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Abstract

Since its introduction close to a decade ago, the problem of efficient mining of association rules on

market-basket data has attracted tremendous attention. Numerous algorithms have been proposed, each

one in turn claiming to outperform its predecessors on a representative set of databases. In this paper, we

first focus our attention on the question of how much space remains for performance improvement over

current association rule mining algorithms. Our strategy is to compare their performance against an “Ora-

cle algorithm” that knows in advance the identities of all frequent itemsets in the database and only needs

to gather their actual supports to complete the mining process. Our experimental results show that there

is a substantial gap between the Oracle’s performance and that of the current mining algorithms. Second,

we present a new mining algorithm, called ARMOR, that is constructed by making minimal changes to

the Oracle algorithm. ARMOR typically performs within a factor of two of the Oracle over both real and

synthetic databases over practical ranges of support specifications.
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1 Introduction

The problem of efficiently mining “association rules” from large historical “market-basket” databases was in-

troduced almost a decade ago, in [4]. Since then, a whole host of algorithms for addressing this problem have

been proposed [4, 6, 20, 17, 11, 13, 12, 21, 3]. The latest include FP-growth [12], which utilizes a prefix-tree

structure for compactly representing and processing pattern information, and VIPER [21], which organizes

and processes the database on a vertical (column) basis as opposed to the more traditional horizontal (row)

basis.

While the above efforts have certainly resulted in a variety of novel algorithms, each in turn claiming

to outperform its predecessors on a representative set of databases, no logical end appears to be in sight.

Therefore, in this paper, we focus our attention on the question of how much space remains for performance

improvement over current association rule mining algorithms. Our approach is to compare their performance

against an “Oracle algorithm” that knows in advance the identities of all frequent itemsets in the database

and only needs to gather the actual supports of these itemsets to complete the mining process. Clearly, any

practical algorithm will have to do at least this much work in order to generate mining rules. This “Oracle ap-

proach” permits us to clearly demarcate the maximal space available for performance improvement over the

currently available algorithms. Further, it enables us to construct new mining algorithms from a completely

different perspective, namely, as minimally-altered derivatives of the Oracle.

The environment we consider, similar to the majority of the prior art in the field, is one where the data

mining system has a single processor and the pattern lengths in the database are small relative to the number of

items in the database. That is, we restrict our attention to the class of sequential bottom-up mining algorithms.

Within the above framework, we make the following contributions:

Firstly, we show that while the notion of the Oracle is conceptually simple, its construction is not equally

straightforward. In particular, it is critically dependent on the choice of data structures and database organi-

zations used during the counting process. We present a carefully engineered implementation of Oracle that

makes the best choices for these design parameters at each stage of the counting process. Our experimen-

tal results show that there is a considerable gap in the performance between the Oracle and existing mining

algorithms.

Secondly, we present a new mining algorithm, called ARMOR (Association Rule Mining based on OR-

acle), whose structure is derived by making minimal changes to the Oracle, and is guaranteed to complete in

two passes over the database. ARMOR incorporates techniques from a variety of previous algorithms such

as PARTITION [20], CARMA [13], AS-CPA [15], VIPER [21] and DELTA [19]. Our empirical study shows
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that ARMOR performs within a factor of two of the Oracle, over a variety of databases and practical ranges

of support specifications.

Finally, an important feature of our experiments is that they include workloads where the database is

large enough that the working set of the database cannot be completely stored in memory. This situation

may be expected to frequently arise in data mining applications since they are typically executed on huge

historical databases. However, previous performance studies have been largely conducted on databases that

completely fit in main memory. For example, the standard experiment is one that has only 100K tuples with

an average tuple width of 50 bytes – this fits easily in current memories that are typically in the hundreds of

megabytes. Therefore, the ability of these algorithms to scale with database size, an important requirement

for mining applications, has not been conclusively shown. In our previous work [21], we had demonstrated

that this was an important issue and that algorithms that worked very well for memory-resident databases

did not necessarily perform as well in disk-resident databases. Consistent with that observation, here too we

conduct experiments with such large disk-resident databases.

1.1 Organization

The remainder of this paper is organized as follows: In Section 2 we present a formal description of the prob-

lem of mining association rules and the scope of our work in terms of the database and system characteristics

considered in our study. The design of the Oracle algorithm is described in Section 3 and is used to evaluate

the performance of current algorithms in Section 4. Our new ARMOR algorithm is presented in Section 5.

The details of candidate generation in ARMOR are discussed in Section 6, while its main memory require-

ments are discussed in Section 7. The performance of ARMOR is evaluated in Section 8. Related work on

association rule mining is reviewed in Section 9. Finally, in Section 10, we summarize the conclusions of

our study and outline future avenues to explore.

2 Problem Formulation and Scope

The problem of mining market-basket databases for boolean association rules was first formulated in [4] and

since then has attracted considerable attention. Since the problem is well-known, we quickly review the prob-

lem formulation here. We then move on to describe the database, system and pattern characteristics consid-

ered in our study. Our choices are such that they match those selected in the majority of the previous studies.
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2.1 Basket Mining

The inputs to this model are I , a set of items sold by the store, and D, a database of customer purchase

transactions. In this context, an association rule is a (statistical) implication of the form X =) Y where

X;Y � I and X \Y = �. The problem then, is to find all association rules for which P (X [Y )=P (X) �

minconf and P (X [ Y ) � minsup where minconf and minsup are user-specified parameters. It has

been observed in [4] that this problem is effectively reducible to finding all sets of items (also called frequent

itemsets), X , for which P (X) � minsup. P (X) is also referred to as the support of X .

2.2 Database Characteristics

Conceptually, a market-basket database is a two-dimensional matrix where the rows represent individual cus-

tomer purchase transactions and the columns represent the items on sale. This matrix can be implemented in

the following four different ways [21], which are pictorially shown in Figure 1:

Item-vector (IV): The database is organized as a set of rows with each row storing a transaction identifier

(TID) and a bit-vector of 1’s and 0’s to represent for each of the items on sale, its presence or absence,

respectively, in the transaction.

Item-list (IL): This is similar to IV, except that each row stores an ordered list of item-identifiers (IID), rep-

resenting only the items actually purchased in the transaction.

Tid-vector (TV): The database is organized as a set of columns with each column storing an IID and a bit-

vector of 1’s and 0’s to represent the presence or absence, respectively, of the item in the set of customer

transactions.

Tid-list (TL): This is similar to TV, except that each column stores an ordered list of only the TIDs of the

transactions in which the item was purchased.

While a mining algorithm is free to dynamically change the database layout during the mining process,

we assume that the initial database is always provided in the horizontal item-list (IL) format.

2.3 System Characteristics

While there has been significant work in designing algorithms for the parallel mining of association rules [5,

11, 29, 18], in this study we focus on single processor environments. We also assume that the database is

much larger than the available main memory.
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Figure 1: Comparison of Data Layouts

2.4 Pattern Characteristics

Boolean Association Rules We restrict our attention to the problem of generating boolean association rules

where the only relevant information in each database transaction is the presence or absence of an item. Pre-

vious works on generating hierarchical [22], quantitative and categorical rules [23] have shown that albeit

requiring some preprocessing, these problems are finally reducible to the problem of generating boolean as-

sociation rules.

Short Patterns The environment we consider is one where the pattern lengths in the database are small

relative to the number of items in the database. That is, we restrict our attention to the class of algorithms that

take a bottom-up approach to enumerate the solution space consisting of the lattice of all possible itemsets.

The problem of mining long patterns has been addressed in [7, 14, 2] and solution techniques for such patterns

require a combination of top-down and bottom-up methods to be viable.

2.5 Mining Algorithms Input/Output

All online mining algorithms in our study take as input the database D in item-list (IL) format and the mini-

mum support threshold minsup and produce as output the set of frequent itemsets F and its negative border

N [25] along with their corresponding supports. The negative border N of a set of itemsets F is defined as

follows: An itemset X belongs to N iff X 62 F but all subsets of X are in F .

The Oracle algorithm, on the other hand, takes as input the database D in item-list (IL) format, the set

of frequent itemsets F and its negative border N , and produces as output the supports of itemsets in F [N .

We include the negative border supports as a required output of Oracle due to the following reasons:

� It has been shown in [16] that in certain restricted models of computation all the itemsets in the negative
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border have to be examined. In particular, it was shown that:

Theorem 2.1 Any algorithm that computes the set of frequent itemsets and accesses the data using

only queries of the following form: “Is itemset X frequent?” must use at least jN j such queries.

� The negative border information has been found to be especially useful in the design of incremental

mining algorithms [19, 24, 10]. These algorithms are designed to efficiently derive the current mining

output by utilizing previous mining results when a database has been updated with an increment.

For ease of exposition, we will use the notation shown in Table 1 in the remainder of this paper.

Mining Algorithms Input/Output
I Set of items in the database
D Database of customer purchase transactions
minsup User-specified minimum rule support
F Set of frequent itemsets in D
N Set of itemsets in the negative border of F

For Oracle and ARMOR Algorithms
P1; P2; :::; Pn Set of n disjoint partitions of D
d No of transactions in partitions scanned so far during algorithm execution

excluding the current partition
d+ No of transactions in partitions scanned so far during algorithm execution

including the current partition
G DAG structure to store candidates during algorithm execution

Table 1: Notation

3 The Oracle Algorithm

In this section we present the Oracle algorithm which, as mentioned in the Introduction, “magically” knows

in advance the identities of all frequent itemsets in the database and only needs to gather the actual supports

of these itemsets. Clearly, any practical algorithm will have to do at least this much work in order to generate

mining rules. Oracle takes as input the database, D, the set of frequent itemsets, F , and its corresponding

negative border, N , and outputs the supports of these itemsets by making one scan over the database. While

the initial database layout is in the item-list (IL) format, the Oracle algorithm uses different formats during

the course of its execution for efficient processing. We first describe the mechanics of the Oracle algorithm

below and then move on to discuss the rationale behind its design choices in Section 3.2.
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3.1 The Mechanics of Oracle

For ease of exposition, we first present the manner in which Oracle computes the supports of 1-itemsets and

2-itemsets and then move on to longer itemsets. Note, however, that the algorithm actually performs all these

computations concurrently in one scan over the database.

3.1.1 Counting Singletons and Pairs

ArrayCount (T;A1;A2)
Input: Transaction T , Array for 1-itemsets A1, Array for 2-itemsets A2

Output: Arrays A1 and A2 with their counts updated over T
1. Itemset T f = null; // to store frequent items from T in Item-List format
2. for each item i in transaction T
3. A1[i:id]:count++;
4. if A1[i:id]:index 6= null
5. append i to T f

6. for j = 1 to jT f j // enumerate 2-itemsets
7. for k = j + 1 to jT f j
8. index1 = A1[T

f [j]:id]:index // row index
9. index2 = A1[T

f [k]:id]:index // column index
10. A2[index1; index2] + +;

Figure 2: Counting Singletons and Pairs in Oracle

Data-Structure Description The counters of singletons (1-itemsets) are maintained in a 1-dimensional

lookup array, A1, and that of pairs (2-itemsets), in a lower triangular 2-dimensional lookup array, A2. (Sim-

ilar arrays are also used in Apriori [6, 22] for its first two passes.) The kth entry in the array A1 contains two

fields: (1) count, the counter for the itemset X corresponding to the kth item, and (2) index, the number of

frequent itemsets prior to X in A1, if X is frequent; null, otherwise.

Algorithm Description The ArrayCount function shown in Figure 2 takes as inputs, a transaction T along

withA1 andA2, and updates the counters of these arrays over T . In the ArrayCount function, the individual

items in the transaction T are enumerated (lines 2–5) and for each item, its corresponding count in A1 is

incremented (line 3). During this process, the frequent items in T are stored in a separate itemset Tf (line

5). We then enumerate all pairs of items contained in Tf (lines 6–10) and increment the counters of the

corresponding 2-itemsets in A2 (lines 8–10).
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3.1.2 Counting k-itemsets, k > 2

Data-Structure Description Itemsets inF[N of length greater than 2 and their related information (coun-

ters, etc.) are stored in a DAG structure G, which is pictorially shown in Figure 3 for a database with items

fA, B, C, Dg. Although singletons and pairs are stored in lookup arrays, as mentioned before, for expository

ease, we assume that they too are stored in G in the remainder of this discussion.

Each itemset is stored in a separate node of G and is linked to the first two (in a lexicographic ordering) of

its subsets. We use the terms “mother” and “father” of an itemset to refer to the (lexicographically) smaller

subset and the (lexicographically) larger subset, respectively. E.g., fA, Bg and fA, Cg are the mother and

father respectively of fA, B, Cg. For each itemset X in G, we also store with it links to those supersets of X

for which X is a mother. We call this list of links as childset.

father

mother

B C

AB

D

AC AD BC BD CD

ABC ABD ACD BCD

ABCD

A

Figure 3: DAG Structure Containing Power Set of fA,B,C,Dg

Since each itemset is stored in a separate node in the DAG, we use the terms “itemset” and “node” inter-

changeably in the remainder of this discussion. Also, we use G to denote the set of itemsets that are stored

in the DAG structure G.

Algorithm Description We use a partitioning scheme [20] wherein the database is logically divided into

n disjoint horizontal partitions P1; P2; :::; Pn. In this scheme, itemsets being counted are enumerated only

at the end of each partition and not after every tuple. Each partition is as large as can fit in available main

memory. For ease of exposition, we assume that the partitions are equi-sized. However, the technique is

easily extendible to arbitrary partition sizes.

The pseudo-code of Oracle is shown in Figure 4 and operates as follows: The ReadNextPartition func-

tion (line 3) reads tuples from the next partition and simultaneously creates tid-lists (within that partition) of
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Oracle (D, G)
Input: Database D, Itemsets to be Counted G = F [N
Output: Itemsets in G with Supports
1. n = Number of Partitions
2. for i = 1 to n
3. ReadNextPartition(Pi, G);
4. for each singleton X in G
5. Update(X);

Figure 4: The Oracle Algorithm

Update (M )
Input: DAG Node M
Output: M and its Descendents with Counts Updated
1. B = convert M:tidlist to Tid-vector format // B is statically allocated
2. for each node X in M:childset

3. X:tidlist = Intersect(B, X:father:tidlist);
4. X:count += jX:tidlistj
5. for each node X in M:childset

6. Update(X);

Figure 5: Updating Counts

Intersect (B, T )
Input: Tid-vector B, Tid-list T
Output: B \ T

1. Tid-list result = �

2. for each tid in T
3. o�set = tid+ 1� (tid of first transaction in current partition)
4. if B[o�set ] = 1 then
5. result = result [ tid

6. return result

Figure 6: Intersection

singleton itemsets in G. The Update function (line 5) is then applied on each singleton in G. This function

takes a node M in G as input and updates the counts of all descendants of M to reflect their counts over the

current partition. The count of any itemset within a partition is equal to the length of its corresponding tidlist

(within that partition). The tidlist of an itemset can be obtained as the intersection of the tidlists of its mother

and father and this process is started off using the tidlists of frequent 1-itemsets. The exact details of tidlist

computation are discussed later.

We now describe the manner in which the itemsets in G are enumerated after reading in a new partition.

The set of links,
S
M2GM:childset, induce a spanning tree of G (e.g. consider only the solid edges in Fig-
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ure 3). We perform a depth first search on this spanning tree to enumerate all its itemsets. When a node in

the tree is visited, we compute the tidlists of all its children. This ensures that when an itemset is visited, the

tidlists of its mother and father have already been computed.

The above processing is captured in the function Update whose pseudo-code is shown in Figure 5. Here,

the tidlist of a given node M is first converted to the tid-vector (TV) format (line 1) discussed in Section 2.2.

Then, tidlists of all children of M are computed (lines 2–4) after which the same children are visited in a

depth first search (lines 5–6).

The mechanics of tidlist computation, as promised earlier, are given in Figure 6. The Intersect function

shown here takes as input a tid-vector B and a tid-list T . Each tid in T is added to the result if B[o�set ] is

1 (lines 2–5) where o�set is defined in line 3 and represents the position of the transaction T relative to the

current partition.

3.2 Rationale for the Oracle Design

Having described the mechanics of the Oracle design, we now move on to providing the rationale for its

construction. We show that it is optimal in two respects: (1) It enumerates only those itemsets in G that need

to be enumerated, and (2) The enumeration is performed in the most efficient way possible. The following

theorem shows that there is no wasted enumeration of itemsets in Oracle in typical mining scenarios.

Theorem 3.1 If the size of each partition is large enough that every itemset in F [N of length greater than

2 is present at least once in it, then the only itemsets being enumerated in the Oracle algorithm are those

whose counts need to be incremented in that partition.

Proof: The first observation is that all 1-itemsets must be in either F or N . Hence every occurance of a 1-

itemset in the entire database needs to be accounted for in the final output. Oracle does no more than this as

it enumerates each singleton in every transaction only once (lines 2–5 in Figure 2).

The 2-itemsets that are enumerated (lines 6–10 in Figure 2) are all guaranteed to be either in F or in N

since only combinations of frequent 1-itemsets are considered. Hence there is no wasted work in enumerating

them.

If each partition is large enough that every itemset inF[N of length greater than 2 is present at least once

in it, then it is necessary to increment the counts of all these itemsets over that partition. This is precisely

what is done in Oracle. Also, note that by the definition of depth first search, each node in the DAG is visited

only once. Hence, it follows that there is no wasted enumeration of itemsets in Oracle. 2
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The assumption in Theorem 3.1 that every itemset in F [ N of length greater than 2 is present at least

once in each partition would typically hold on large partitions. Even if this does not strictly hold, the Oracle

algorithm degrades gracefully in that: If there are m itemsets that are not present in some partition, then the

amount of wasted enumeration is only m.

We now move on to the second part of our proof, namely, to show that the data-structures used in the

Oracle algorithm are the most efficient for the range of operations required in Oracle.

Theorem 3.2 The cost of enumerating each itemset in Oracle is �(1).

Proof: Since the counts of singletons and pairs are stored in direct lookup arrays, the cost of finding the

counters of an arbitrary singleton or pair is �(1).

For an itemset X such that jXj � 2, the cost of enumerating its children is �(jX:childsetj) since links

to all nodes in X:childset are available in the node containing X . Amortizing this cost over all the children

results in �(1) cost per child. Also, X has direct pointers to its mother and father. Hence the cost of finding

them in order to compute the tid-list of X is �(1).

Since the only operations done in Oracle in each visit to a node during the depth first search are to compute

the tidlists of each of its children, the amortized cost incurred for enumerating each node is �(1). 2

We assume that the underlying computing model is a unit cost RAM [9]. In this model, operations such

as accessing an arbitrary element in an array and following a pointer have unit cost and cannot therefore be

improved upon. Since the costs involved in the above proof are of array lookups and following pointers, the

constant factor involved in the �(1) expression is tight.

While Oracle is optimal in most respects as described above, we note that there may remain some scope

for improvement in the details of tidlist computation. That is, the Intersect function (Figure 6) which com-

putes the intersection of a tid-vector B and a tid-list T requires �(jT j) operations. B itself was originally

constructed from a tid-list, although this cost is amortized over many calls to the Intersect function. We plan

to investigate in our future work whether the intersection of two sets can, in general, be computed more ef-

ficiently – for example, using diffsets, a novel and interesting approach suggested in [27]. The diffset of an

itemset X is the set-difference of the tid-list of X from that of its mother. Diffsets can be easily incorporated

in Oracle – only the Update function in Figure 5 of Section 3 is to be changed to compute diffsets instead

of tidlists by following the techniques suggested in [27].
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3.2.1 Advantages of Partitioning Schemes

Oracle, as discussed above, uses a partitioning scheme. An alternative commonly used in current associa-

tion rule mining algorithms, especially in hashtree [6] based schemes, is to use a tuple-by-tuple approach.

A problem with the tuple-by-tuple approach, however, is that there is considerable wasted enumeration of

itemsets. The core operation in these algorithms is to determine all candidates that are subsets of the cur-

rent transaction. Given that a frequent itemset X is present in the current transaction, we need to determine

all candidates that are immediate supersets of X and are also present in the current transaction. In order to

achieve this, it is often necessary to enumerate and check for the presence of many more candidates than

those that are actually present in the current transaction.

4 Performance Study

In the previous section, we have described the Oracle algorithm. In order to assess the performance of current

mining algorithms with respect to the Oracle algorithm, we have chosen VIPER [21] and FP-growth [12],

among the latest in the suite of online mining algorithms. For completeness and as a reference point, we have

also included the classical Apriori in our evaluation suite.

Our experiments cover a range of database and mining workloads, and include the typical and extreme

cases considered in previous studies – the only difference is that we also consider database sizes that are

significantly larger than the available main memory. The performance metric in all the experiments is the

total execution time taken by the mining operation.

The databases used in our experiments were synthetically generated using the technique described in [6]

and attempt to mimic the customer purchase behavior seen in retailing environments. The parameters used in

the synthetic generator and their default values are described in Table 2. In particular, we consider databases

with parameters T10.I4, T20.I12 and T40.I8 with 10 million tuples in each of them.

Parameter Meaning Default Values
N Number of items 1000
T Mean transaction length 10, 20, 40
L Number of potentially frequent itemsets 2000
I Mean length of potentially frequent itemsets 4, 8, 12
D Number of transactions in the database 10M

Table 2: Parameter Table

We set the rule support threshold values to as low as was feasible with the available main memory. At
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these low support values the number of frequent itemsets exceeded twenty five thousand! Beyond this, we

felt that the number of rules generated would be enormous and the purpose of mining – to find interesting

patterns – would not be served. In particular, we set the rule support threshold values for the T10.I4, T20.I12

and T40.I8 databases to the ranges (0.1%–2%), (0.4%–2%) and (1.15%–5%), respectively.

Our experiments were conducted on a 700-MHz Pentium III workstation running Red Hat Linux 6.2,

configured with a 512 MB main memory and a local 18 GB SCSI 10000 rpm disk. For the T10.I4, T20.I12

and T40.I12 databases, the associated database sizes were approximately 500MB, 900MB and 1.7 GB, re-

spectively. All the algorithms in our evaluation suite are written in C++. We implemented a basic version

of the FP-growth algorithm wherein we assume that the entire FP-tree data structure fits in main memory.

Finally, the partition size in Oracle was fixed to be 20K tuples.

4.1 Experimental Results for Current Mining Algorithms

We now report on our experimental results. We conducted two experiments to evaluate the performance of

current mining algorithms with respect to the Oracle. Our first experiment was run on large (10M tuples)

databases, while our second experiment was run on small (100K tuples) databases.

4.1.1 Experiment 1: Performance of Current Algorithms
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Figure 7: Performance of Current Algorithms (Large Databases)

In our first experiment, we evaluated the performance of Apriori, VIPER and Oracle algorithms for the

T10.I4, T20.I12 and T40.I8 databases each containing 10M transactions and these results are shown in Fig-

ures 7a–c. The x-axis in these graphs represent the support threshold values while the y-axis represents the

response times of the algorithms being evaluated.
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In these graphs, we see that the response times of all algorithms increase exponentially as the support

threshold is reduced. This is only to be expected since the number of itemsets in the output, F [N , increases

exponentially with decrease in the support threshold.

We also see that there is a considerable gap in the performance of both Apriori and VIPER with respect

to Oracle. For example, in Figure 7a, at a support threshold of 0.1%, the response time of VIPER is more

than 6 times that of Oracle whereas the response time of Apriori is more than 26 times!

In this experiment, we could not evaluate the performance of FP-growth because it did not complete in

any of our runs on large databases due to its heavy and database size dependent utilization of main memory.

The reason for this is that FP-growth stores the database itself in a condensed representation in a data struc-

ture called FP-tree. In [12], the authors briefly discuss the issue of constructing disk-resident FP-trees. We

however, did not take this into account in our implementation. We return to this issue later in Section 4.1.2.

4.1.2 Experiment 2: Small Databases
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Figure 8: Performance of Current Algorithms (Small Databases)

Since, as mentioned above, it was not possible for us to evaluate the performance of FP-growth on large

databases due to its heavy utilization of main memory, we evaluated the performance of FP-growth and other

current algorithms on small databases consisting of 100K transactions. The results of this experiment are

shown in Figures 8a–c, which correspond to the T10.I4, T20.I12 and T40.I8 databases, respectively.

In these graphs, we first see there continues to be a considerable gap in the performance of current mining

algorithms with respect to Oracle. For example, for the T40.I8 database, the response time of FP-growth is

more than 8 times that of Oracle for the entire support threshold range.

Second, although FP-growth does well at low supports, its performance is worse than Apriori for high
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supports. These results are inconsistent with those shown in [12] where it was shown that FP-growth con-

sistently performs better than Apriori for the entire support range. While this could possibly be due to dif-

ferences between our respective implementations of FP-growth and/or Apriori, we feel that there are logical

reasons for this behaviour as explained below.

At high supports Apriori typically performs only two passes over the data since with these supports there

are usually no frequent itemsets of length greater than two. In these cases, the first pass of Apriori is identical

to the preprocessing pass in FP-growth in which all frequent singletons are obtained. The second pass of

Apriori is quite efficient since the counts of candidate 2-itemsets are maintained in a 2-dimensional lookup

array. FP-growth, on the other hand, constructs an FP-tree during the second pass. The FP-tree is updated

on a tuple-by-tuple basis. Each node in the FP-tree contains an item-name field. A critical operation during

FP-tree construction is to find the child of a node given a key item-name. If these keys are stored in lookup-

arrays, the memory requirements of FP-tree would be still worse. The alternative is to use an indexing data

structure such as a red-black tree or a skip-list that requires O(log n) time to perform the find operation, but

this would make the FP-tree construction slow. Even assuming that the cost of FP-tree construction is equal

to the second pass of Apriori, FP-growth still needs to mine the FP-tree. Hence FP-growth finally loses out

at high supports.

5 The ARMOR Algorithm

In the previous section, our experimental results have shown that there is a considerable gap in the perfor-

mance between the Oracle and existing mining algorithms. We now move on to describe our new mining

algorithm, ARMOR (Association Rule Mining based on ORacle). In this section, we overview the main fea-

tures and the flow of execution of ARMOR – the details of candidate generation are deferred to the following

section.

The guiding principle in our design of the ARMOR algorithm is that we consciously make an attempt

to determine the minimal amount of change to Oracle required to result in an online algorithm. This is in

marked contrast to the earlier approaches which designed new algorithms by trying to address the limitations

of previous online algorithms. That is, we approach the association rule mining problem from a completely

different perspective.

In ARMOR, as in Oracle, the database is conceptually partitioned into n disjoint blocks P1; P2; :::; Pn.

At most two passes are made over the database. In the first pass we form a set of candidate itemsets, G, that

is guaranteed to be a superset of the set of frequent itemsets. During the first pass, the counts of candidates
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ARMOR (D, I;minsup)
Input: Database D, Set of Items I , Minimum Support minsup

Output: F [N with Supports
1. n = Number of Partitions

//—– First Pass —–
2. G = I // candidate set (in a DAG)
3. for i = 1 to n
4. ReadNextPartition(Pi, G);
5. for each singleton X in G
6. X:count += jX:tidlistj
7. Update1(X , minsup);

//—– Second Pass —–
8. RemoveSmall(G, minsup);
9. OutputFinished(G, minsup);
10. for i = 1 to n
11. if (all candidates in G have been output)
12. exit
13. ReadNextPartition(Pi, G);
14. for each singleton X in G
15. Update2(X , minsup);

Figure 9: The ARMOR Algorithm

in G are determined over each partition in exactly the same way as in Oracle by maintaining the candidates

in a DAG structure. The 1-itemsets and 2-itemsets are stored in lookup arrays as in Oracle. But unlike in

Oracle, candidates are inserted and removed from G at the end of each partition. Generation and removal of

candidates is done simultaneously while computing counts. The details of candidate generation and removal

during the first pass are described in Section 6. For ease of exposition we assume in the remainder of this

section that all candidates (including 1-itemsets and 2-itemsets) are stored in the DAG.

Along with each candidateX , we also store the following three integers as in the CARMA algorithm [13]:

(1) X:count : the number of occurrences of X since X was last inserted in G. (2) X:firstPartition : the

index of the partition at which X was inserted in G. (3) X:maxMissed : upper bound on the number of

occurrences of X before X was inserted in G.

While the CARMA algorithm works on a tuple-by-tuple basis, we have adapted the semantics of these

fields to suit the partitioning approach. If the database scanned so far is d (refer Table 1), then the support

of any candidate X in G will lie in the range [X:count=jdj; (X:maxMissed +X:count)=jdj] [13]. These

bounds are denoted by minSupport(X) and maxSupport(X), respectively. We define an itemset X to be

d-frequent if minSupport(X) � minsup. Unlike in the CARMA algorithm where only d-frequent item-

sets are stored at any stage, the DAG structure in ARMOR contains other candidates, including the negative
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border of the d-frequent itemsets, to ensure efficient candidate generation. The details are given in Section 6.

At the end of the first pass, the candidate set G is pruned to include only d-frequent itemsets and their

negative border. The counts of itemsets in G over the entire database are determined during the second pass.

The counting process is again identical to that of Oracle. No new candidates are generated during the second

pass. However, candidates may be removed. The details of candidate removal in the second pass is deferred

to Section 6.1.

The pseudo-code of ARMOR is shown in Figure 9 and is explained below.

5.1 First Pass

At the beginning of the first pass, the set of candidate itemsets G is initialized to the set of singleton itemsets

(line 2). The ReadNextPartition function (line 4) reads tuples from the next partition and simultaneously

creates tid-lists of singleton itemsets in G.

After reading in the entire partition, the Update1 function (details in Section 6) is applied on each sin-

gleton in G (lines 5–7). It increments the counts of existing candidates by their corresponding counts in the

current partition. It is also responsible for generation and removal of candidates.

At the end of the first pass, G contains a superset of the set of frequent itemsets. For a candidate in G that

has been inserted at partition Pj , its count over the partitions Pj ; :::; Pn will be available.

5.2 Second Pass

At the beginning of the second pass, candidates in G that are neither d-frequent nor part of the current negative

border are removed from G (line 8). For candidates that have been inserted in G at the first partition, their

counts over the entire database will be available. These itemsets with their counts are output (line 9). The

OutputFinished function also performs the following task: If it outputs an itemsetX andX has no supersets

left in G, X is removed from G.

During the second pass, the ReadNextPartition function (line 13) reads tuples from the next partition

and creates tid-lists of singleton itemsets in G. After reading in the entire partition, the Update2 function

(details in Section 6.1) is applied on each singleton in G (lines 14–15). Finally, before reading in the next

partition we check to see if there are any more candidates. If not, the mining process terminates.
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6 Candidate Generation in ARMOR

ARMOR utilizes a technique from incremental mining algorithms [19, 24, 10] in order to generate candidates

efficiently. These algorithms are designed to efficiently derive the current mining output by utilizing previous

mining results when a database has been updated with an increment. ARMOR treats the database scanned

so far, d, as the “original database” and the current partition being processed as the “increment”. Let d+

denote the portion of the database scanned so far including the current partition being processed (see Table 1

in Section 2). Let Fd and F d+ be the sets of frequent itemsets over d and d+, respectively, and Nd and Nd+

be their corresponding negative borders. In this context, it is shown in [24] that:

Theorem 6.1 If X is an itemset that is not in Fd but is in Fd+ , then there must be some subset x of X which

was in Nd and is now in Fd+ .

The itemsets that move from Nd to F d+ are called promoted borders. The above Theorem then means

that the only candidates that need to be generated are those that are supersets of the promoted borders. We

use the term expanding a promoted border P to denote the process of generating the required supersets of P .

We present now a technique for efficiently expanding a promoted border. Our technique is captured in

the Expand function presented in Figure 10, the inputs to which are P , the promoted border to be expanded

and G, the current set of candidates. The Expand function is similar to the AprioriGen function [6] since the

siblings ofP are exactly those itemsets inG that differ fromP in the last item. However, the Expand function

and its usage differs from AprioriGen in that: (1) It is applied dynamically whenever a candidate that was

in the negative border becomes d-frequent; (2) It is applied to individual itemsets, whereas the AprioriGen

function is applied to sets of itemsets; (3) It performs a parent based pruning optimization unlike AprioriGen

which enumerates all immediate subsets of a candidate inorder to prune it.

At first glance, it may appear surprising that we do not consider the same pruning strategy as of Apriori-

Gen in Expand. The reason we do not do so is because it results in significant overheads due to the dynamic

and incremental manner in which candidate generation occurs in Expand. We illustrate this with the follow-

ing example: Consider the situation in which the itemsets fU; V g and fU;Wg are d-frequent but fV;Wg

is not. Then fU; V;Wg will not be in G if Apriori-type pruning were incorporated in Expand. If fV;Wg

also becomes d-frequent, then fU; V;Wg will need to be added to G. But fV;Wg cannot be combined with

another itemset that differs only in the last item to produce fU; V;Wg. This means that if we incorporate

Apriori-type pruning, the Expand function needs to combine fV;Wg with itemsets that differ from it in any

one item.
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From the above discussion, it is clear that incorporating Apriori-type pruning in the Expand function,

results in significant cost for two reasons: (1) It requires a separate traversal of the DAG structure to find all

itemsets that differ from a given itemset in any one item. (2) All immediate subsets of a given itemset need

to be searched for in the DAG.

Without Apriori-type pruning, in the above example, fU; V;Wgwould have already been in G regardless

of whether fV;Wg is d-frequent or not since it would not have been pruned due to the absence of fV;Wg.

Therefore, when fV;Wg becomes d-frequent, it is not necessary to regenerate fU; V;Wg.

Due to the above reasons we do not incorporate Apriori-type pruning in ARMOR. Instead, a candidate

is automatically pruned if one of its parents is not d-frequent since it would not even be generated in the first

place. Our experiments (Section 8) showed that the number of additional candidates generated in ARMOR

compared to Apriori’s jF [N j candidates was marginal – the worst case being about ten percent more.

The Expand function is incorporated into ARMOR by calling it from the Update1 function that is in-

voked for each partition scanned during the first pass. The Update1 function is presented in Figure 11 and

is explained below.

Expand (P , G)
Input: Promoted Border P , DAG G

for each sibling X of P in G
if (X is d-frequent) then

S = P [X // new candidate
Insert S into G as a child of P

Figure 10: Expanding a Promoted Border

Update1 (M , minsup)
Input: DAG Node M , Minimum Support minsup

Output: M and its Descendents Updated
// Lines 1–4 of Update function shown in Figure 5 and explained in Section 3
1. for each node X in M .childset
2. if maxSupport(X) � minsup then
3. if jX:childsetj > 0 // already expanded
4. remove all supersets of X reachable from X in the DAG
5. else
6. if jX:childsetj = 0 // not yet expanded
7. Expand(X);
// Lines 5–6 of Update function shown in Figure 5 and explained in Section 3

Figure 11: Updating Counts
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The manner in which the counts of candidates are computed in Update1 is exactly the same as that in

Update (described in Section 3). The extra processing in Update1 is only to generate and remove candidates

dynamically. This is done in one enumeration of all children of a given node M (lines 1–7). For each child

X that is enumerated, if it has supersets but is not d-frequent, then we remove all supersets of X that are

reachable from X in the DAG (lines 2–4). Note that X itself is not removed since it could be part of the

current negative border. On the other hand, if X is d-frequent and has not yet been expanded, then it is now

expanded by calling the Expand function (lines 6–7).

6.1 Candidate Removal During Second Pass

A candidate X is removed during the second pass whenever the following two conditions are satisfied: (1)

The count of X over the entire database is available, which becomes true when X:firstPartition is the

next partition to be processed; and (2) X has no supersets in G.

We now describe the Update2 function (called from ARMOR in Figure 9), which is responsible for

removing candidates as described above. The Update2 function increments the counts of existing candidates

by their corresponding counts in the current partition in a manner identical to that of the Update function of

Oracle (described in Section 3). It differs from Update only in that it also outputs candidates whose counts

over the entire database are known. If it outputs an itemset X and X has no supersets left in G,X is removed

from G.

7 Memory Utilization in ARMOR

In the design and implementation of ARMOR, we have opted for speed in most decisions that involve a

space-speed tradeoff. Therefore, the main memory utilization in ARMOR is certainly more as compared

to algorithms such as Apriori. However, in the following discussion, we show that the memory usage of

ARMOR is well within the reaches of current machine configurations. This is also experimentally confirmed

in the next section.

The main memory consumption of ARMOR comes from the following sources: (1) The 1-d and 2-d

arrays for storing counters of singletons and pairs, respectively; (2) The DAG structure for storing counters

of longer itemsets, including tidlists of those itemsets, and (3) The current partition.

The total number of entries in the 1-d and 2-d arrays and in the DAG structure corresponds to the number

of candidates in ARMOR, which as we have discussed in Section 6, is only marginally more than jF [N j.

For the moment, if we disregard the space occupied by tidlists of itemsets, then the amortized amount of
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space taken by each candidate is a small constant (about 10 integers for the dag and 1 integer for the arrays).

E.g., if there are 1 million candidates in the dag and 10 million in the array, the space required is about 80MB.

Since the environment we consider is one where the pattern lengths are small, the number of candidates will

typically be comparable to or well within the available main memory. [26] discusses alternative approaches

when this assumption does not hold.

Regarding the space occupied by tidlists of itemsets, note that ARMOR only needs to store tidlists of d-

frequent itemsets. The number of d-frequent itemsets is of the same order as the number of frequent itemsets,

jF j. The total space occupied by tidlists while processing partition Pi is then bounded by jF j � jPij inte-

gers. E.g., if jF j = 5K and jPij = 20K , then the space occupied by tidlists is bounded by about 400MB.

We assume jF j to be in the range of a few thousands at most because otherwise the total number of rules

generated would be enormous and the purpose of mining would not be served. Note that the above bound is

very pessimistic. Typically, the lengths of tidlists are much smaller than the partition size, especially as the

itemset length increases.

Main memory consumed by the current partition is small compared to the above two factors. E.g., If

each transaction occupies 1KB, a partition of size 20K would require only 20MB of memory. Even in these

extreme examples, the total memory consumption of ARMOR is 500MB, which is acceptable on current

machines.

Therefore, in general we do not expect memory to be an issue for mining market-basket databases using

ARMOR. Further, even if it does happen to be an issue, it is easy to modify ARMOR to free space allocated

to tidlists at the expense of time: M:tidlist can be freed after line 3 in the Update function shown in Figure 5.

A final observation to be made from the above discussion is that the main memory consumption of AR-

MOR is proportional to the size of the output and does not “explode” as the input problem size increases.

8 Experimental Results for ARMOR

We evaluated the performance of ARMOR with respect to Oracle on a variety of databases and support char-

acteristics. We now report on our experimental results for the same performance model described in Sec-

tion 4.

8.1 Experiment 3: Performance of ARMOR

In this experiment, we evaluated the response time performance of the ARMOR and Oracle algorithms for

the T10.I4, T20.I12 and T40.I8 databases each containing 10M transactions and these results are shown in
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Figure 12: Performance of ARMOR (Synthetic Datasets)

Figures 12a–c.

In these graphs, we first see that ARMOR’s performance is close to that of Oracle for high supports. This

is because of the following reasons: The density of the frequent itemset distribution is sparse at high supports

resulting in only a few frequent itemsets with supports “close” tominsup. Hence, frequent itemsets are likely

to be locally frequent within most partitions. Even if they are not locally frequent in a few partitions, it is

very likely that they are still d-frequent over these partitions. Hence, their counters are updated even over

these partitions. Therefore, the complete counts of most candidates would be available at the end of the first

pass resulting in a “light and short” second pass. Hence, it is expected that the performance of ARMOR will

be close to that of Oracle for high supports.

Since the frequent itemset distribution becomes dense at low supports, the above argument does not hold

in this support region. Hence we see that ARMOR’s performance relative to Oracle decreases at low supports.

But, what is far more important is that ARMOR consistently performs within a factor of two of Oracle. This

is highlighted in Table 3 where we show the ratios of the performance of ARMOR to that of Oracle for the

lowest support values considered for each of the databases.

Database minsup(%) ARMOR (seconds) Oracle (seconds) ARMOR/Oracle
T10.I4.D10M 0.1 371.44 226.99 1.63
T20.I12.D10M 0.4 1153.42 814.01 1.41
T40.I8.D10M 1.15 2703.64 2267.26 1.19

Table 3: Worst-case Efficiency of ARMOR w.r.t Oracle
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8.2 Experiment 4: Memory Utilization in ARMOR
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Figure 13: Memory Utilization in ARMOR

The previous experiments were conducted with the total number of items, N , being set to 1K. In this experi-

ment we set the value of N to 20K items for the T10.I4 database – this environment represents an extremely

stressful situation for ARMOR with regard to memory utilization due to the very large number of items. Fig-

ure 13 shows the memory utilization of ARMOR as a function of support for the N = 1K and N = 20K cases.

We see that the main memory utilization of ARMOR scales well with the number of items. For example, at

the 0.1% support threshold, the memory consumption of ARMOR for N = 1K items was 104MB while for

N = 20K items, it was 143MB – an increase in less than 38% for a 20 times increase in the number of items!

The reason for this is that the main memory utilization of ARMOR does not depend directly on the number

of items, but only on the size of the output, F [N , as discussed in Section 7.

8.3 Experiment 5: Real Datasets

Despite repeated efforts, we were unable to obtain large real datasets that conform to the sparse nature of

market basket data since such data is not publicly available due to proprietary reasons. The datasets in the

UC Irvine public domain repository [8] which are commonly used in data mining studies were not suitable

for our purpose since they are dense and have long patterns. We could however obtain two datasets – BMS-

WebView-1, a clickstream data from Blue Martini Software [30] and EachMovie, a movie database from

Compaq Equipment Corporation [1], which we transformed to the format of boolean market basket data.

The resulting databases had 59,602 and 61,202 transactions respectively with 870 and 1648 distinct items.

We set the rule support threshold values for the BMS-WebView-1 and EachMovie databases to the ranges
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Figure 14: Performance of Armor (Real Datasets)

(0.06%–0.1%) and (3%–10%), respectively. The results of these experiments are shown in Figures 14a–b.

We see in these graphs that the performance of ARMOR continues to be within twice that of Oracle. The ratio

of ARMOR’s performance to that of Oracle at the lowest support value of 0.06% for the BMS-WebView-1

database was 1.83 whereas at the lowest support value of 3% for the EachMovie database it was 1.73.

8.4 Discussion of Experimental Results

We now explain the reasons as to why ARMOR should typically perform within a factor of two of Oracle.

First, we notice that the only difference between the single pass of Oracle and the first pass of ARMOR is that

ARMOR continuously generates and removes candidates. Since the generation and removal of candidates

in ARMOR is dynamic and efficient, this does not result in a significant additional cost for ARMOR.

Since candidates in ARMOR that are neither d-frequent nor part of the current negative border are contin-

uously removed, any itemset that is locally frequent within a partition, but not globally frequent in the entire

database is likely to be removed from G during the course of the first pass (unless it belongs to the current

negative border). Hence the resulting candidate set in ARMOR is a good approximation of the required min-

ing output. In fact, in our experiments, we found that in the worst case, the number of candidates counted in

ARMOR was only about ten percent more than the required mining output.

The above two reasons indicate that the cost of the first pass of ARMOR is only slightly more than that

of (the single pass in) Oracle.

Next, we notice that the only difference between the second pass of ARMOR and (the single pass in)

Oracle is that in ARMOR, candidates are continuously removed. Hence the number of itemsets being counted

in ARMOR during the second pass quickly reduces to much less than that of Oracle. Moreover, ARMOR
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does not necessarily perform a complete scan over the database during the second pass since the second pass

ends when there are no more candidates. Due to these reasons, we would expect that the cost of the second

pass of ARMOR is usually less than that of (the single pass in) Oracle.

Since the cost of the first pass of ARMOR is usually only slightly more than that of (the single pass in) Or-

acle and that of the second pass is usually less than that of (the single pass in) Oracle, it follows that ARMOR

will typically perform within a factor of two of Oracle.

9 Related Work

In this section, we briefly review a representative set of the major association rule mining algorithms proposed

in the literature. The very first algorithm was AIS [4] which was followed by the Apriori algorithm [6], a

multi-pass algorithm that incorporates the optimization of frequency based pruning of candidates. The 2-

pass CARMA algorithm proposed in [13] was a novel approach in that it performs candidate generation and

removal on a tuple-by-tuple basis.

All the above algorithms do candidate counting on a tuple-by-tuple basis and hence suffer from the draw-

backs mentioned in Section 3. An alternative approach was suggested in [20] based on a partitioning scheme

in which the database is logically divided into disjoint partitions, allowing for further pruning of candidates.

A variation of Partition was proposed in [15] that makes use of the cumulative count of each candidate to

achieve an illusion of a “large partition”. The FP-growth algorithm proposed in [12] is based on a differ-

ent approach. It constructs a condensed representation of the database called an FP-tree and then performs

mining over the FP-tree.

While the above algorithms were primarily horizontal (tuple) based approaches, the MaxClique [28] and

VIPER [21] algorithms were designed to efficiently mine databases that are available in a vertical layout.

All the above-mentioned studies (except VIPER, as discussed below) have focussed on evaluating the

performance of mining algorithms with respect to their predecessors. In particular, most of them compare

against the classical Apriori online mining algorithm.

With regard to evaluating the performance of mining algorithms with respect to idealized, offline algo-

rithms, a preliminary step was taken in our previous work [21], where we compared the vertical VIPER

against the oracle version of Apriori. This oracle, which we will refer to as Apriori-Oracle differs very much

from the Oracle algorithm discussed in this paper in the following significant aspects: (1) The Apriori-Oracle

primarily used the hashtree data structure [6] whereas Oracle primarily uses the DAG structure (as defined

in Section 3). (2) The Apriori-Oracle does counting with a tuple-by-tuple approach, while Oracle follows a
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partitioning approach. (3) The Apriori-Oracle was implemented only to count itemsets in F whereas Ora-

cle counts itemsets in both F and N . (4) Finally, no proofs of optimality were associated with the Apriori-

Oracle.

10 Conclusions

A variety of novel algorithms have been proposed in the recent past for the efficient mining of association

rules, each in turn claiming to outperform its predecessors on a set of standard databases. In this paper, our

approach was to quantify the algorithmic performance of association rule mining algorithms with regard to

an idealized, but practically infeasible, “Oracle”. The Oracle algorithm utilizes a partitioning strategy to de-

termine the supports of itemsets in the required output. It uses direct lookup arrays for counting singletons

and pairs and a DAG data-structure for counting longer itemsets. We have shown that these choices are op-

timal in that only required itemsets are enumerated and that the cost of enumerating each itemset is �(1).

Our experimental results showed that there was a substantial gap between the performance of current mining

algorithms and that of the Oracle.

We also presented a new online mining algorithm called ARMOR (Association Rule Mining based on

ORacle), that was constructed with minimal changes to Oracle to result in an online algorithm. ARMOR

utilizes a new method of candidate generation that is dynamic and incremental and is guaranteed to complete

in two passes over the database. Our experimental results demonstrate that ARMOR performs within a factor

of two of Oracle.

In our future work, we propose to extend the Oracle approach to the development of parallel and top-

down algorithms.
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