
Pincer-Search: An Efficient Algorithm

for Discovering the Maximum Frequent Set

Dao-I Lin∗

Telcordia Technologies, Inc.

Zvi M. Kedem†

New York University

July 15, 1999

Abstract

Discovering frequent itemsets is a key problem in important data mining applications, such as the discovery of

association rules, strong rules, episodes, and minimal keys. Typical algorithms for solving this problem operate in

a bottom-up, breadth-first search direction. The computation starts from frequent 1-itemsets (the minimum length

frequent itemsets) and continues until all maximal (length) frequent itemsets are found. During the execution, every

frequent itemset is explicitly considered. Such algorithms perform well when all maximal frequent itemsets are

short. However, performance drastically decreases when some of the maximal frequent itemsets are relatively long.

We present a new algorithm which combines both the bottom-up and the top-down searches. The primary search

direction is still bottom-up, but a restricted search is also conducted in the top-down direction. This search is used

only for maintaining and updating a new data structure, the maximum frequent candidate set. It is used to prune early

candidates that would normally encountered in the bottom-up search. A very important characteristic of the algorithm

is that it does not require explicite examination of every frequent itemset. Therefore the algorithm performs well

even when some maximal frequent itemsets are long. As its output, the algorithm produces the maximum frequent

set, i.e., the set containing all maximal frequent itemsets, thus specifying immediately all frequent itemsets. We

evaluate the performance of the algorithm using well-known synthetic benchmark databases and real-life census and

∗Applied Research, Telcordia Technologies, Inc., 445 South Street, Morristown, NJ 07960 +1 973 829 4740, tlin@research.telcordia.com.
†Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012-

1185, +1 212 998 3101, kedem@cs.nyu.edu.

1



stock market databases. The improvement in performance can be up to several orders of magnitude, compared to

the best current algorithms.

1 Introduction

Knowledge discovery in databases (KDD) has received increasing attention and has been recognized as a promising

new field of database research. It is defined by Fayyad et al. [8] as “the non-trivial process of identifying valid,

novel, potentially useful, and ultimately understandable patterns in data”. The key step in the knowledge discovery

process is the data mining step, “consisting of applying data analysis and discovery algorithms that, under acceptable

computational efficiency limitations, produce a particular enumeration of patterns over the data” [8]. This paper

addresses a pattern discovery problem, which is important in many data mining applications.

A key component of many data mining problems is formulated as follows. Given a large database of sets of items

(representing market basket data, alarm signals, etc.), discover all frequent itemsets (sets of items), where a frequent

itemset is one that occurs in at least a user-defined percentage (minimum support) of the database. Depending on the

semantics attached to the input database, the frequent itemsets, and the term “occurs,” we get the key components of

different data mining problems such as the discovery of association rules (e.g., [3, 10, 19]), theories (e.g., [9]), strong

rule (e.g., [22]), episodes (e.g., [17]), and minimal keys (e.g., [9]).

Typical algorithms for finding the frequent set, i.e., the set of all frequent itemsets, operate in a bottom-up, breadth-

first fashion (e.g., [2, 3, 7, 10, 18, 19, 21, 23, 26]). The computation starts from frequent 1-itemsets (the minimum

length frequent itemsets) at the bottom, and then extends one level up in every pass until all maximal (length) frequent

itemsets are discovered. All frequent itemsets are explicitly examined and discovered by these algorithms. When

all maximal frequent itemsets are short, these algorithms perform well. However, performance drastically decreases

when any of the maximal frequent itemsets becomes longer, because a maximal frequent itemset of size l implies the

presence of 2l − 2 additional frequent itemsets (its nontrivial subsets) as well, each of which is explicitly examined

by such algorithms. In data mining applications where items are correlated, maximum frequent itemsets could be

long [7].

2



Therefore, instead of examining and “assembling” all the frequent itemsets, an alternative approach might be

to “shortcut” the process and attempt to search for maximal frequent itemsets “more directly,” as they immediately

specify all frequent itemsets. Furthermore, it suffices to know only the maximal frequent set in many data mining

applications, such as the minimal key discovery [9] and the theory extraction [9].

Finding the maximum frequent set (or MFS), the set of all maximal frequent itemsets, is essentially a search

problem in a hypothesis search space (a lattice of subsets). The search for the maximum frequent set can proceed

from the 1-itemsets to n-itemsets (bottom-up) or from the n-itemsets to 1-itemsets (top-down).

We present a novel Pincer-Search algorithm, which searches for the MFS from both bottom-up and top-down

directions. It performs well even when the maximal frequent itemsets are long.

The bottom-up search is similar to Apriori [3] and OCD [19] algorithms. However, the top-down search is novel.

It is implemented efficiently by introducing an auxiliary data structure, the maximum frequent candidate set (or

MFCS), as explained later. By incorporating the computation of the MFCS in our algorithm, we are able to efficiently

approach the MFS from both top-down and bottom-up directions. Unlike the bottom-up search that goes up one level

in each pass, the MFCS can help the computation “move down” many levels in the top-down direction in one pass.

In this paper, we apply the MFCS concept to the association rule mining. In fact, the MFCS concept can be

applied in solving other data mining problems if the problem has closure properties as discussed later. The monotone

specialization relation discussed in [18, 15] addressed the same closure properties.

Popular benchmark databases designed by Agrawal and Srikant [3] have been used in [4, 21, 23, 26, 29]. We

use these same benchmarks to evaluate the performance of our algorithm. In most cases, our algorithm not only

reduces the number of passes of reading the database but also reduces the number of candidates (for whom support

is counted). In such cases, both I/O time and CPU time are reduced by eliminating the candidates that are subsets of

maximal frequent itemsets found in the MFCS.

The organization of the rest of the paper is as follows. The problem of association rule mining and the importance of

frequent itemsets are sketched. Section 2. The importance of maximum frequent set, structural properties for maximal

frequent itemsets and how they lead to algorithms for their discovery, together with an important representative

algorithm are presented in Section 3. Our new Pincer-Search Algorithm is presented in Section 4. Performance

3



evaluation is presented in Section 5. Related work is presented in Section 6. Concluding remarks are given in

Section 7.

2 Association Rule Mining

This section briefly introduces the association rule mining problem, following as feasible the terminology of [2].

Let I = {i1, i2, . . . , im} be a set of m (distinct) items. We assume that the items are drawn from some totally

ordered domain. For instance, if they are strings, they could be ordered lexicographically. So for convenience, an

itemset will be stored as a sequence following the order of the domain. The itemsets could represent different items

in a supermarket or different alarm signals in telecommunication networks [12]. A transaction T is a set of items

in I. A transaction could represent some customer purchases of some items from a supermarket or the set of alarm

signals occurring within a time interval. A database D is just a set of transactions. A set of items is called an itemset.

The number of items in an itemset is called the length of an itemset. Itemsets of some length k are referred to as

k-itemsets.

A transaction T is said to support an itemset X ⊆ I if and only if X ⊆ T . The fraction of the transactions in D

that support X is called the support of X, denoted as support(X). There is a user-defined minimum support threshold,

which is a fraction, i.e., a number in [0,1]. An itemset is frequent iff its support is at least the minimum support.

Otherwise, it is infrequent.

An association rule has the form R : X → Y , where X and Y are two non-empty and non-intersecting itemsets.

The support for rule R is defined as support(X ∪ Y ). A confidence factor for such a rule (customarily represented

by percentage) is defined as 100 · support(X ∪ Y )/support(X) (assume support(X) > 0) and is used to evaluate the

strength of such association rules. The confidence of a rule indicates how often it can be expected to apply, while its

support indicates how trustworthy it is.

The goal of association rule mining is to discover all rules that have support and confidence greater than some

user-defined minimum support and minimum confidence thresholds, respectively.

The normally followed scheme for mining association rules consists of two stages [3]:

4



1. the discovery of frequent itemsets

2. the generation of association rules.

As the second step is rather straightforward and as the first step is dominates the processing time, we explicitly

focus the paper on the first step: the discovery of frequent itemsets.

3 Frequent Itemsets: Structural Properties and Basic Discovery Ap-

proaches

3.1 The Maximum Frequent Set

Among all the frequent itemsets, some will be maximal frequent itemsets: they have no proper supersets that are

themselves frequent. The maximum frequent set (or MFS) is the set of all the maximal frequent itemsets. The problem

of discovering the frequent set can be reduced to the problem of discovering the MFS. The MFS immediately specifies

of frequent itemsets; these are precisely the non-empty subsets of its elements. The MFS forms a border between

frequent and infrequent sets. Once the MFS is known, the supports of all the frequent itemsets can be computed by

reading the database once.

3.2 Closure Properties

A typical frequent set discovery process follows a standard scheme. Throughout the execution, the set of all itemsets

is partitioned, perhaps implicitly, into three sets:

1. frequent: This is the set of those itemsets that have been discovered so far as frequent

2. infrequent: This is the set of those itemsets that have been discovered so far as infrequent

3. unclassified: This is the set of all the other itemsets.

Initially, the frequent and the infrequent sets are empty. Throughout the execution, they grow at the expense of

the unclassified set. The execution terminates when the unclassified set becomes empty, and then, of course all the

5



maximal frequent itemsets are discovered.

Consider any process for classifying itemsets and some point in the execution where some itemsets have been

classified as frequent, some as infrequent, and some are still unclassified. Two closure properties can be used to

immediately classify some of the unclassified itemsets:

Property 1: If an itemset is infrequent, all it supersets must be infrequent, and they need not be examined further

Property 2: If an itemset is frequent, all its subsets must be frequent, and they need not be examined further

3.3 Discovering Frequent Itemsets

In general, it is possible to search for the maximal frequent itemsets either bottom-up or top-down. If all maximal

frequent itemsets are expected to be short (close to 1 in size), it seems efficient to search for them bottom-up. If all

maximal frequent itemsets are expected to be long (close to n in size) it seems efficient to search for them top-down.

We first sketch a realization of the most commonly used approach of discovering the MFS: a bottom-up approach.

It consists of repeatedly applying a pass, itself consisting of two steps. At the end of pass k all frequent itemsets of

size k or less have been discovered.

As the first step of pass k + 1, itemsets of size k + 1 each having two frequent k-subsets with the same first k − 1

items are generated. Itemsets that are supersets of infrequent itemsets are pruned (and discarded), as of course they

are infrequent (by Property 1). The remaining itemsets form the set of candidates for this pass.

As the second step, the support of the candidates is computed (by reading the database), and they are classified

as either frequent or infrequent.

Example Consider a database containing five distinct items, 1, 2, 3, 4, and 5. There are four transactions in this

database: {1,2,3,4,5}, {1,3}, {1,2}, and {1,2,3,4}. The minimum support is set to 0.5. Fig. 1 shows an example

of this bottom-up approach. All five 1-itemsets ({1}, {2}, {3}, {4}, {5}) are candidates in the first pass. After the

support counting phase, the 1-itemset {5} is determined to be infrequent. By Property 1, all the supersets of {5}

need not be considered. So the candidates for the second pass are {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}. The same

procedure repeats until all the maximal frequent itemsets are obtained; in this example, only one: {1,2,3,4}. ✷

6



Figure 1: One-Way Searches

In this bottom-up approach, every frequent itemset must have been a candidate at some pass and is therefore also

explicitly considered. When some maximal frequent itemsets happen to be long, this method will be inefficient. In

such a case, it might be more efficient to search for the long maximal frequent itemsets using a top-down approach.

A top-down approach starts with the single n-itemset and decreases the size of the candidates by one in every

pass. When a k-itemset is determined to be infrequent, all of its (k − 1)-subsets will be examined in the next pass.

However, if a k-itemset is frequent, then all of its subsets must be frequent and need not be examined (by Property 2).

Example See Fig. 1 and consider the same database as the previous example. The 5-itemset {1,2,3,4,5} is the only

candidate in the first pass. After the support counting phase, it is infrequent. The candidates for the second pass are

all the 4-subsets of itemset {1,2,3,4,5}. In this example, itemset {1,2,3,4} is frequent and all the others are infrequent.

By Property 2, all subsets of {1,2,3,4} are frequent (but not maximal) and need not be examined. The same procedure

repeats until all maximal frequent itemsets are obtained (i.e., after all infrequent itemsets are visited). ✷

In this top-down approach, every infrequent itemset is explicitly examined. As shown in Fig. 1, every infrequent

itemset (itemset {5} and its supersets) needs to be visited before the maximal frequent itemsets are obtained.

Note that, in a “pure” bottom-up approach, only Property 1 above is used to prune candidates. This is the technique

that many algorithms (e.g., [3, 4, 7, 10, 18, 19, 21, 23, 26]) use to decrease the number of candidates. In a “pure”

7



top-down approach, only Property 2 is used to prune candidates. This is the technique used in [29, 18].

3.4 The Apriori Algorithm

The Apriori algorithm [3] is a typical bottom-up approach algorithm. We describe it in some detail, as we will find

it helpful to rely on this in presenting our results. The Apriori algorithm repeatedly uses Apriori-gen algorithm to

generate candidates and then count their supports by reading the entire database once. The algorithm is described in

Fig. 2.

Algorithm: Apriori algorithm
Input: a database and a user-defined minimum support
Output: all frequent itemsets
1. L0 := ∅; k := 1;
2. C1 := {{i} | i ∈ I }
3. Answer := ∅
4. while Ck �= ∅
5. read database and count supports for Ck

6. Lk := {frequent itemsets in Ck}
7. Ck+1 := Apriori-gen(Lk)
8. k := k + 1
9. Answer := Answer ∪ Lk

10. return Answer

Figure 2: Apriori Algorithm

Apriori-gen relies on Property 1 mentioned above. The candidate generation algorithm consists of a join procedure

and a prune procedure

The join procedure combines two frequent k-itemsets, which have the same (k − 1)-prefix, to generate a (k + 1)-

itemset as a new preliminary candidate. Following the join procedure, the prune procedure is used to remove from

the preliminary candidate set all itemsets c such that some k-subset of c is not a frequent itemset. See Fig. 3 for

details.

The Apriori-gen algorithm has been very successful in reducing the number of candidates and has been used in

many subsequent algorithms, such as DHP [23], Partition [26], Sampling [27], DIC [7], and Clique [29].

8



Algorithm: The join procedure of the Apriori-gen algorithm
Input: Lk, the set containing frequent itemsets found in pass k

Output: preliminary candidate set Ck+1
/* The itemsets in Lk are sorted */
1. for i from 1 to |Lk − 1|
2. for j from i + 1 to |Lk |
3. if Lk.itemseti and Lk.itemsetj have the same (k − 1)-prefix
4. Ck+1 := Ck+1 ∪ {Lk.itemseti ∪ Lk.itemsetj}
5. else
6. break

Algorithm: The prune procedure of the Apriori-gen algorithm
Input: Preliminary candidate set Ck+1 generated from the join procedure above
Output: final candidate set Ck+1 which does not contain any infrequent subset
1. for all itemsets c in Ck+1
2. for all k-subsets s of c

3. if s �∈ Lk

4. delete c from Ck+1

Figure 3: Join and Prune Procedures

4 Fast Algorithms for Discovering the Maximum Frequent Set

4.1 Our Approach to Reducing the Number of Candidates and the Number of Passes

As discussed in the last section, the bottom-up approach is good for the case when all maximal frequent itemsets are

short and the top-down approach is good when all maximal frequent itemsets are long. If some maximal frequent

itemsets are long and some are short, then both one-way search approaches will not be efficient.

To design an algorithm that can efficiently discover both long and short maximal frequent itemsets, one might

think of simply running both bottom-up and top-down programs at the same time. However, this naive approach is

not good enough. We can actually do much better than that.

Recall that the bottom-up approach described above uses only Property 1 to reduce the number of candidates and

the top-down approach uses only Property 2 to reduce the number of candidates.

In our Pincer-Search approach (first presented in [14]) we combine the top-down and the bottom-up searches, we

synergistically rely on both properties to prune candidates. A key component of the approach is the use of information

gathered in the search in one direction to prune more candidates during the search in the other direction.

If some maximal frequent itemset is found in the top-down direction, then this itemset can be used to eliminate

(possibly many) candidates in the bottom-up direction. The subsets of this frequent itemset can be pruned because

they are frequent (Property 2). Of course, if an infrequent itemset is found in the bottom-up direction, then it can be

9



Figure 4: Two-Way Search

used to eliminate some candidates in the top-down direction (Property 1). This “two-way search approach” can fully

make use of both properties and thus speed up the search for the maximum frequent set.

Example See Fig. 4, which considers the database of Fig. 1. In the first pass, all five 1-itemsets are the candidates

for the bottom-up search and the 5-itemset {1,2,3,4,5} is the candidate for the top-down search. After the support

counting phase, infrequent itemset {5} is discovered by the bottom-up search and this information is shared with

the top-down search. This infrequent itemset {5} not only allows the bottom-up search to eliminate its supersets as

candidates but also allows the top-down search to eliminate its supersets as candidates in the second pass. In the

second pass, the candidates for the bottom-up search are {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. Itemsets {1,5},

{2,5}, {3,5}, and {4,5} are not candidates, since they are supersets of {5}. The only candidate for the top-down

search in the second pass is {1,2,3,4}, since all the other 4-subsets of {1,2,3,4,5} are supersets of {5}. After the

second support counting phase, {1,2,3,4} is discovered to be frequent by the top-down search. This information is

shared with the bottom-up search. All of its subsets are frequent and need not be examined. In this example, itemsets

{1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4} will not be candidates for our bottom-up or top-down searches. After that, the

program can terminate, since there are no candidates for either bottom-up or top-down searches. ✷

In this example, the number of candidates considered, was smaller than required by either bottom-up or top-down

search. We also needed fewer passes of reading the database than either bottom-up or top-down searches. The “pure”

bottom-up approach would have taken four passes and the “pure” top-down approach would have taken five passes

for this database—we needed only two. In fact, Pincer-Search will always use at most as many passes as the minimum

10



of the passes used by bottom-up approach and top-down approach.

Reducing the number of candidates is of critical importance for the efficiency of the frequent set discovery process,

since the cost of the entire process comes from reading the database (I/O time) to generate the supports of candidates

(CPU time) and the generation of new candidates (CPU time). The support counting of the candidates is the most

expensive part. Therefore, the number of candidates dominates the entire processing time. Reducing the number of

candidates not only can reduce the I/O time but also can reduce the CPU time, since fewer candidates need to be

counted and generated.

Therefore, it is important that Pincer-Search reduces both the number of candidates and the number of passes. A

realization of this two-way search algorithm is discussed next.

4.2 Two-Way Search by Using the MFCS

We have designed a combined two-way search algorithm for discovering the maximum frequent set. It relies on a

new data structure during its execution, the maximum frequent candidate set, or MFCS for short, which we define

next.

Definition 1 Consider some point during the execution of an algorithm for finding the MFS. Let FREQUENT be the

set of the itemsets known to be frequent, and let INFREQUENT be the set of the itemsets known to be infrequent.

Then the maximum frequent candidate set (MFCS) is the minimum cardinality set of items satisfying the conditions.

FREQUENT ⊆ ∪{2X | X ∈ MFCS}

INFREQUENT ∩ {2X | X ∈ MFCS} = ∅

In other words, MFCS is the set of all maximal itemsets that are not known to be infrequent at this state of

the algorithm. Thus obviously at any point of the algorithm MFCS is a superset of the MFS. When the algorithm

terminates, the MFCS and the MFS are equal.

The computation of our algorithm follows the bottom-up breadth-first search approach. We base our presentation

on the Apriori algorithm, and for greatest ease of exposition we present our algorithm as a modification to that

algorithm.

11



Briefly speaking, in each pass, in addition to counting supports of the candidates in the bottom-up direction, the

algorithm also counts supports of the itemsets in the MFCS: this set is adapted for the top-down search. This will

help in pruning candidates, but will also require changes in candidate generation, as explained later.

Consider a pass k, during which, in the bottom-up direction, itemsets of size k are to be classified. If, during the

top-down direction some itemset that is an element of the MFCS of cardinality greater than k is found to be frequent,

then all its subsets of cardinality k can be pruned from the set of candidates considered in the bottom-up direction in

this pass. They, and their supersets will never be candidates throughout the rest of the execution, potentially improving

performance. But of course, as the maximum frequent set is ultimately computed, they “will not be forgotten.”

Similarly, when a new infrequent itemset is found in the bottom-up direction, the algorithm will use it to update

the MFCS. The subsets of the MFCS must not contain this infrequent itemset.

Fig. 5 conceptually shows the combined two-way search. The MFCS is initialized to contain a single element,

the itemset of cardinality n containing all the elements of the database. As an example of its utility, consider the first

pass of the bottom-up search. If some m 1-itemsets are infrequent after the first pass (after reading the database once),

the MFCS will have one element of cardinality n − m. This itemset is generated by removing the m infrequent items

from the initial element of the MFCS. In this case, the top-down search goes down m levels in one pass. In general,

unlike the search in the bottom-up direction, which goes up one level in one pass, the top-down search can go down

many levels in one pass.

Notice that the bottom up and the top down searches do not proceed in a symmetrical fashion. The reason is that

by a general assumption there are no extremely long frequent itemsets. If this assumption is not likely to hold, one

can easily reverse the roles of the searches in the two directions.

By using the MFCS, we may be able to discover some maximal frequent itemsets in early passes. This early

discovery of the maximal frequent itemsets can reduce the number of candidates and the passes of reading the database

which in turn can reduce the CPU time and I/O time. This is especially significant when the maximal frequent itemsets

discovered in the early passes are long.

For our approach to be effective, we need to address two issues. First, how to update the MFCS efficiently?

Second, once the subsets of the maximal frequent itemsets found in the MFCS are removed, how do we generate the

12



Figure 5: The Search Space of Pincer-Search

correct candidate set for the subsequent passes in the bottom-up direction?

4.3 Updating the MFCS Efficiently

Consider some itemset Y that has been “just” classified as infrequent. By the definition of the MFCS, it will be a

subset of one or more itemsets in the MFCS, and we need to update the MFCS such that its subsets no longer contain

Y . To update the MFCS, we will do the following process for every superset of Y that is in the MFCS. We replace

every such itemset (say X) by |Y | itemsets, each obtained by removing from X a single item (element) of Y . Such

newly generated itemset is added to the MFCS only when it is not already a subset of any itemset in the MFCS.

Formally, we have the MFCS-gen algorithm as in Fig. 6 (shown here for pass k).

Algorithm: MFCS-gen
Input: Old MFCS and the infrequent set Sk found in pass k

Output: New MFCS
1. for all itemsets s ∈ Sk

2. for all itemsets m ∈ MFCS
3. if s is a subset of m

4. MFCS := MFCS \ {m}
5. for all items e ∈ itemset s

6. if m \ {e} is not a subset of any itemset in the MFCS
7. MFCS := MFCS ∪ {m \ {e}}
8. return MFCS

Figure 6: MFCS-gen Algorithm

Example See Fig. 7. Suppose {{1,2,3,4,5,6}} is the current (“old”) value of the MFCS and two new infrequent

itemsets {1,6} and {3,6} are discovered. Consider first the infrequent itemset {1,6}. Since the itemset {1,2,3,4,5,6}

(element of the MFCS) contains items 1 and 6, one of its subsets will be {1,6}. By removing item 1 from itemset

13



Figure 7: Pincer-Search

{1,2,3,4,5,6}, we get {2,3,4,5,6}, and by removing item 6 from itemset {1,2,3,4,5,6} we get {1,2,3,4,5}. After

considering itemset {1,6}, the MFCS becomes {{1,2,3,4,5}, {2,3,4,5,6}}. Itemset {3,6} is then used to update

this MFCS. Since {3,6} is a subset of {2,3,4,5,6}, two itemsets {2,3,4,5} and {2,4,5,6} are generated to replace

{2,3,4,5,6}. Itemset {2,3,4,5} is a subset of itemset {1,2,3,4,5} in the new MFCS, and it will not be added to the

MFCS. Therefore, the MFCS becomes {{1,2,3,4,5}, {2,4,5,6}}. The top-down arrows in Fig. 7 show the updates of

the MFCS. ✷

Lemma 1 The algorithm MFCS-gen correctly updates the MFCS.

Proof: The algorithm excludes all the infrequent itemsets, so the final set will not contain any infrequent itemsets as

subsets of its elements. Step 7 removes only one item from the itemset m: the longest subset of the itemset m that

does not contain the infrequent itemset s. Since this algorithm always generates longest itemsets, the number of the

itemsets will be minimum at the end. ✷

4.4 New Candidate Generation Algorithms

Recall that, as discussed in Section 3.4, a preliminary candidate set will be generated after the join procedure is called.

In our algorithm, after a maximal frequent itemset is added to the MFS, all of its subsets in the frequent set (computed

so far) will be removed. We show by example that if the original join procedure of the Apriori-gen algorithm is

applied, some of the needed itemsets could be missing from the preliminary candidate set. Consider Fig. 7. Suppose

that the original frequent itemset L3 is {{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5},

14



{2,4,6}, {2,5,6}, {3,4,5}, {4,5,6}}. Assume itemset {1,2,3,4,5} in the MFCS is determined to be frequent. Then all

3-itemsets of the original frequent set L3 will be removed from it by our algorithm, except for {2,4,6}, {2,5,6}, and

{4,5,6}. Since the Apriori-gen algorithm uses a (k − 1)-prefix test on the frequent set to generate new candidates,

and no two itemsets in the current frequent set {{2,4,6}, {2,5,6}, {4,5,6}} share a 2-prefix, no candidate will be

generated by applying the join procedure on this frequent set. However, the correct preliminary candidate set should

be {{2,4,5,6}}.

Based on the above observation, we need to recover some missing candidates.

4.4.1 New Preliminary Candidate Set Generation Procedure

In our new preliminary candidate set generation procedure, the join procedure of the Apriori-gen algorithm is first

called to generate a temporary candidate set, which might be incomplete. In such a case, a recovery procedure will

be called to recover the missing candidates.

All missing candidates can be obtained by restoring some itemsets to the current frequent set. The restored

itemsets are extracted from the MFS of the current pass, which implicitly maintains all frequent itemsets discovered

so far.

The first group of itemsets that needs to be restored contains those k-itemsets that have the same (k − 1)-prefix

as some itemset in the current frequent set. Consider then in pass k, an itemset X in the MFS and an itemset Y in the

current frequent set such that |X| > k. Suppose that the first k − 1 items of Y are in X and the (k − 1)st item of Y is

equal to the j th item of X. We obtain the k-subsets of X that have the same (k − 1)-prefix as Y by taking one item of

X that has an index greater than j and combining it with the first k −1 items of Y , thus getting one of these k-subsets.

After these k-itemsets are found, we recover candidates by combining them with itemset Y as shown in Fig. 8.

Example See Fig. 7. The MFS is {{1,2,3,4,5}} and the current frequent set is {{2,4,6}, {2,5,6}, {4,5,6}}. The only

3-subset of {{1,2,3,4,5}} that needs to be restored for itemset {2,4,6} to generate a new candidate is {2,4,5}. This

is because it is the only subset of {{1,2,3,4,5}} that has the same length and the same 2-prefix as itemset {2,4,6}.

By combining {2,4,5} and {2,4,6}, we recover the missing candidate {2,4,5,6}. No itemsets need to be restored for

itemsets {2,5,6} and {4,5,6}. ✷

15



Algorithm: The recovery procedure
Input: Ck+1 from join procedure, Lk, and current MFS
Output: a complete candidate set Ck+1
1. for all itemsets l in Lk

2. for all itemsets m in MFS
3. if the first k − 1 items in l are also in m

4. /* suppose m.itemj = l.itemk−1 */
5. for i from j + 1 to |m|
6. Ck+1 := Ck+1 ∪ {{l.item1, l.item2,…, l.itemk, m.itemi}}

Figure 8: Recovery Algorithm

The second group of itemsets that need to be restored consists of those k-subsets of the MFS having the same

(k − 1)-prefix but having no common superset in the MFS. A similar recovery procedure can be applied after they

are restored.

4.4.2 New Prune Procedure

After the recovery stage, a preliminary candidate set will be generated. We can then proceed to the prune stage.

Instead of checking to see if all k-subsets of an itemset X are in Lk , we can simply check to see if X is a subset of an

itemset in the current MFCS as shown in Fig. 9. In comparison with the prune procedure of Apriori-gen, we use one

loop less.

Algorithm: New prune procedure
Input: current MFCS and Ck+1 after join and recovery procedures
Output: final candidate set Ck+1
1. for all itemsets c in Ck+1
2. if c is not a subset of any itemset in the current MFCS
3. delete c from Ck+1

Figure 9: New Prune Algorithm

4.4.3 Correctness of the New Candidate Generation Algorithm

In summary, our candidate generation process contains three steps as described in Fig. 10.

Algorithm: New candidate generation algorithm
Input: Lk, current MFCS, and current MFS
Output: new candidate set Ck+1
1. call the join procedure as in the Apriori algorithm
2. call the recovery procedure if necessary
3. call the new prune procedure

Figure 10: New Candidate Generation Algorithm

16



Lemma 2 The new candidate generation algorithm generates the correct candidate set.

Proof: Recall the candidate generation process as in Apriori-gen. There are four possible cases when we combine

two frequent k-itemsets, say I and J , which have the same (k − 1)-prefix, to generate a (k + 1)-itemset as a new

preliminary candidate. In this proof, we will show that, even though that we remove the subsets of the MFS from the

current frequent set, our new candidate generation algorithm will handle all these cases correctly.

Case 1: I and J are not subsets of any elements of MFS. Both itemsets are in the current frequent set. The join

procedure will combine them and generate a preliminary candidate.

Case 2: I is a subset of some element of MFS but J is not a subset of any element of MFS. I is removed from the

current frequent set. However, combining I and J will generate a candidate that needs to be examined.

The recovery procedure discussed above will recover candidates in this case.

Case 3: I and J are subsets of some element of MFS. We do not combine them, since the candidate that they

generate will be a subset of X and must be frequent.

Case 4: I and J are both subsets of element of MFS, but there is no single element of MFS of which they are

both subsets. Both I and J are removed from the current frequent set. However, by combining them,

a necessary candidate will be generated. Similar recovery procedure as discussed above will recover

missing candidates in this case.

Our preliminary candidate generation algorithm considers the same combinations of the frequent itemsets as does

the Apriori-gen algorithm. This preliminary candidate generation algorithm will generate all the candidates, as the

Apriori-gen algorithm does, except those that are subsets of the MFS. By the recovery procedure, some subsets of

the MFS will be restored in the later passes when necessary.

Lemma 1 showed that MFCS will be maintained correctly in every pass. Therefore, our new prune procedure will

make sure that no superset of infrequent itemsets is in the preliminary candidate set. Therefore, the new candidate

generation algorithm is correct. ✷

17



4.5 The Basic Pincer-Search Algorithm

We now present our complete algorithm (see Fig. 11), The Pincer-Search Algorithm, which relies on the combined

approach for determining the maximum frequent set. Lines 9 to 12 constitute our new candidate generation procedure.

Algorithm: The Pincer-Search algorithm
Input: a database and a user-defined minimum support
Output: MFS which contains all maximal frequent itemsets
1. L0 := ∅; k := 1; C1 := {{i} | i ∈ I }
2. MFCS := {{1, 2, . . . , n}}; MFS := ∅
3. while Ck �= ∅
4. read database and count supports for Ck and MFCS
5. remove frequent itemsets from MFCS and add them to MFS
6. Lk := {frequent itemsets in Ck} \ {subsets of MFS}
7. Sk := {infrequent itemsets in Ck}
8. call the MFCS-gen algorithm if Sk �= ∅
9. call the join procedure to generate Ck+1

10. if any frequent itemset in Ck is removed in line 6
11. call recovery procedure to recover candidates to Ck+1
12. call new prune procedure to prune candidates in Ck+1
13. k := k + 1
14. end-while
15. return MFS

Figure 11: The Pincer-Search algorithm

The MFCS is initialized to contain one itemset, which consists of all the database items. The MFCS is updated

whenever new infrequent itemsets are found (line 8). If an itemset in the MFCS is found to be frequent, then its

subsets will not participate in the subsequent support counting and candidate set generation steps. Line 6 will exclude

those itemsets that are subsets of any itemset in the current MFS, which contains the frequent itemsets found in

the MFCS. If some itemsets in Lk are removed, the algorithm will call the recovery procedure to recover missing

candidates (line 11).

Theorem 1 The Pincer-Search algorithm generates all maximal frequent itemsets.

Proof: Lemma 2 showed that our candidate generation algorithm will generate candidate set correctly. The Pincer-

Search algorithm will explicitly or implicitly discover all frequent itemsets. The frequent itemsets are explicitly

discovered when they are discovered by the bottom-up search (i.e., they were in the Lk set at some point). The

frequent itemsets are implicitly discovered when the top-down search discovers their frequent supersets (which are

maximal) earlier than the bottom-up search reaches them. Furthermore, only the maximal frequent itemsets will be

added to the MFS in Line 5. Therefore, the Pincer-Search algorithm generates all maximal frequent itemsets. ✷

18



4.6 The Adaptive Pincer-Search Algorithm

In general, one may not want to use the “basic” version of the Pincer-Search algorithm. For instance, in some

cases, there may be too many infrequent 2-itemsets. In such cases, it may be too costly to maintain the MFCS.

The algorithm we have implemented is in fact an adaptive version of the algorithm. This adaptive version does not

maintain the MFCS, when doing so would be counterproductive. It delays the maintenance of the MFCS until a later

pass when the expected cost of calculating the MFCS is acceptable. This is also the algorithm whose performance is

being evaluated in Section 5. Thus the very small overhead of deciding when to use the MFCS is accounted in the

performance evaluation of our adaptive Pincer-Search algorithm.

Another adaptive approach is to generate all candidates as the Apriori algorithm, but not to count the support of

the candidates that are subsets of any itemset in the current MFS. This approach simplifies the basic Pincer-Search

algorithm in such a way that it need not do the candidate recovery process mentioned in Section 4.4. A flag, indicating

whether a candidate should be counted or not, can be easily maintained. Based on how the recovery process is done,

its cost can be estimated by the number of the current frequent set and the number of the current MFS. When the

estimated cost exceeds some threshold, we can switch from the recovery procedure to the candidate generation

procedure that generates all candidates. This way, we can still avoid the support counting phase, which is the most

time-consuming process.

5 Performance Evaluation

For the Pincer-Search algorithm to be effective, the top-down search needs to reach the maximal frequent itemsets

faster than the bottom-up search. A reasonable question can be informally stated: “Can the search in the top-down

direction proceed fast enough to reach a maximal frequent itemset faster than the search in the bottom-up direction?”

There can be no categorical answer, as this really depends on the distribution of the frequent and infrequent itemsets.

Encouragingly, according to both [3] and our experiments, a large fraction of the 2-itemsets will usually be infrequent.

These infrequent itemsets will cause the MFCS to go down the levels very fast, allowing it to reach some maximal

frequent itemsets after only a few passes. Indeed, in our experiments, we have found that, in most cases, many of the

19



maximal frequent itemsets are found in the MFCS in very early passes. For instance, in the experiment on database

T20.I15.D100K (Fig. 13), all maximal frequent itemsets containing up to 17 items are found in 3 passes only!

The performance evaluation presented compares our adaptive Pincer-Search algorithm to the Apriori algorithm.

Although, later in related work, many variants of the Apriori algorithm will be described, we limit ourselves this

performance comparison because it is sufficiently instructive to understand the characteristics of the new algorithm’s

performance. Furthermore, these algorithms, except A-Random-MFS [9] and Max-Miner [6], discover the entire

frequent set. Their improvement over Apriori usually is less than an order of magnitude.

5.1 Preliminary Discussion

5.1.1 Auxiliary Data Structures Used

The databases used in performance evaluation, are the synthetic databases used in [3], the census databases similar

to [7], and the stock transaction databases from New York Stock Exchange, Inc. [20]. The experiments are run on

Intel Pentium Pro 200 with 64 MB RAM running Linux.

Also, as done in [21, 24], we used a one-dimensional array and a two-dimensional array to speed up the process

of the first and the second pass correspondingly. The support counting phase runs very fast by using an array, since

no searching is needed. No candidate generation process for 2-itemsets is needed because we use a two-dimensional

array to store the support of all combinations of those frequent 1-itemsets. We start using the link-list data structure

after the third pass. For a fair comparison, in all the cases, the number of candidates shown in the figures does not

include the candidates in the first two passes. The number of the candidates in the Pincer-Search algorithm includes

the candidates in the MFCS.

5.1.2 Scattered and Concentrated Distributions

We first concentrated on the synthetic databases, since they allow experimenting with different distributions of the

frequent itemsets. For the same number of frequent itemsets, their distribution can be concentrated or scattered. In

concentrated distribution, the frequent itemsets, having the same length, contain many common items: the frequent

items tend to cluster. If the frequent itemsets do not have many common elements, the distribution is scattered. In

20



other words, the distribution is concentrated if there are only a few long maximal frequent itemsets, and is scattered

if there are many short maximal frequent itemsets. By using the synthetic data generation program as in [3], we

can generate databases with different distributions by adjusting various parameters. We will present experiments to

examine the impact of the distribution type on the performance of the two algorithms.

In the first set of experiments, the number of the maximal frequent itemsets |L| is set to 2000, as in [3]. The

frequent

itemsets found in this set of experiments are rather scattered. To produce databases having a concentrated

distribution of the frequent itemsets, we decrease the parameter |L| to 50 in the second set of experiments. The

minimum supports are set to higher values so that the execution time will not be too long.

5.1.3 Non-Monotone Property of the Maximum Frequent Set

For a given database, both the number of candidates and the number of frequent itemsets increase as the minimum

support decreases. However, this is not the case for the number of the maximal frequent itemsets. For example,

when minimum support is 9%, the maximum frequent set may be {{1,2}, {1,3}, {2,3}}. When the minimum support

decreases to 6%, the maximum frequent set could become {{1,2,3}}. The number of the maximal frequent itemsets

decreased from three to one.

This “nonmonotonicity” does not help bottom-up breadth-first search algorithms. They will have to discover the

entire frequent itemsets before the maximum frequent set is discovered. Therefore, in those algorithms, the time, the

number of candidates, and the number of passes will monotonically increase when the minimum support decreases.

However, when the minimum support decreases, the length of some maximal frequent itemsets may increase and

our MFCS may reach them faster. Therefore, our algorithm does have the potential to benefit from this nonmono-

tonicity.

5.2 Experiments

The test databases are generated synthetically by an algorithm designed by the IBM Quest project [1]. The synthetic

data generation procedure is described in detail in [3], whose parameter settings we follow. The number of items

21



N is set to 1000. |D| is the number of transactions. |T | is the average size of transactions. |I | is the average size

of maximal frequent itemsets. Thus, e.g., T10.I4.D100K specifies that the average size of transactions is ten, the

average size of maximal frequent itemsets is four, and the database contains one hundred thousand transactions.

5.2.1 Scattered Distributions

The results of the first set of experiments, for scattered distributions, are shown in Fig. 12. In these experiments,

Pincer-Search sometimes used more candidates than Apriori. That is because of the number of additional candidates

used in the MFCS is more than the number of extra candidates pruned relying on the MFCS. The maximal frequent

itemsets, found in the MFCS, are so short that not too many subsets can be pruned. However, the I/O time saved may

compensate for the extra cost. Therefore, we may still get some improvement. In these experiments, the best case

occurs when the minimum support is 0.33% and the database is T10.I4.D100K. In this case, Pincer-Search ran about

17% faster than the Apriori algorithm.

Depending on the distribution of the frequent itemsets, it is also possible that our algorithm might spend time

counting the support of the candidates in the MFCS while still not finding enough maximal frequent itemsets from

the MFCS to cover the extra costs. For instance, in the worst case of all the experiments, Pincer-Search ran 28%

slower than the Apriori algorithm when the minimum support is 0.25% and the database is T20.I6.D100K.

5.2.2 Concentrated Distributions

In the second set of experiments we study the relative performance of the two algorithms on databases with con-

centrated distributions. The results are shown in Fig. 13. In the first experiment, we use the same parameters as

the T20.I6.D100K database in the first set of experiments, but the parameter |L| is set to 50. The improvements of

Pincer-Search begin to increase. When the minimum support is 17%, our algorithm runs about 43% faster than the

Apriori algorithm.

The non-monotone property of the maximum frequent set, considered in Section 5.1.3, impacts on this experiment.

When the minimum support is 12%, both Apriori algorithm and Pincer-Search algorithm took eight passes to discover

the maximum frequent set. But, when the minimum support decreases to 11%, the maximal frequent itemsets become

22



Figure 12: Scattered Distribution

Figure 13: Concentrated Distribution

23



longer. This forced the Apriori algorithm to take more passes (nine passes) and consider more candidates to discover

the maximum frequent set. In contrast, the MFCS allowed our algorithm to reach the maximal frequent itemsets faster.

Pincer-Search took only four passes and considered fewer candidates to discover all maximal frequent itemsets.

We further increased the average size of the frequent itemsets in the next two experiments. The average size of

the maximal frequent itemsets was increased to 10 in the second experiment and database T20.I10.D100K was used.

The best case, in this experiment, is when the minimum support is 6%. Pincer-Search ran approximately 24 times

faster than the Apriori algorithm. This improvement mainly came from the early discovery of maximal frequent

itemsets which contain up to 16 items. Their subsets were not generated and counted in our algorithm. As shown in

this experiment, the reduction of the number of candidates can significantly decrease both I/O time and CPU time.

The last experiment ran on database T20.I15.D100K. Pincer-Search took as few as three passes to discover all

maximal frequent itemsets which contain as many as 17 items. This experiment shows improvements of more than

two orders of magnitude when the minimum supports are 6% and 7%. One can expect even greater improvements

when the average size of the maximal frequent itemsets is further increased.

5.2.3 Census Databases

A PUMS file, which contains public use microdata samples, was provided to us by Roberto Bayardo from IBM.

This file contains actual census entries which constitute a five percent sample of a state that the file represents. This

database is similar to the database looked at by Brin et al. [7]. As discussed in that paper, this PUMS database is

quite hard. That is because a number of items in the census database appear in a large fraction of the database and

therefore very many frequent itemsets will be discovered. From the distribution point of view, this means that some

maximal frequent itemsets are quite long and the distribution of the frequent itemsets is quite scattered.

In order to compare the performance of the two algorithms within a reasonable time, we used the same approach as

they proposed in the paper: we remove all items that have 80% or more support from the database. The experimented

results are shown in Fig. 14.

In this real-life census database, the Pincer-Search algorithm also performs well. In all cases, the Pincer-Search

algorithm used less time, fewer candidates, and fewer passes of reading the database. The overall improvement in

24



Figure 14: Census Database

Figure 15: NYSE Databases (60-minute’s interval)

performance ranges from 10% to 650%.

5.2.4 Stock Market Databases

We also conducted some experiments on the stock market databases. We used the trading data of June 1997, collected

by the New York Stock Exchange, for the experiments. The trading data contains the symbol, price, volume, and

time for every trade. Around 3000 stocks were chosen for these experiments. We are interested in discovering the

pattern of price changes. A simplified problem can be stated as the followings: “What are those stocks the prices of

which go up and down together during 2/3 of the time intervals in one day?”

Whether the price of a stock goes up or down is determined by looking at the first and the last trading price of the

stock within an interval of time. If the last price is higher than the first price, then the price went up. If there is no

trade for a stock during this period of time, then assume that the price is unchanged. Otherwise, the price went down.

25



Collect the stocks whose prices go up during this period of time and treat them as a transaction in our association rule

mining problem. Do the same for the stocks whose prices went down during this period of time and form another

transaction. Now, we can run the frequent set discovery algorithm to discover the price-changing patterns.

We ran experiments on every trading day of June 1997. Here, we only show the experiments on those days that

reflect extreme cases when either Pincer-Search or Apriori performed best. The experiments on June 3, and June 20

are shown in Fig. 15. The minimum supports range from 40% to 73%. We cannot choose a fixed range of minimum

support because of the data in each day are quite different from each other. The interval was set to 60 minutes.

For the experiments on June 3 data, Pincer-Search performed much better than the Apriori algorithm. For the

experiments on June 20 data, even though the Pincer-Search algorithm used fewer passes and fewer candidates than

the Apriori algorithm, the overhead of maintaining the MFCS costs too much. The Apriori algorithm performed

better in this case. It is possible to adjust some of the parameters in the adaptive approach to reduce the differences.

Because of the number of records in the database is 15, which is very small, we have only a few available values

on setting the minimum support. As we can see from these figures, there is a big jump in execution time when we

decrease the minimum support down to some point. For instance, in the experiment of June 3, when the minimum

support is decreased from 53% (8/15) to 46% (7/15), the execution time increases significantly. When we decrease the

minimum support further, neither algorithm can complete the execution due to the limited size of the main memory.

However, we suspect that Pincer-Search will do better when the minimum support is decreased (maximal frequent

itemsets will be longer). In many cases, Pincer-Search did find many very long maximal frequent itemsets in very

early passes. However, since the MFS is not complete, we cannot draw any definite conclusion.

In many of these experiments, Pincer-Search did use fewer passes. However, as the database is so small, the

property of reducing the passes of reading the database for Pincer-Search algorithm did not contribute to the saving

of the execution time. The improvement came purely from reducing the number of candidates.

In all the other experiments that are not shown here, both algorithms perform competitively, since the maximal

frequent itemsets are all short. The totals of the execution time of all other experiments are 3,451,400 seconds and

3,176,103 seconds for Pincer-Search and Apriori respectively. The totals of the candidates used are 163,328 and

148,376, and the total passes used are 726 and 886 for Pincer-Search and Apriori respectively.

26



6 Related Work

6.1 Typical Algorithms for Frequent Set Discovery

We briefly discuss existing frequent set discovery algorithms in a roughly chronological order.

AIS and SETM Algorithms The problem of association rule mining was first introduced in [2]. An algorithm

called AIS was given for discovering the frequent set. SETM algorithm [13] was later designed to use only standard

SQL commands to find the frequent set. The Apriori algorithm [3], described above, performs much better than AIS

and SETM.

The OCD Algorithm It is worth adding, that concurrently with the Apriori algorithm, OCD algorithm [19] used

the same closure property to eliminate candidates.

DHP and Partition Algorithm DHP algorithm [23] extended the Apriori algorithm by introducing a hash filter

for counting the upper-bound of the support of candidates in the next pass. Some candidates can be pruned before

reading the database in the next pass.

Partition algorithm [26] proposed to divide the database into equal sized partitions. Each partition is processed

independently to produce a local frequent set for that partition. After all local frequent sets are discovered, their

union, the global candidate set, forms a superset of the actual frequent set. The database is then read again to produce

the actual support for the global candidate set. The entire process takes only two (read) passes.

Sampling Algorithm Sampling Algorithm [27] proposed to consider first (small) samples of the database and

discover an approximate frequent set by using a standard bottom-up approach algorithm. The approximate frequent

set is then verified against the entire database. False frequent itemsets need to be removed and missing frequent

itemsets need to be recovered.

A-Random-MFS, DIC, and MaxClique Algorithms A-Random-MFS algorithm [9] is a randomized algorithm for

discovering the maximum frequent set. A single run of the algorithm cannot guarantee correct results. A complete

27



algorithm requires repeatedly calling the randomized algorithm until no new maximal frequent itemset can be found.

Dynamic itemset counting (DIC) algorithm [7] combines candidates of different lengths into one pass. The

database is divided into partitions of equal size. In each pass, after the first i partitions are read, some itemsets

containing up to i + 1 items may become candidates based on the database partitions read so far.

MaxClique [29] used a hybrid traversal which contains a look-ahead phase followed by a pure bottom-up phase.

The look-ahead phase consists of extending the frequent 2-itemsets until the extended itemset becomes infrequent.

After the look-ahead phase, an Apriori-like traversal is executed.

One of the most important differences between MaxClique and Pincer-Search is that MaxClique only looks ahead

at some long candidate itemsets during the initialization stage (in the second pass). In contrast, the Pincer-Search

algorithm repeatedly maintains the upper-bound of the frequent itemsets (MFCS) throughout the entire process. The

look-ahead candidate itemsets are dynamically adjusted based on all available information discovered so far. In fact,

the MFCS is the most accurate approximation one can get while no additional knowledge of the data is available.

Another important difference is that MaxClique used a bottom-up approach to calculate the look-ahead candidate

itemsets. Conceptually, it keeps applying Apriori-gen until no more candidates can be generated. In contrast, Pincer-

Search uses a top-down approach. As will be discussed in the next section, this top-down approach has the advantage

that it is suitable for incremental updates. It updates the MFCS only when a new infrequent itemset is discovered.

Ignoring implementation details, MaxClique can be viewed as a special case of Pincer-Search.

Max-Miner Max-Miner algorithm [6] was recently proposed to discover the maximum frequent set. This algorithm

partitions the candidate set into groups with the same prefix. Like Pincer-Search, it looks ahead at some long candidate

itemsets throughout the search. The main difference is the long candidate itemsets that it examines. Max-Miner looks

ahead at longest itemsets that can be constructed from every group. A frequency heuristic is used to reorder the items

such that the most frequent items appear in the most candidate groups. According to the experiments in the paper,

this item-reordering heuristic improves the performance dramatically. So far, we only had the opportunity to perform

preliminary comparison with the Max-Miner from the algorithmic point of view. We feel that Max-Miner and Pincer-

Search could be complementary. One of the possibilities is to run Max-Miner in the first few passes and switch to

28



Pincer-Search for the later passes.

6.2 Other Related Work

In addition to the algorithms discussed so far, there has been extensive research relating to the problem of association

rule mining such as [10, 21]. Similar candidate pruning techniques has been applied to discover sequential patterns

(e.g., [17, 25]) and episodes (e.g., [17]). Some other papers concentrate on designing parallel algorithms on share-

nothing parallel environment (e.g., [4, 11]) and share-memory parallel environment (e.g., [28]). The discovery of

frequent set is a key process in solving these problems, thus speeding up this discover is important.

The complexity of (level-wise) bottom-up breadth-first search style algorithms was analyzed in [18]. As our

algorithm does not fit in this model, their complexity low bound does not apply to it.

Our work was inspired by the notion of version space [15]. We found that if we treat a newly discovered frequent

itemset as a new positive training instance, a newly discovered infrequent itemset as a new negative training instance,

the candidate set as the maximally specific generalization (S), and the MFCS as the maximally general generalization

(G), then we will be able to use a two-way approaching strategy to discover the maximum frequent set (generalization)

efficiently.

7 Concluding Remarks

7.1 Summary

An efficient way to discover the maximum frequent set can be very useful in various data mining problems, such as

the discovery of the association rules, theories, strong rules, episodes, and minimal keys. The maximum frequent set

provides a unique representation of all the frequent itemsets. In many situations, it suffices to discover the maximum

frequent set, and once it is known, all the required frequent subsets can be easily generated.

In this paper, we presented a novel algorithm that can efficiently discover the maximum frequent set. Our Pincer-

Search algorithm could reduce both the number of times the database is read and the number of candidates considered.

Experiments show that the improvement of using this approach can be very significant, especially when some maximal

29



frequent itemsets are long.

A popular assumption is that the maximal frequent itemsets are usually very short and therefore the computation

of all (and not just maximal) frequent itemsets is feasible. Such assumption on maximal frequent itemsets does not

need to be true in important applications. Consider for example the problem of discovering patters in price changes

of individual stocks in a stock market. Prices of individual stocks are frequently quite correlated with each other.

Therefore, the discovered patterns may contain many items (stocks) and the frequent itemsets are long. We expect

our algorithm will be useful in these applications.

7.2 Possible Extensions

The performance of the Pincer-Search algorithm in applications of discovering other price changing patterns in stock

markets will be studied. The maximal frequent itemsets in many instances of such applications are likely to be long.

Therefore we expect the algorithm to provide dramatic performance improvements.

Many classification problems as discussed in [5] tend to have long patterns. It is worthwhile to study the

performance of the Pincer-Search algorithm on these problems.

In general, if some maximal frequent itemsets are long and the maximal frequent itemsets are distributed in a

scatterd manner, then the problem of discovering the MFS can be very hard. In this case, even Pincer-Search might

not be able to solve it efficiently. Parallelizing the Pincer-Search algorithm might be a possible way to solve this hard

problem. We propose to divide the candidate set in such a way that all the candidates that are subsets of an itemset

in the MFCS are assigned to a same processor.

Although there might be some duplicate calculations, this way of partitioning the candidates can have the benefits

that no synchronization or communication among processors is needed. Each processor can run totally independent.

The issues to study would be the way to minimize the duplicate calculations and to maximize the use of available

processors.

30



8 Acknowledgments

This research was partially supported by the National Science Foundation under grant number CCR-94-11590, by

Intel Corporation, and by Microsoft. We thank Rakesh Agrawal, Roberto J. Bayardo, and Ramakrishnan Srikant for

kindly providing us the experimental data. We thank Thomas Anantharaman and Sridhar Ramaswamy for their very

valuable comments and suggestions. We thank also Sridhar Ramaswamy for his proposal for the term Pincer-Search.

References

[1] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, R. Srikant. The Quest Data Mining System. In Proc.

2nd KDD, Aug. 1996.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In

Proc. SIGMOD, May 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. 20th VLDB,

Sept. 1994.

[4] R.Agrawal and J. Shafer. Parallel mining of association rules. IEEE Trans. on Knowledge and Data Engineering,

Jan. 1996.

[5] R. Bayardo. Brute-force mining of high-confidence classification rules. In Proc. 3rd KDD, Aug. 1997.

[6] R. Bayardo. Efficient Mining Long Patterns from Databases. In Proc. SIGMOD, June 1998.

[7] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket

data. In Proc. SIGMOD, May 1997.

[8] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthrusamy (Eds.). Advances in Knowledge Discovery and

Data Mining. AAAI Press, Menlo Park, CA, 1996.

[9] D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized algorithm. In

Proc. 13th ICDT, Jan. 1997.

31



[10] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In Proc. 21st VLDB, Sept.

1995.

[11] E. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. In Proc. SIGMOD, May

1997.

[12] K. Hätönen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen. Knowledge Discovery from Telecom-

munication Network Alarm Databases. In Proc. 12th ICDE, Feb. 1996.

[13] M. Houtsma and A. Swami. Set-oriented mining of association rules. Research Report RJ 9567, IBM Almaden

Research Center, Oct. 1993.

[14] D. Lin and Z. Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In Proc. 6th

EDBT. Mar. 1998.

[15] T. Mitchell. Generalization as search. Artificial Intelligence, Vol. 18, 1982.

[16] A. Mueller. Fast sequential and parallel algorithms for association rule mining: A comparison. Technical Report

No. CS-TR-3515 of CS Department, University of Maryland-College Park.

[17] H. Mannila and H. Toivonen. Discovering frequent episodes in sequences. In Proc. 1st KDD, Aug. 1995.

[18] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Technical Report

TR C-1997-8, Dept. of Computer Science, U. of Helsinki, Jan. 1997.

[19] H. Mannila, H. Toivonen, and A. Verkamo. Improved methods for finding association rules. In Proc. AAAI

Workshop on Knowledge Discovery, July 1994.

[20] The TAQ Database Release 1.0 in CD-ROM, New York Stock Exchange, Inc., June 1997.

[21] B. Özden, S. Ramaswamy. and A. Silberschatz. Cyclic Association Rules. In Proc. 14th ICDE, Feb. 1998.

[22] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. Knowledge Discovery in Databases,

AAAI Press, 1991.

32



[23] J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In Proc. ACM-

SIGMOD, May 1995.

[24] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 21st VLDB. Sep. 1995.

[25] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. In

Proc. 5th EDBT. Mar. 1996.

[26] A. Sarasere, E. Omiecinsky, and S. Navathe.An efficient algorithm for mining association rules in large databases.

In Proc. 21st VLDB, Sept. 1995.

[27] H. Toivonen. Sampling large databases for association rules. In Proc. 22nd VLDB, Sept. 1996.

[28] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel data mining for association rules on shared-memory

multi-processors. Technical Report 618 of the Department of Computer Science, University of Rochester. May

1996.

[29] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In

Proc. 3rd KDD, Aug. 1997.

33


