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ABSTRACT 
Electronic voting has become one of the most popular activities 
over the Internet. Security and privacy are always regarded as 
crucial factors in electronic voting system design. Various secure 
voting schemes have been proposed in the past several years to 
ensure the safe operation of electronic voting and most of them 
have focused on the common “one man, one vote” plurality 
voting.  In this paper, we study on the security and privacy issues 
in the Clarke tax voting protocol, another important social choice 
protocol.  This protocol is important in electronic voting, 
especially software agent based voting, because a voter’s 
dominant strategy is truth-telling, and consequently the overhead 
for counterspeculation is minimized. For the very same reason, it 
is essential to achieve the security and the privacy protection of 
voters so that voters’ preferences need not be made known to the 
public, should this protocol be practical and popular. In this paper, 
we first present several cryptographic building blocks, including 
ElGamal cryptosystem, player-resolved distributed ElGamal 
decryption, proof of knowledge of 1-of-k plaintext and 
player-resolved mix network. Then we propose a secure Clarke 
tax voting protocol making use of these techniques. In the 
proposed protocol, we achieve privacy protection, universal 
verifiability as well as other security requirements, such as 
secrecy, eligibility, completeness, etc. One important feature of 
the proposed protocol is that the full privacy protection of voters 
is guaranteed, which means that all information in voting are kept 
secret even in the presence of any collusion of participants 
involved in the voting. The only information known publicly is 
the final voting result, i.e., the winning candidate and the tax for 
each voter.  
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General Terms 
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1. INTRODUCTION 
Secure electronic voting systems are examples of advance 
cryptographic protocols that are needed for practical applications 
in real life. In general, a (secure) electronic voting scheme can be 
viewed as a protocol that allows a group of voters to cast their 
votes, while one or more authorities collect the votes, compute 
and publish the outcome. It is clear that electronic voting schemes 
should satisfy all security requirements and achieve at least the 
same security level as those of ordinary paper-based elections, 
while the fact that the digital communication method is used may 
raise new security problems. 

There have been many studies reported on the field of secure 
electronic voting systems, most of which, however, have focused 
only the common “one man, one vote” plurality protocol. The 
Clarke tax voting protocol is one in which the dominant strategy 
is truth-telling when the voters’ preferences are quasilinear [1, 25]  
Consequently, it is often a more preferred protocol in some 
scenarios of electronic voting, especially intelligent agent-based 
voting, as it is comparatively more efficient when 
counterspeculation is no longer necessary. In this paper, we 
address the security issues in the Clarke tax voting protocol, and 
propose a secure and private Clarke tax voting protocol for secure 
electronic voting. 

1.1 The Clarke Tax Protocol 
We illustrate the Clarke tax algorithm with the following simple 
example. Amy, Betty and Cindy are good friends.  One evening 
they decide to have Chinese food for dinner.  Amy likes the 
spicy Sichuan cuisine very much.  Betty, on the other hand, 
wishes to try the famous Peking duck, though Sichuan food is 
acceptable for her.  Finally, Cindy really wants to have a 
delicious Cantonese seafood dinner, as she does not like spicy 
food.  However, in a Chinese meal dishes are always shared, so 
they always need to share the bill after the meal, and each pays the 
same amount of money regardless of how much one really eats.  
Therefore, these friends must find a fair way to determine which 
cuisine they should go for. 
A solution to this kind of problems was presented by 
Edward H. Clarke in early seventies [1, 2], which is now 
commonly known as the Clarke tax protocol. The basic idea of 
Clarke tax is that each voter is levied a tax that equals to other 



voters’ loss incurred by the preference he declares. In other words, 
a voter’s tax is related to how much its vote has lowered the 
others’ utilities, and voters that do not end up changing the 
outcome do not pay any tax. It is proved that the dominant 
strategy for a voter in a Clarke tax protocol is to declare his true 
preference [5]. 
Figure 1 shows an example of Clarke tax voting. Each row of the 
table shows a voter’s preference. First, all voters Amy, Betty and 
Cindy declare their preferences for Sichuan (S), Peking (P) and 
Cantonese (C) food.  According the declared preferences, they 
should go for the Cantonese food, as the sum of value is 21, which 
is the maximum among three possible options. 
It can be observed that if Cindy had not cast her vote, the result 
would have been Sichuan food (S).  Therefore, Cindy’s 
participating in voting effectively brings other voter’s total value 
from 18 to 6.  Therefore, Cindy is levied a tax of 12.  On the 
other hand, Amy and Betty do not need to pay any tax. 
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Amy 10 4 0 3 15 *21 0 
Betty 8 10 6 5 9 *15 0 
Cindy –5 5 15 *18 14 6 –12 

Sum
j
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v∑  13 19 *21     

 
Fig. 1.  An Example of the Clarke Tax Voting: 

wO C= ; Amy 0tax = , Betty 0tax =  and Cindy 12tax = −  

 

Formally, the Clarke tax algorithm can be described as follows. 
Let Ω  be the set of all possible outcomes and j

iv denote the 
value of an outcome jO ∈Ω  for voter i. The final outcome 
(social choice) can then be calculated as 

arg max
j

j
w O kk

O v∈Ω= ∑ . Let arg max
i j

j
w O kk i

O v′ ∈Ω ≠
= ∑ . The tax 

for voter i is then iww
i k kk i k i

tax v v ′

≠ ≠
= −∑ ∑ . 

1.2 Security Issues in the Clarke Tax Voting 
Much research has been conducted on secure voting schemes and 
an extensive list of requirements for securing electronic voting is 
described in [3, 4]. In this paper, we will consider these security 
requirements in Clarke tax scheme, among which are privacy 
protection, universal verifiability, various forms of robustness as 
well as other requirements such as, secrecy, completeness, 
soundness, eligibility and so on. 

It has been proved [5] that with Clarke tax scheme, revealing the 
true value of each outcome is the dominant strategy of a voter. 
Such information of true preference, however, is usually regarded 
as the personal privacy of the voters, which is often too sensitive 
to be made known to the public. Therefore, it is of high practical 
importance to achieve privacy protection in Clarke tax scheme 

should it be to become practical and popular. Besides the issues of 
secrecy, completeness, soundness, eligibility, etc., the two most 
important security requirements in Clarke tax system are privacy 
protection and universally verifiability. 

Privacy protection means that all sensitive information (i.e., the 
voters’ true values of each outcome, the sum for each outcome, 
and the sum for each outcome without voter i’s participation) in 
the Clarke tax scheme should be kept secret, except that the final 
results, i.e. the final elected outcome and the tax for each voter. 

Universally verifiability is another important requirement of the 
scheme. Due to the privacy protection requirements, only the final 
results of the Clarke tax scheme should be known publicly. 
Consequently, it is necessary to achieve that any participant can 
verify the correctness of the results and detect any incorrect 
behavior of other voters with only the publicly available 
information. 

1.3 Organization 
The paper is organized as follows. We review the related work in 
section 2 and present the main contributions of our work. In 
section 3, we present several useful cryptographic building blocks 
used in this paper. A secure Clarke tax voting scheme with full 
privacy protection is proposed in section 4. We perform an 
analysis on security and efficiency of the proposed scheme in 
section 5, followed by conclusions in Section 6. 

2. RELATED WORK 
2.1 Secure Electronic Voting Protocols 
There has been extensive research proposing various schemes on 
the design of secure electronic voting in the literatures.  
However, most of them concentrate on the common “one man, 
one vote” plurality voting protocol. One of the earliest approaches 
is proposed by Fujioka [4] using blind signatures [6] and 
anonymous channels. In this scheme, a voter prepares a ballot in 
plaintext, and then performs an interactive protocol with an 
authority that verifies the validity of the vote, i.e., that the voter is 
eligible to vote and has not already cast his vote. During the 
interactive protocol, the authority issues a blind signature on the 
ballot, which means that the voter will obtain the authority’s 
digital signature on the ballot, without revealing the ballot 
contents to the authority. Finally, all voters submit their signed 
ballots to another counting authority who will then check and 
count all valid ballots. Note that an anonymous channel (such 
channel can be implemented based on cryptography, using 
so-called mix network [7]) should be employed here to preserve 
the privacy of voters. 

Another approach to secure voting scheme is using verifiable 
secret sharing [8, 9], in which there are several servers to count 
the votes, and voters interact with all servers to share verifiably 
secret votes among the servers [10, 11]. That is, each server gets a 
share of each voter’s ballot, and these shares are constructed with 
respect to a threshold t such that all the servers together can 
cooperate to obtain complete information on each ballot, while 
any subset of at most t servers has no information at all. The voter 
must convince all servers that the shares are correctly constructed 
and thus he is prevented from voting multiple times or voting 
incorrectly. After all votes have been cast, all servers then jointly 
compute the result of the election without leaking any sensitive 
information.  



Homomorphic encryption based secure voting schemes [4, 12, 13] 
are proposed and discussed most recently, in which a voter can 
simply publishes an particular encryption of vote using a specific 
public key cryptosystem with a homomorphism property, say, 
ElGamal encryption [14].  In such schemes, a public key known 
to everyone can be used for encryption of the vote. When 
submitting an encrypted vote, a voter not only has to identify 
himself to be eligible to vote, but also has to prove the correctness 
of the construction of his vote, i.e., the encryption contains a valid 
vote. The privacy of voters is protected, since all individual votes 
are encrypted and the proof is zero-knowledge [13]. Moreover, 
due to the homomorphism of the encryption system, the election 
result can be computed efficiently. Homomorphism here means 
that two encryption of, say, number a and b, can be combined to 
produce a new encryption of a b+ . By using this method 
repeatedly, all votes can be “implicitly added” without any 
decryption of any encrypted vote. Finally, we obtain an 
encryption of the voting result that can be obtained after 
decryption. The point of the above scheme is that the private key 
needed has to be secretly shared among a set of authorities in a 
threshold method. That is, each authority will hold a share of the 
private key, and the shares have to be constructed with a threshold 
value t so that no information of the private key leaks, unless 
more than t authorities corrupt or are broken into by an attacker. 
In other words, if at least 1t +  authorities behave correctly, a 
decryption can be performed. This is also known as threshold 
decryption. 

It is clear that most of the work reported in the literature on secure 
voting systems rely on threshold computation that is distributed 
among several authorities, out of which a fraction must be 
trustworthy. Assumptions on the trustworthiness of third parties or 
authorities are always made. In [10, 11], all servers share the votes 
of voters and it is assumed that at least 1t +  servers will never 
collude to comprise the voters’ privacy. In [4, 13], the private key 
for encrypting the vote is held by either a trusted third party or is 
shared among a set of authorities. However, in the reality, it is not 
always feasible to require that voters should trust any third party 
or other voters. It is also possible that groups of voters are formed, 
members of which share their knowledge and act as teams to 
perform maliciously. We therefore argue that distributing the trust 
on several authorities dose not achieve the privacy protection 
completely, since we can never rule out the possibility that some, 
or even all, of these authorities collude. Furthermore, in all 
previous work, the number of votes received by each candidate is 
also made publicly known at the end of the voting. Since it is 
possible that any subset of voters collude to act as a team, it is 
therefore easy for all but one voter to conclude and figure out the 
other voter’s preference. 

2.2 Our Contributions 
As far as we know, there is no literature addressing the security in 
Clarke tax voting scheme.  The Clarke tax voting mechanism is 
an important social decision protocol in which the dominant 
strategy is truth telling.  This is of particular significance to 
software agent based electronic voting schemes, because 
efficiency of voting is improved as the overhead of 
counter-speculating can be eliminated. 

In this paper, in addition to the security requirements suggested by 
others in the previous work, we focus on security issues in the 
Clarke tax system and propose a secure and private Clarke tax 
voting scheme that achieves full privacy protection and 

universally verifiability. We introduce the new standard for 
privacy protection, named full privacy protection. That is, in the 
proposed secure and fully private Clarke tax scheme, no 
(semi-)trusted authorities are needed, and the possibility that 
voters collude is not precluded. To achieve such full privacy 
protection, we employ the play-resolved distributed ElGamal 
decryption and player-resolved mix network so that to distribute 
the trust and computation to the all voters themselves. In such 
way, no information concerning the votes is revealed unless all 
voters share their knowledge. We note that it is impossible for all 
voters to form a single coalition and act as a team, or else voting 
is not necessary at all. 

In conclusion, our main contribution is a universally verifiable 
secure Clarke tax voting scheme, in which each voter holds a 
share of secret information and jointly compute the final voting 
result. The only information publicly known is the final chosen 
outcome and the tax for each voter, while other related 
information is always protected. 

3. PRELIMINARIES 
In this section, we describe several cryptographic building blocks 
used in the scheme, including ElGamal cryptosystem, 
play-resolved distributed ElGamal decryption, proof of knowledge 
of 1-of-k plaintext and player-resolved mix network. 

3.1 ElGamal Cryptosystem 
One of the basic tool in our scheme is the ElGamal cryptosystem 
[14], which works over a group GF(P) where P is a big prime 
number. 

Let g be a generator of GF(P), which is a publicly available 
system parameter. A private key is an arbitrarily selected integer 

Px Z∈ . The corresponding public key is modxy g p= . Giving a 
plaintext Pm Z∈ , its encryption under the public key is 

{ , } { mod , mod }a ag p y m pα β = ⋅  where Pa Z∈  is selected 
randomly. To decrypt this cipher text using the private key x, we 
just compute / /( )x a a xy m g mβ α = = . 

The ElGamal cryptosystem has two important properties, namely 
the semantic security property and homomorphism.  These two 
properties are useful in our scheme. The property of being 
semantically secure means that a player who only knows the 
public key can re-encrypt a ciphertext without knowing the 
private key. Suppose that 1 1{ , } { mod , mod }a ag p y m pα β = ⋅  is 
an encryption of some plaintext m, the player can then re-encrypt 
it by computing 

1 2 1 2

{ , }
{ mod , mod }
{ mod , mod }

a a a a

a a

g g p y y m p
g p y m p

α β′ ′

= ⋅ ⋅ ⋅

=

, 

where 1 2a a a= + . In other words, it is infeasible for another 
player to determine whether { , }α β′ ′  and { , }α β  represent the 
encryption on the same plaintext. Another useful property of 
ElGamal system is homomorphism. Observe that if 1 1{ , }α β  and 

2 2{ , }α β  represent ciphertext corresponding to plaintext m1 and 
m2 respectively, then 1 2 1 2{ , }α α β β⋅ ⋅  represents an encryption 
of the plaintext 0 1m m⋅ . 



3.2  Players-Resolved Distributed ElGamal 
Encryption 
The ElGamal encryptions can be easily extended to a distributed 
version, which is useful in our proposed scheme, by using a 
distributed key generation protocol [15]. We call it the 
players-resolved distributed ElGamal encryption, since the private 
key is generated jointly by all players. First, each player 
independently chooses an arbitrary number ix , then computes 

and publishes modix
iy g p=  along with a zero-knowledge 

proof of knowledge of iy ’s discrete logarithm [16]. The public 

key of the system is then calculated as modii
Y y p=∏ , and the 

corresponding private key ii
X x=∑ . This process is called 

distributed key generation. To decrypt a ciphertext 
{ , } { mod , mod }a ag p Y m pα β = , all participants need to jointly 
perform the distributed decryption. That is, each participant 
computes and publishes modix

i pα α=  separately and proves 
its correctness by proving that log logg i iy α α=  [17]. The 
plaintext can then be decrypted by computing  

( ) ( )

( )
mod

i

i i
i i

x a
a

i
a x a x

i
i

g m
Y m m p

g g

β
α

= = =
∑ ∑

∏
∏

. 

3.3  Proof of Knowledge of 1-of-k ElGamal 
Plaintext 
By knowing the encryption exponent a of an ElGamal ciphertext 
{ , } { mod , mod }a ag p y m pα β = ⋅ , a player can prove the 
knowledge of the plaintext m in zero knowledge by proving 
log log /g y mα β=  [18]. In our scheme, we propose a 
cryptographic primitive, named proof of knowledge of 1-of-k 
ElGamal plaintext, as follows. To prove the knowledge of 1-of-k 
ElGamal plaintext, a player who submits an ElGamal ciphertext 
has to prove that the submission is a valid encryption, and the 
plaintext m is one of the k possible plaintexts, without revealing 
which plaintext it is exactly. We give the proof as follows. 

Let E(m) be a submitted ElGamal ciphertext, that is,  
0 1( ) ( , ) ( mod , mod ), { , ,..., }WE m g p Y m p m G G Gα αα β= = ∈ , 

where g and Y are the public key, α and m are kept secret. To 
prove the correctness of E(m), the player generates a proof data f 
(assume that kGm = ):  

f = {(s,C,C0,C1,…,Ck–1,Ck,Ck+1,…,CW), (u0,u1,…uk–1,uk,uk+1,…,uW), 
( β )}, 

where, 

(1) s, C0,C1,…,Ck–1,Ck+1,…,CW are randomly selected integers; 

(2) ( ) ( )a a a
i i k iu Y m g G A G G= ⋅ ⋅ = ⋅ , for 0,...,i W= , 

where A Y g= . Note that a
k Au = ; 

(3) 0 1 11
0 1 1 1( ... ... )k k WC C C CCs

k k WC H A u u u u u− +
− += ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ; 

(4) 1 1 1... ...k k k WC C C C C C− += ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ; 

(5) aCs k ⋅−=β . 

To perform the verification on the correctness of E(m), anyone 
can check that the equation 1

1 0... ( ... )WCC
W WC C H A u uβ⊕ ⊕ = ⋅ ⋅ ⋅  

hold. 

3.4 Players-Resolved Mix Network 
Another key technique in our scheme is known as mix network, 
which is first introduced by Chaum [19] for privacy protection. 
Some studies have been done, in both implementation techniques, 
and applications for different purposes [20, 21, 22]. A mix 
network is multi-party protocol that involves several mix servers. 
The input to the mix network is a list of ciphertext items and the 
output is a new, permutated list of those ciphertext items such that 
there is one-to-one correspondence between the underlying 
plaintexts of input and output items. The security of a mix 
network is characterized by the infeasibility for an attacker to 
determine which output items correspond to which input items.  

In this paper, we employ a mix network based on the ElGamal 
cipher, in which we do not assume the existence of mix servers; 
instead, we assign the permutation task to all participants. In such 
a way, the full privacy protection of correspondence between 
input and output is achieved, and this is what we call 
players-resolved mix network. In the following, we describe how 
this mix network works. 

The input to the mix network consists of a list of ElGamal 
ciphertext 1 1 2 2( , ),( , ),..., ( , )k kα β α β α β  encrypted by a public 
key. The corresponding private key is shared by all participants. 
Then, each participant performs a random permutation on this 
input list in turn by re-encrypting every ciphertext and output 
them randomly. The final output then be a sequence 

(1) (1) (2) (2) ( ) ( )( , ),( , ),..., ( , )k kσ σ σ σ σ σα β α β α β′ ′ ′ ′ ′ ′ , where ( , )i iα β′ ′  

represents a random re-encryption of ( , )i iα β , and ()σ  is a 
random permutation function on k elements. The key point in 
above mix network is that each player must prove the correctness 
of his random permutation without revealing the correspondence 
between input and output. This proof can be done in 
zero-knowledge manner, as follows. 

Suppose that each player possesses a k-input mix permutation 
consisting of a series of publicly verifiable 2-input mix boxes in 
some architecture. To achieve the public verifiability of the 
k-input mix permutation, the players only need to prove the 
correctness of the 2-input mix boxes. Assume that two input 
ElGamal ciphertexts: 1 1( , )α β  and 2 2( , )α β  on respective 
plaintexts m1 and m2, and the output are two randomized 
re-encrypted ciphertext 1 1( , )α β′ ′  and 2 2( , )α β′ ′  corresponding to 

respective plaintexts 1m′  and 2m′ . To prove the correctness of 
the 2-input mix box, a player first proves that both 1 1( , )α β′ ′  and 

2 2( , )α β′ ′  are correct re-encryption of either 1 1( , )α β  or 

2 2( , )α β  (see Appendix), and then proves that 1 2 1 2( , )α α β β  
and 1 2 2( , )α α β β′ ′ ′ ′  denote the encryption on the same plaintext 

1 2m m  using the Plaintext Equivalence Proof in [23]. 



4. SECURE CLARKE TAX SCHEME WITH 
FULL PRIVACY PROTECTION 
4.1 An Overview of the Scheme 
The proposed scheme can be considered to be a cryptographic 
model of secure multiparty computation, in which there are n 
voters, 1 2, ,..., nV V V , and m possible outcomes (“candidates”) 

1 2, ,..., mO O O . We also assume that there exists a public bulletin 
board for shared information. A voter has read-access to the 
whole board; while having write-access to only a designated area. 
Instead of having to reveal the true value of each candidate as in 
the original Clarke tax protocol, in our scheme, each voter will 
need to submit a particular ciphertext of his preferences using the 
ElGamal system. The public key for encryption is a public 
parameter and the corresponding private key is shared among all 
voters in a distributed manner. The key idea of our approach is to 
distribute the trust and the computation on all voters themselves. 
In this way, we do not need any (semi-)trusted third party as in 
other secure voting schemes, in which any form of collusion 
among these trusted parties has to be assumed impossible. 
Therefore, we do not make any special trust assumption in the 
proposed scheme. That is, no voters need to trust any third party, 
and it is anticipated that some group(s) of voters might collude in 
some form.  

The voting process can be outlined as follows. Before the voting 
starts, all voters first perform the distributed ElGamal key 
generation, as described in the previous section, to generate a 
public key for system. Suppose that voter i chooses ix  and 

publishes modix
iy g p= . The public key of the system is then 

modii
Y y p=∏ , and the corresponding private key ii

X x=∑ . 

Note that the values of , 1ix i n≤ ≤  are kept secret by each 
individual voter respectively. Therefore, the private key X cannot 
be retrieved unless with the cooperation of all voters, which is 
assumed to be impossible.  

For ease of illustration, we suppose that there is a manager M to 
perform the collection of votes as well as some publicly verified 
calculations work.1 Note that we need not assume any special 
trust on this manager M. When the voting starts, all voters cast the 
encrypted votes containing their preferences, and then jointly 
figure out the winning candidate and calculate the tax for each 
voter, while keeping all the sensitive information in secret. We 
assume that the voters’ values should fall into a bounded range. 
For ease of presentation, throughout this paper we assume that 

50 50j
iv− ≤ ≤ , for [1, ], [1, ]i n j m∈ ∈ .  

4.2 Voting Procedures 
We are now ready to give a formal description of the voting 
procedures. 

First, each voter iV  generates a vector iB  that consists of m 
particular encrypted values corresponding to m candidates 
respectively, and publishes them on the bulletin board, i.e.  

                                                                 
1 M might also be responsible for verifying the eligibility of the voters’ 

identities with their public key certificates issued a trusted Certificate 
Authority. 

1 2

: { (2 ), (2 ),..., (2 )}, where [ 50,50]
j

i i ivv v j
i iB E E E v ∈ − . 

For public verifiability, each voter has to prove the correctness of 
the construction of iB  by performing the proof of knowledge of 
1-of-K ElGamal plaintext 2 on each encrypted value. 

The manager M  will then collect all submissions and calculate 
the component-wise product of all voters’ vectors to get the sum 
vector V  as: 

1 2

1 1 1 1

: { (2 ), (2 ),..., (2 )}
m

i i i

n n n n
v v v

i
i i i i

V B E E E
= = = =

=∏ ∏ ∏ ∏ . 

This vector is called the sum vector because of the following 
reason. Observe that, due to the homomorphic property of 
ElGamal cryptosystem, the kth component kc  of vector V  has 
the form 

1 1

(2 ) (2 ), where
k
i k

n n
v O k

k k i
i i

c E E O v
= =

= = =∏ ∑ . 

Note that 
1

n k
k ii

O v
=

= ∑  is the sum of values of candidate kO . 

Therefore, the vector V  is a ciphertext of the vector of value 
sum each candidate receives.  

To figure out the final winning candidate, the manager M has to 
find the largest one among 

1

n k
k ii

O v
=

= ∑ , [1, ]k m∈  with a 

public verified method, without revealing the exact value of kO .  

In the following, we propose a method to test whether p qO O≥  

holds for two arbitrary encrypted sums pO  and qO  of values.  

Note that we know only the ciphertext (2 )pOE  and (2 )qOE  
without having any further information such as pO  and qO  

themselves. To compare pO  and qO , the manager M first 

calculates (2 ) / (2 ) (2 )p q p qO O O OC E E E −= = . By examining 
whether 0p qO O− ≥ , we can decide whether pO  is larger than 

qO  or not. Here, we can use the mix and match technique to 

examine whether 0p qO O− ≥  from (2 )p qO OC E −= , without 

knowing the value of p qO O− . Recall that each value j
iv  

satisfies 50 50j
iv− ≤ ≤ , thus the p qO O−  should satisfy 

100 100p qn O O n− ⋅ ≤ − ≤ ⋅ , where n is the number of voters. 

Therefore, the problem of examining whether 0p qO O− ≥  is 
equal to examine whether 

2 100 1 100( (2 )) {1,2,2 ,....,2 ,2 }p qO O n nD E − ⋅ − ⋅∈ .3  

                                                                 
2 Here, the plaintext set should be 50 49 0 50{2 ,2 ,..., 2 ,.., 2 }− − . That is, 

the voter has to prove that each encrypted value ( )E m  is a correct 

ElGamal encryption such that 50 49 0 50{2 ,2 ,...,2 ,..,2 }m − −∈ , without 
revealing what m is exactly. 
3 Here, ( )D x  means the ElGamal decryption on x. 



The manager M now constructs and publishes 100 1n⋅ +  
ciphertexts / (2 )i

iC C E′ = , 0 100i n≤ ≤ ⋅  in a publicly 

verifiable manner, that is, M generates (2 )iE  and proves the 
correctness by publishing a proof of knowledge of ElGamal 
plaintext using Schnorr identification protocol [42], and then 
calculates / (2 )i

iC C E′ =  publicly. 

All voters then work as a mix network as described in the previous 
section to perform a permutation with an input list 

0 1 100 )( , , , )i nC C C C ⋅′ ′ ′ ′= K , so as to mix them to form a new 

ciphertext list 0 1 100( , , , )nC C C C ⋅′ ′ ′ ′= K  which is a shuffled 
permutation of the re-encryption of the 0 1 100 )( , , , )i nC C C C ⋅′ ′ ′ ′= K .  

To determine whether p qO O≥   for two arbitrary encrypted 

sums pO  and qO , all voters first perform the distributed 

ElGamal decryption on the list 0 1 100 )( , , , )i nC C C C ⋅′ ′ ′ ′= K .  Then 
all voters should check whether there exists one plaintext “1” in 
the decrypted list 0 1 100( ) ( ( ), ( ), , ( ))i nD C D C D C D C ⋅′ ′ ′ ′= K .  If one 
plaintext “1” exists in the decrypted list, then it can be concluded 
that p qO O≥ .  Otherwise, it can be concluded that p qO O< . 
The correctness of this approach can be established by the 
following theorem. 

Theorem 1 If there exists one plaintext “1” in the decryption list 
0 1 100( ) ( ( ), ( ), , ( ))i nD C D C D C D C ⋅′ ′ ′ ′= K , it is concluded that 

p qO O≥ ; if there is no plaintext “1” existing in the list 

0 1 100( ) ( ( ), ( ), , ( ))i nD C D C D C D C ⋅′ ′ ′ ′= K , it is concluded that 

p qO O< .4 

Proof  Suppose the encrypted vector of each voter is:  
1 1 1 1

{ (2 ) ( , 2 ), ... , (2 ) ( , 2 )}
j m m m

i i i i i i i ivv k k v k k v
iB E g Y E g Y= = = , 

Where [ 50,50]j
iv ∈ −  and ,1 ,1j

ik i n j m≤ ≤ ≤ ≤  are the 
encryption exponent selected by voter iV . The component-wise 
product of all voters’ vectors can then be denoted as: 

                                                                 
4 There are some restrictions that should be noted. 
(1) The value of n should not be too large, so that the calculation of 

100 1n⋅ +  ciphertexts is feasible. 
(2) It is clear that we have to select the module p of the ElGamal system 

carefully to assure that there are no common values in the set 
100 100 1 1:{2 ,2 ,....,2 }n nA − − + −  and set 2 100 ):{1,2,2 ,....,2 }nB . We 

elaborate this requirement in more details. Suppose  p qO O<  and 

p qO O δ− = − , where 0 100nδ< ≤ , then the decrypted list should 

be 2 100(2 /1,2 / 2,2 / 2 , ,2 / 2 )nD δ δ δ δ− − − −= K in which there should no 

plaintext “1” exist. Note that 2 δ− is the reverse of 2δ in GF(p), that 
is 2 1modx pδ ⋅ = , if let 2 xδ− = . Obviously, there is no plaintext 

“1” in the decrypted list if and only if 2 100{1,2,2 ,...,2 }nx∉ . To 

satisfy this, we must select p such that 2 1mod pδ ≠  
for 1,2, ,100 ,100 1,..., 200n n nδ = +K . 

1 1 1

1 1 1 1 1 1
1{ ,..., } {( , 2 ),..., ( , 2 )}

n n n n n n
m m m

i i i i i i
i i i i i i

k k v k k v

mV c c g Y g Y= = = = = =
∑ ∑ ∑ ∑ ∑ ∑

= =  

As illustration before, to compare whether p qO O≥  the manager 

M calculates 1 1 1 1 1 1/ ( , 2 )

n n n n n n
p q p q p q

i i i i i i
i i i i i i

k k k k v v

p qC c c g Y= = = = = =

− − −∑ ∑ ∑ ∑ ∑ ∑
= =  and 

constructs 100 1n⋅ +  ciphertexts 

1 1 1 1 1 1

1 1 1 1 1 1

2( , )
(2 ) 2

( , 2 ), 0 100

n n n n n n
p q p q p q

i i i i i i
i i i i i i

j j
M M

n n n n n n
p q j p q j p q

i i i i i iM M
i i i i i i

k k k k v v

j j k k j

k k k k k k v v j

C g YC
E g Y

g Y j n

= = = = = =

= = = = = =

− − −

− − − − − −

∑ ∑ ∑ ∑ ∑ ∑
′ = =

∑ ∑ ∑ ∑ ∑ ∑
= ≤ ≤ ⋅

 

Here, , 0 100j
Mk j n≤ ≤  is the arbitrary encryption exponent 

selected by the manager M . Note that 
1

n p
p ii

O v
=

= ∑  and 

1

n q
q ii

O v
=

= ∑ . Without loss of generality, we suppose that 

p qO O≥  and p qO O δ− = , therefore, 

1 1 1 1( , 1)

n n n n
p q p q

M Mi i i i
i i i i

k k k k k k

C g Y
δ δ

δ
= = = =

− − − −∑ ∑ ∑ ∑
′ = ⋅ . 

The ciphertext list 0 1 100: ( , , , )nC C C C′ ′ ′ ′K  is then mixed by all 

voters and the output 0 1 100: ( , , , )nC C C C′ ′ ′ ′K  is a shuffled 

re-encryption of C′ . Note that there must be a factor in C′ , say 

uC′ , corresponding to the Cδ′ . Here, ( )u δ= Φ  where ()Φ  is 

a shuffled permutation function. Then, the uC′  can be denoted as 

( rδ  is the re-encryption factor here):  

1 1 1 1

( ) ( )

( , 1)

n n n n
p q p q

M Mi i i i
i i i i

k k k r k k k r

uC g Y
δ δ

δ δ
= = = =

− − ⋅ − − ⋅∑ ∑ ∑ ∑
′ = ⋅  

Now, all voters perform the distributed ElGamal decryption on 
the 0 1 100: ( , , , )nC C C C′ ′ ′ ′K  and the decryption of the specific 

uC′  is as follows 

1 1 1 1

1 1 1

1 1

( )

( )

2( )

( )

2

2

n n n n
p q p q

M wi i i i
i i i i

n n n
p q

M ii i
i i i

n n
p q
i i

i i

p q

k k k r v v

u
k k k r x

v v

O O

YD C

g

δ

δ
δ

δ

δ

δ

= = = =

= = =

= =

− − ⋅ − −

− − ⋅

− −

− −

∑ ∑ ∑ ∑
′ =

∑ ∑ ∑

∑ ∑
=

=

 

Note that the values of 1 1

( )

( ) , 1

n n
p q

Mi i
i i i

k k k r
xg i n

δ
δ

= =

− − ⋅∑ ∑
≤ ≤  are 

calculated by each voter separately with their secret ix  and then 
be published on the bulletin board with a proof of the correctness 
[19]. 



It is easy to deduce that if p qO O≥  and p qO O δ− = , there 

must be a decryption ( ) 1uD C′ = , otherwise, p qO O<  if there is 
no plaintext “1” exist. 

 ٱ

By repeating the above examination 1m −  times, the manager M 
and the voters can find out the largest one among 

1

n k
k ii

O v
=

= ∑ , [1, ]k m∈ , the value sum received by the 

candidate that receives the largest sum of values, without knowing 
either the exact value of the sum of points of each candidate, or 
the difference between those sums. Finally, the manager M 
publishes the winner and all the verification information on the 
bulletin board, so that anyone can check the correctness of the 
result.  It is obvious that any one can verify the legitimacy of the 
winner. 

4.3 Calculation of individual Tax 
The calculation of the tax for each voter is similar the above 
procedures, as described in the following. 

To calculate the tax for voter iV , the manager M first calculates 
the sum of values for each candidate without Vi’s vote, by 
computing the component-wise product of all vectors product, 
except the Vi’s vector, that is: 

1 2

1, 1, 1,

{ (2 ), (2 ),..., (2 )}
m

j j j
n n n

v v v
i

j j i j j i j j i

V E E E
= ≠ = ≠ = ≠

′= ∏ ∏ ∏  

With the above method, the manager M as well as any voter can 
calculate the final winning candidate without Vi’s vote, while 
keeping all individual values in secret. If the final voting result is 
just same as that with the participation of  iV , the tax for iV  is 

zero. Otherwise, the tax itax for iV  is calculated as follows. 

Suppose the original winning candidate is Ow and the winning 
candidate without Vi’s participant is 

iwO ′ , then the tax for iV  

should be:  

iww
i k kk i k i

tax v v ′

≠ ≠
= −∑ ∑  

By calculating 1, 1,(2 ) / (2 )

n n
ww i

k k
k k i k k i

v v

Y E E
′

= ≠ = ≠
∑ ∑

′ = , and requesting all 
voters to perform a further distributed ElGamal decryption on 

Y ′ , we can get  1, 1,2 2 mod

n n
ww i

k k
k k i k k i i

v v
tax p

′

= ≠ = ≠

−∑ ∑
= . Though the 

calculation of itax  is generally regarded as a difficult problem 
based on usually discrete logarithm problem assumption, in this 
particular setting of n and value range, we can easily calculate the 

itax  by trying all possible values in [–100n, 100n]. 

5. ANALYSIS 
5.1 Security Analysis 
5.1.1 Privacy Protection and Public Verifiability 
In the proposed secure Clarke tax scheme, only the final winning 
candidate5 and the individual tax for each voter are published at 
the end of the voting, and other information, such as the voters’ 
values of each candidate, the sum of the values of each candidate 
and difference between those sums are always kept secret. In such 
a way, we ensure the privacy protection of each voter in 
maximum degree. 

In the protocol, each voter publishes his value for each candidate 
in a particular ElGamal encrypted vector form using a public key 
Y, instead of in plaintext. Without the knowledge of the 
corresponding private key X, nobody can get the values of voters 
without breaking the ElGamal cryptosystem, which is assumed to 
be infeasible. Making use of the homomorphic property of 
ElGamal encryption, we get the encrypted vector of the sum of the 
each candidate’s values. By employing the player-resolved mix 
and match protocol, we perform the comparison among the 
encrypted sum value, without leaking any further information. 
Since the basic building blocks of encryption scheme, mix scheme 
and mix and match protocol are proved to be secure [14, 23, 24], 
it is easily to deduce that our scheme is secure against any passive 
attack. 

Since the all related information is in ciphertext form, it is 
possible that any voter or the manager M perform maliciously to 
disturb the voting.  For example, a voter may submit wrong 
encrypted values for some candidates or make an incorrect 
re-encryption during the mix work. In the proposed scheme, 
however, such active attacks can be easily resisted since we 
employ the zero-knowledge proof mechanism. For example, when 
publishing the encrypted values vector, a voter has to also publish 
a proof of knowledge of 1-of-k ElGamal plaintext, and during the 
mix network, voters have to prove the correctness of the output of 
each mix work by giving the proof of the correctness of 1-of-k 
ElGamal re-encryption and Plaintext Equivalence Proof. In such 
way, any participator can verify the correctness of each step of the 
scheme, and malicious voters will be detected immediately 
without additional communication and information revelation. 
Thus, the public verifiability (robustness) of the scheme is 
achieved. 

5.1.2 Collusion-Proof 
Another important security feature of our scheme is that we 
achieve the full privacy protection of the voters. That is, we do not 
assume the existence of any kind of trusted parties. Moreover, no 
collusion of voters can possibly lead to the revelation of any 
private information, unless all voters together form a single 
collusion, which is assumed impossible, otherwise voting is not 
necessary at all. 

Theorem 2 The proposed secure Clarke tax voting scheme is 
collusion-proof, which means that all private information of 
voters is always kept secret even in the presence of any form of 
collusion of voters and administrator, unless all voters are 
involved in the collusion. 

                                                                 
5 That is, the only available result is which candidate is the winner, while 
the exact sum of the value of the winner is unknown. 



Recall that in our scheme, each voter’s submission is an encrypted 
vector of m ElGamal encryptions 

1 2

{ (2 ), (2 ),..., (2 )}
j

i i ivv v
iB E E E= . The only method to get the true 

value of a voter is to decrypt the (2 )
j

ivE  using the proper private 
key X. In our scheme, however, we do not assume one or more 
trusted (semi-trusted) authorities to maintain the private key. 
Instead, we distribute the trust over all voters, which means that 
all voters jointly generate the key pairs 

1
( , mod )n X

ii
X x Y g p

=
= =∑  where ix  is the secret number 

generated by each voter respectively (see section 3). As a result, 
the only way to decrypt the encrypted vector is that all voters 
participate in the computing with their secret numbers ix . 
Therefore, any group of colluding voters cannot open any specific 
encrypted value vector, without the cooperation of all other 
voters. 

While employing the mix network, we use a similar idea. That is, 
we do not suggest the existence of any mix server and the mix 
permutation is instead performed by all voters one by one. In such 
way, even (n – 1) voters collude, they still cannot decide the 
correspondence between the input ciphertexts and the output 
re-encrypted ciphertexts. 

5.2 Efficiency Analysis 
We discuss the communication efficiency and the computation 
efficiency of the proposed scheme in this section. 

 

Table 1. Communication complexity of proposed secure 
Clarke tax scheme 

 Pattern Round Volume 
Voting 

(Per one voter) 
Voter→ Bullet

in Board 1 ( )O m  

M→  Bulletin 
Board m – 1 (100 1)O n+  

Determining 
the winner 

(Per one 
voter) 

Voter→ Bullet
in Board 2(m – 1) 

(100 1)O n+  

per round 

M→  Bulletin 
Board m – 1 

( (100 1))O n n+
 

per round Calculation 
of individual 

tax 
(Per one 
voter) Voter→ Bullet

in Board 
2(m – 1) + 

1 

( (100 1))O n n+
 in first 2(m 
– 1) rounds, 

and  at most 
( )O n  in the 

last round 

 
 
Table 1 gives the communication complexity of the proposed 
scheme when there are n voters and m candidates, with the value 
distribution being [–50, 50]. It is shown that our protocol has low 
round communication complexity (only one round) in voting 
procedure, and approximate m – 1 rounds for determining the 
winning candidate and calculation of the individual tax. It is clear 

that most communication complexity is due to the fact that it is 
player-resolved, which is used for full privacy protection purpose. 

Tables 2 shows the computational complexity of the proposed 
scheme. It is clear that the computational complexity of the 
scheme is approximately determined by m, n and the value 
distribution, so our schemes has heavy cost implication in case of 
a large number of voters and candidates or a wide range of value 
distribution. Therefore, a reasonable restriction of m and n and 
value distribution should be applied for an efficient 
implementation of our scheme. 

 
Table 2.  Computational complexity of proposed secure 

Clarke tax scheme 

 Computational complexity 
Key pairs 
generation 

One modulo exponential computation and 
one proof for each voter 

Voting vector 
generation 

m encryptions and proofs for each voter 

M Per one voter 

Determining 
the winner  

100 1n +  encryption 
and proofs; 

nm ⋅  ciphertext 
multiplications; 

)2100()1( +⋅− nm  
ciphertext divisions. 

1m −  mix 
permutations 
((100 1n + )-input); 

1m − modulo 
exponential 
computations and 
proofs. 

M Per one voter 

Calculation of 
individual tax 

)2100()1( +⋅−+ nmm  
ciphertext divisions. 

)1( −⋅ mn  mix 
permutations 
((100 1n + )-input); 
at most )1( −⋅ mn  
modulo exponential 
computations and 
proofs. 

 

6. CONCLUSION 
In this paper, we address the security issues in Clarke tax protocol 
and propose a secure electronic Clarke tax voting scheme that 
achieves full privacy protection of the voters and universal 
verifiability, as well as other suggested security properties.  We 
propose the conception of full privacy protection, i.e. all 
information in Clarke tax voting system are concealed during and 
after the voting, except the final result of who is the winning 
candidate and the tax for each voter. No one can compromise the 
voters’ privacy without the cooperation of all voters. This 
requirement is stronger and more realistic than those achieved by 
cryptographic electronic voting systems found in the literature. 
Our scheme also satisfies the universal verifiability criterion, 
which means that any participant can publicly verify the 
correctness of both the each step in the voting procedure and the 
final voting results. 
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Appendix : Proof of the Correctness of 1-of-k ElGamal 
Re-encryption  

To prove the correctness of the 2-input mix box, a player first has 
to prove that the each output ciphertext is a correct re-encryption 
of one of the input ElGamal encryptions. In the following, we 
give the general zero-knowledge proof of such problem. 

Suppose there are n input ElGamal ciphertexts 

1 2( ), ( ),..., ( )nE m E m E m  where ( ) ( , )i ik k
i iE m g Y m= . Here, g 

and Y are public and 1 2 1 2, ,... , , ,...n nk k k m m m  are kept secret. 
Without loss of generality, we assume that the output is the 
re-encryption of w-th input ciphertext, that is, , w w wi w k k s′= = + , 
where ws  is encryption exponent generated and keep privately 
by the player. Now, the player proves that ( )wE m  is a 
re-encryption of one of the 1 2( ), ( ),..., ( )nE m E m E m , without 
reveal what w  is. Firstly, the player calculates 

/ , / , /w i w ik k k k
i i w i i i ir g g R Y m Y m H R r′ ′= = =  for 1 i n≤ ≤ . Let 

/h Y g= , and then /w w ws s s
wH Y g h= = . The player then proves 

the knowledge of ws  corresponding one of the iH  by showing 
the proof data  

f = {S, C, C1,…,Cw-1,Cw,Cw+1,…,Cn }, 

where, 

(1)α , C1,…,Cw-1,Cw+1,…,Cn are randomly selected integers from 

qZ ; 



(2) ( || )C H L z= , where 1 2|| ||,...,|| nL H H H= , and 

0,
α

= ≠
= ∏ i

n C
ii i w

z h H  

(3) 1 2 1 1( ... ) modw w w nC C C C C C C q− += − + + + + +   

(4) modk wS C s qα= − ⋅  

Verification. Anyone can verify the correctness of 
( ) ( , )i ik k

i iE m g Y m′ ′= , by checking whether the equation: 
1 2

1 1 2... ( || ,... )nCC CS
K nC C H L h H H H+ + =  holds. 
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