partial information about the state of the world represented by a collection of subsets of Ω.

Agents can distinguish between different subsets of Ω but not between states within the same subset.

Given n agents, their combined information $\hat{\pi}$ is the coarsest common refinement of the partitions $\pi_1, \pi_2, \ldots, \pi_n$.

We assume a common prior distribution $\mathcal{P} \in \Delta(\Omega)$ shared by all agents before receiving any information.
Model of an information market

- let $x = \{0, 1\}^n \in \Omega$ be the state of the world.
Model of an information market

- let \(x = \{0, 1\}^n \in \Omega \) be the state of the world.
- Common prior distribution \(\mathcal{P} : \{0, 1\}^n \to [0, 1] \) over the values of \(x \).
Model of an information market

- let $x = \{0, 1\}^n \in \Omega$ be the state of the world.
- Common prior distribution $\mathcal{P} : \{0, 1\}^n \rightarrow [0, 1]$ over the values of x.
- n agents, each has a single bit of information x_i.

Model of an information market

- let \(x = \{0, 1\}^n \in \Omega \) be the state of the world.
- Common prior distribution \(\mathcal{P} : \{0, 1\}^n \to [0, 1] \) over the values of \(x \).
- \(n \) agents, each has a single bit of information \(x_i \).
- Agents are rational, truthful, risk neutral and myopic.
We would like to know the value of $f(x) : \{0,1\} \rightarrow \{0,1\}$.
We would like to know the value of $f(x): \{0, 1\} \rightarrow \{0, 1\}$.

Agents trade in a Boolean security F which pays 1$ if $f(x) = 1$ and 0$ otherwise.
Model of an information market

- We would like to know the value of $f(x) : \{0, 1\} \rightarrow \{0, 1\}$.
- Agents trade in a Boolean security F which pays 1$ if $f(x) = 1$ and 0$ otherwise.
- Trading is done synchronously with agents placing bids each round r.
We would like to know the value of $f(x) : \{0, 1\} \rightarrow \{0, 1\}$.

Agents trade in a Boolean security F which pays 1$ if $f(x) = 1$ and 0$ otherwise.

Trading is done synchronously with agents placing bids each round r.

Agents value F according to their expectation of payoff, and bid truthfully: $b^r_i = E_i[f(x)]$. For simplicity we assume all traders place a bid for exactly one security each round.
We would like to know the value of $f(x) : \{0, 1\} \rightarrow \{0, 1\}$.

Agents trade in a Boolean security F which pays 1$ if $f(x) = 1$ and 0$ otherwise.

Trading is done synchronously with agents placing bids each round r.

Agents value F according to their expectation of payoff, and bid truthfully: $b_i^r = E_i[f(x)]$. For simplicity we assume all traders place a bid for exactly one security each round.
Model of an information market cont.

- At the end of each round the market clears a new price
 \[p^r = \frac{\sum_i b_i}{n}. \]
Model of an information market cont.

- At the end of each round the market clears a new price
 \[p^r = \frac{\sum_i b_i}{n}. \]
- \(S^r \) denotes the set of commonly known possible states after round \(r \).
Model of an information market cont.

- At the end of each round the market clears a new price $p^r = \sum_i b_i / n$.
- S^r denotes the set of commonly known possible states after round r.
- S^r_i denotes the set of states agent i consider possible after round r.
Model of an information market cont.

- At the end of each round the market clears a new price
 \[p^r = \sum_i b_i/n. \]
- \(S^r \) denotes the set of commonly known possible states after round \(r \).
- \(S_i^r \) denotes the set of states agent \(i \) consider possible after round \(r \).
- After each round, each agent \(i \) can update their \(S_i^r \) by eliminating all \(x \)'s that would result a different price than what was announced.
Equilibrium price characterization

Note that:

1. $S^0 = \Omega$.
2. $S^0_i = \{y \in \Omega | y_i = x_i\}$
Equilibrium price characterization

Note that:

- $S^0 = \Omega$.
- $S^0_i = \{ y \in \Omega | y_i = x_i \}$
- $S^1 = \{ y \in S^0 | \text{price}^1(y) = p^1 \}$, where $\text{price}^1(x)$ is the function that relates each state to a clearing price. Even though x is unknown, any observer can still calculate the clearing price for hypothetical x and eliminate those which are different than what was declared.
Equilibrium price characterization

Note that:

- $S^0 = \Omega$.
- $S^0_i = \{y \in \Omega | y_i = x_i\}$
- $S^1 = \{y \in S^0 | \text{price}^1(y) = p^1\}$, where $\text{price}^1(x)$ is the function that relates each state to a clearing price. Even though x is unknown, any observer can still calculate the clearing price for hypothetical x and eliminate those which are different than what was declared.
- $S^r_i = \{y \in S^r | y_i = x_i\}$
Equilibrium price characterization

Note that:

- $S^0 = \Omega$.
- $S^0_i = \{y \in \Omega | y_i = x_i\}$
- $S^1 = \{y \in S^0 \text{ | } \text{price}^1(y) = p^1\}$, where $\text{price}^1(x)$ is the function that relates each state to a clearing price. Even though x is unknown, any observer can still calculate the clearing price for hypothetical x and eliminate those which are different than what was declared.
- $S^r_i = \{y \in S^r \text{ | } y_i = x_i\}$
- $S^r_i \subseteq S^{r-1}_i$ and $S^r \subseteq S^{r-1}$
Equilibrium price characterization

Note that:

- $S^0 = \Omega$.
- $S_i^0 = \{y \in \Omega | y_i = x_i\}$
- $S^1 = \{y \in S^0 | \text{price}^1(y) = p^1\}$, where $\text{price}^1(x)$ is the function that relates each state to a clearing price. Even though x is unknown, any observer can still calculate the clearing price for hypothetical x and eliminate those which are different than what was declared.
- $S_i^r = \{y \in S^r | y_i = x_i\}$
- $S_i^r \subseteq S_i^{r-1}$ and $S^r \subseteq S^{r-1}$
- A convergence is reached after a finite number of steps. We denote: S^∞, S_i^∞ and p^∞.
Example: OR function
the function C_n takes $2n$ bits as input - (x, y) and returns the carry bit for $x + y$. Let us examine the function C_2 with the following distribution:
Example: Carry bit function

the function C_n takes $2n$ bits as input - (x, y) and returns the carry bit for $x + y$. Let us examine the function C_2 with the following distribution:

- The pair (x_1, y_1) takes on the values $(0, 0), (0, 1), (1, 0), (1, 1)$ uniformly.
Example: Carry bit function

the function C_n takes $2n$ bits as input - (x, y) and returns the carry bit for $x + y$. Let us examine the function C_2 with the following distribution:

- The pair (x_1, y_1) takes on the values $(0, 0), (0, 1), (1, 0), (1, 1)$ uniformly.

- (x_2, y_2) has a distribution conditional on (x_1, y_1). If $(x_1, y_1) = (1, 1)$, then (x_2, y_2) takes the values $(0, 0), (0, 1), (1, 0), (1, 1)$ with probabilities $\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$ respectively. Otherwise with probabilities $\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2}$
A *rational expectations equilibrium* is a mapping $P^* : \Omega \rightarrow \mathbb{R}$ s.t. in every state ω, if every trader conditions her demand (or supply) on her private information π_i and the price $P^*(\omega)$, the market will clear at the price of exactly $P^*(\omega)$.
Equilibrium price characterization

Stochastically monotone function

A function $g : \mathbb{R}^n \rightarrow \mathbb{R}$ is called *Stochastically monotone* if it can be written in the form $g(x) = \sum_i g_i(x_i)$ where each $g_i : \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing.
Equilibrium price characterization

Stochastically monotone function

A function $g : \mathbb{R}^n \to \mathbb{R}$ is called **Stochastically monotone** if it can be written in the form $g(x) = \sum_i g_i(x_i)$ where each $g_i : \mathbb{R} \to \mathbb{R}$ is strictly increasing.

Stochastically regular function

A function $g : \mathbb{R}^n \to \mathbb{R}$ is called **Stochastically regular** if it can be written in the form $g = h \circ g'$ where g' is stochastically monotone and h is invertible on the range of g'.
Suppose that, at equilibrium, the n agents have a common prior, but a possibly different information about the value of F. For all i, let $p_i^\infty = E(F|x \in S_i^\infty)$. If g is stochastically monotone and $g(p_1^\infty, p_2^\infty, ..., p_n^\infty)$ is common knowledge then:

$$p_1^\infty = p_2^\infty = ... = p_n^\infty = E(F|x \in S_i^\infty) = p^\infty$$
Shared knowledge at equilibrium

Suppose that, at equilibrium, the n agents have a common prior, but a possibly different information about the value of F. For all i, let $p_i^\infty = E(F|x \in S_i^\infty)$. If g is stochastically monotone and $g(p_1^\infty, p_2^\infty, \ldots, p_n^\infty)$ is common knowledge then:

$$p_1^\infty = p_2^\infty = \ldots = p_n^\infty = E(F|x \in S_i^\infty) = p^\infty$$

This means that at equilibrium all agents must have exactly the same expectation of the value of the security and that this must agree with the expectation of an uninformed observer. Is equilibrium enough for the purpose of information aggregation?
Nielsen et al. 1990

Shared knowledge at equilibrium

Suppose that, at equilibrium, the n agents have a common prior, but a possibly different information about the value of F. For all i, let $p_i^\infty = E(F|x \in S_i^\infty)$. If g is stochastically monotone and $g(p_1^\infty, p_2^\infty, ..., p_n^\infty)$ is common knowledge then:

$$p_1^\infty = p_2^\infty = ... = p_n^\infty = E(F|x \in S_i^\infty) = p^\infty$$

This means that at equilibrium all agents must have exactly the same expectation of the value of the security and that this must agree with the expectation of an uninformed observer. Is equilibrium enough for the purpose of information aggregation? No. We also want that $p^\infty = f(x)$

Example: XOR with a uniform distribution.
Characterizing computable aggregates

weighted threshold function

A function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is a *weighted threshold function* iff there are \(w_1, w_2 \ldots w_n \in \mathbb{R} \) s.t

\[
f(x) = 1 \text{ iff } \sum_{i=1}^{n} w_i x_i \geq 1\]
A function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ is a weighted threshold function iff there are $w_1, w_2, ..., w_n \in \mathbb{R}$ s.t.

$$f(x) = 1 \text{ iff } \sum_{i=1}^{n} w_i x_i \geq 1$$

Equilibrium of weighted threshold functions

If f is a weighted threshold function, then for any prior probability distribution, the equilibrium price of F is equal to $f(x)$.
Proof:

\[p^\infty = E(F|x \in S_i^\infty) \] thus, if \(p^\infty = 0 \) or \(1 \) then \(f(x) = p^\infty \)
Proof:

\[p^\infty = E(F|x \in S^\infty) \] thus, if \(p^\infty = 0 \) or \(1 \) then \(f(x) = p^\infty \)

Assume towards contradiction that \(0 < p^\infty < 1 \). from Nielsen et al. we get:

\[P(f(y) = 1|y \in S^\infty) = p^\infty \]

\[\forall iP(f(y) = 1|y \in S_i^\infty) = p^\infty \]
Proof:

\[p^\infty = E(F|\mathbf{x} \in S_i^\infty) \] thus, if \(p^\infty = 0 \) or 1 then \(f(\mathbf{x}) = p^\infty \)

Assume towards contradiction that \(0 < p^\infty < 1 \). from Nielsen et al. we get:

\[P(f(y) = 1|y \in S^\infty) = p^\infty \] (1)
\[\forall i P(f(y) = 1|y \in S_i^\infty) = p^\infty \] (2)

since \(S_i^\infty = \{y \in S^\infty|y_i = x_i\} \) Equation (2) can be written as:

\[\forall i P(f(y) = 1|y \in S^\infty, y_i = x_i) = p^\infty \] (3)
Define:

\[J_i^+ = P(y_i = 1 | y \in S^\infty, f(y) = 1) \]
\[J_i^- = P(y_i = 1 | y \in S^\infty, f(y) = 0) \]

\[J^+ = \sum_{i=1}^{n} w_i J_i^+ \]
\[J^- = \sum_{i=1}^{n} w_i J_i^- \]

Since \(p^\infty \neq 0, 1 \) both \(J_i^+, J_i^- \) are well defined for all \(i \).
Proof cont.

Define:

\[J_i^+ = P(y_i = 1 | y \in S^\infty, f(y) = 1) \]
\[J_i^- = P(y_i = 1 | y \in S^\infty, f(y) = 0) \]

\[J^+ = \sum_{i=1}^{n} w_i J_i^+ \]
\[J^- = \sum_{i=1}^{n} w_i J_i^- \]

Since \(p^\infty \neq 0, 1 \) both \(J_i^+, J_i^- \) are well defined for all \(i \).
Claim: Equations (1) and (3) imply that $J_i^+ = J_i^-$ for all i
Claim: Equations (1) and (3) imply that $J_i^+ = J_i^-$ for all i
Proof: Assume $x_i = 1$, we then have:

\[
P(f(y) = 1|y \in S^\infty) \cdot J_i^+ + P(f(y) = 0|y \in S^\infty) \cdot J_i^-
\]

By Bayes’ law:

\[
P(\frac{p^\infty \cdot J_i^+}{p^\infty \cdot J_i^+ + (1 - p^\infty)J_i^-} = p^\infty \text{ by Eqs. (1) and (3)}
\]

\[
\Rightarrow J_i^+ = p^\infty J_i^+ + (1 - p^\infty)J_i^-
\]

\[
\Rightarrow J_i^+ = J_i^-
\]

The proof is symmetrical for $x_i = 0$
Using linearity of expectation we can write:

\[J^+_i = E \left(\sum_{i=1}^{n} w_i y_i \mid y \in S^\infty, f(y) = 1 \right) \]

\[J^-_i = E \left(\sum_{i=1}^{n} w_i y_i \mid y \in S^\infty, f(y) = 0 \right) \]
Using linearity of expectation we can write:

\[
J_i^+ = E \left(\left[\sum_{i=1}^{n} w_i y_i \right] \mid y \in S^\infty, f(y) = 1 \right)
\]

\[
J_i^- = E \left(\left[\sum_{i=1}^{n} w_i y_i \right] \mid y \in S^\infty, f(y) = 0 \right)
\]

Since \(f \) is a weighted threshold function, \(f(y) = 1 \) iff \(\sum_{i=1}^{n} w_i y_i \geq 1 \)

and thus \(J_i^+ \geq 1 \), similarly \(J_i^- < 1 \) which implies \(J_i^+ \neq J_i^- \)

And so we have a contradiction. \(\square \)
Upper bound on the number of iterations

In the worst case, at most \(n \) rounds of trading are required to reach an equilibrium.
Upper bound on the number of iterations

- In the worst case, at most n rounds of trading are required to reach an equilibrium.
- Each set $S^0, S^1 \ldots S^n$ has a strictly lower dimension than the previous one until the market reaches an equilibrium.
Upper bound on the number of iterations

- In the worst case, at most n rounds of trading are required to reach an equilibrium.
- Each set S^0, S^1, \ldots, S^n has a strictly lower dimension than the previous one until the market reaches an equilibrium.
Upper bound on the number of iterations

- In the worst case, at most n rounds of trading are required to reach an equilibrium.
- Each set $S^0, S^1 \ldots S^n$ has a strictly lower dimension than the previous one until the market reaches an equilibrium.

Dimension

The *dimension* of a set $S \subseteq \{0, 1\}^n$ is the dimension of the smallest affine subset of \mathbb{R}^n that contains all points in S. Denoted $\text{dim}(S)$.
Upper bound on the number of iterations

- In the worst case, at most n rounds of trading are required to reach an equilibrium.
- Each set $S^0, S^1 \ldots S^n$ has a strictly lower dimension than the previous on until the market reaches an equilibrium.

Dimension

The *dimension* of a set $S \subseteq \{0, 1\}^n$ is the dimension of the smallest affine subset of \mathbb{R}^n that contains all points in S. Denoted $\text{dim}(S)$.

Lemma

If $S^r \neq S^{r-1}$, then $\text{dim}(S^r) < \text{dim}(S^{r-1})$.
Proof

Let $k = \text{dim}(S^{r-1})$. Consider the bids in round r:

$$b^r_i = E(f(y) = 1 | y \in S^{r-1}, y_i = x_i)$$
Proof

Let \(k = \text{dim}(S^{r-1}) \). Consider the bids in round \(r \):

\[
b^r_i = E(f(y) = 1 | y \in S^{r-1}, y_i = x_i)
\]

Depending on the value of \(x_i \), \(b^r_i \) is either \(h^{(0)}_i \) or \(h^{(1)}_i \). These depend only on \(S^{r-1} \) which is common knowledge.
Let $k = \dim(S^{r-1})$. Consider the bids in round r:

$$b^r_i = E(f(y) = 1 | y \in S^{r-1}, y_i = x_i)$$

Depending on the value of x_i, b^r_i is either $h_i^{(0)}$ or $h_i^{(1)}$. These depend only on S^{r-1} which is common knowledge.

Denote $d_i = h_i^{(0)} - h_i^{(1)}$ and we get:

$$p^r = \frac{1}{n} \sum_{i=1}^{n} (h_i^{(0)} + d_i x_i) \quad (4)$$
Equation (4) defines a hyperplane the intersection of which with S^{r-1} is the resulting common knowledge S^r.
This is because all agents already know all $h_i^{(0)}$ and d_i and so they use the linear equation (4) to rule out any possibility that would not have resulted the price p^r.
Equation (4) defines a hyperplane the intersection of which with S^{r-1} is the resulting common knowledge S^r. This is because all agents already know all $h_i^{(0)}$ and d_i and so they use the linear equation (4) to rule out any possibility that would not have resulted the price p^r.

If $S^r \neq S^{r-1}$, this intersection defines a linear subspace of dimension $(k-1)$ that contains S^r and so S^r has a dimension of at most $(k - 1)$.
Upper bound on the number of iterations

Let f be a weighted threshold function, and \mathcal{P} an arbitrary distribution. Then after at most n rounds of trading, the price reaches its equilibrium value $p^\infty = f(x)$.

This follows directly from the Lemma as $\dim(S^0) = n$ and once we have a round r s.t. $S^r = S^{r-1}$ then no trader has gained any new knowledge and thus $p^\infty = f(x)$.

proof cont.