
An Efficient Architecture for the AES Mix
Columns Operation

Hua Li Zac Friggstad
huali@cs.uleth.ca zac.friggstad@uleth.ca

Department of Mathematics and Computer Science
University of Lethbridge

Canada T1K 3M4

Abstract In this paper, a compact architecture for the AES mix
columns operation and its inverse is presented. The hardware
implementation is compared with previous work done in this area.
We show that our design has a lower gate count than other designs
that implement both the forward and the inverse mix columns
operation.
Keywords: AES, cryptography, Galois field, mix columns

I. INTRODUCTION

Since the debut of the Advanced Encryption Standard (AES)
[1], it has been thoroughly studied by hardware designers
with the goal of reducing the area and delay of the hardware
implementation of this cryptosystem. This paper presents an
implementation of the AES mix column operation. This design
proves to be low in gate count as well as outputs the desired
result of the operation (forward or inverse) on the same wire
array, depending on an input signal that selects between the
two. This will eliminate the need for a multiplexor outside of
the module to select between the results of the forward and
the inverse operation.

This paper is organized in the following way. Section 2
presents the mathematical background of GF (28) and the
application to this mix columns design. Section 3 presents
the hardware implementation. Section 4 compares this design
with previous architectures and suggests appropriate uses for
the presented design. Section 5 then concludes this paper.

II. MATHEMATICAL BACKGROUND

The results of the mix columns operation are calculated
using GF (28) operations. Each element of GF (28) is a poly-
nomial of degree 7 with coefficients in GF (2) (or equivalently
Z2). Thus, the coefficients of each term of the polynomial
can take the value 0 or 1. Given that there are 8 terms in
an element of GF (28), an element can be represented by
bitstring of length 8, where each bit represents a coefficient.
We will use the least significant bit to represent the constant
of the polynomial, and going from right to left, represent the
coefficient of xi by the bit bi where bi is i bits to the left of
the least significant bit. For example, the bitstring 10101011
represents x7+x5+x3+x+1. For our convenience, a term xi

is found in the expression if the corresponding coefficient is 1.
The term is omitted from the expression if the coefficient is 0.

Addition of two elements in GF (28) is simply accomplished
using eight XOR gates to add corresponding bits.

Multiplication of two elements in GF (28) requires a bit
more work. The multiplication of two elements of Z2 is
simulated with an AND gate. Multiplication in GF (28) can
then be accomplished by first multiplying each term of the
second polynomial with all of the terms of the first polynomial.
Each of these products should be added together. If the degree
of the new polynomial is greater than 7, then it must be
reduced modulo some irreducible polynomial. In the case of
AES, the irreducible polynomial is x8 + x4 + x3 + x + 1. For
example:

x4 + 1
× x5 + x4

x8 + x4

+ x9 + x5

x9 + x8 + x5 + x4

(1)

Since the degree of the result is greater than 7, then we must
reduce it modulo x8+x4+x3+x+1. This can be accomplished
by multiplying the polynomial by xi−8, where i is the degree
of the polynomial that is to be reduced. Then, adding the
multiplied irreducible polynomial to polynomial to be reduced.
Taking this result, we continue this process until the degree of
the polynomial we are reducing is not greater than 7. In our
example, we perform:

x9 + x8 + x5 + x4

+ x9 + x5 + x4 + x2 + x

x8 + x2 + x
+ x8 + x4 + x3 + x + 1

x4 + x3 + x2 + 1

(2)

The mix column operation involves multiplying a 4×4 matrix
of GF (28) values by a column vector of GF (28) values. Given
a 32-bit input word w = w3w2w1w0 where each wi is 8-bits,
the mix column operation is given as:




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




w3

w2

w1

w0


 =




w′
3

w′
2

w′
1

w′
0


 (3)

46370-7803-8834-8/05/$20.00 ©2005 IEEE.



The inverse of this operation is:




0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


 ·




w′
3

w′
2

w′
1

w′
0


 =




w3

w2

w1

w0


 (4)

Where each element of the 4 × 4 matrices is a hexadecimal
representations of the coefficients of an element in GF (28).
For example, 0E represents x3 + x2 + x.

Since multiplication is distributive over addition in GF (28),
we can rewrite the multiplication of two elements of GF (28)
as a linear combination of products of the first element and a
single-termed polynomial in GF (28). The sum of all of the
single-termed polynomials must equal the second element in
the original product. For example, we can express x · 0E as
(x · 08) + (x · 04) + (x · 02), for any x ∈ GF (28), because
08 + 04 + 02 = 0E.

Because of the distributivity of GF (28) and of matrices, we
can rewrite the inverse of the mix columns operation as:




0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E


·




w′
3

w′
2

w′
1

w′
0


=




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


·




w′
3

w′
2

w′
1

w′
0




+




0C 08 0C 08
08 0C 08 0C
0C 08 0C 08
08 0C 08 0C


·




w′
3

w′
2

w′
1

w′
0


 (5)

Given these facts we note two things. First, for each of the
four input bytes, we only need to calculate the products of the
byte with 01, 02, 04 and 08. All elements of the matrices can
be formed by summing these products. Also, since the inverse
matrix can be expressed as the sum of the original matrix and
some {0C, 08} element matrix, where 0C = 08 + 04, we see
that 04 and 08 are never used in the forward operation, only
the inverse.

For some a ∈ GF (28) that is expressed by the bitstring
a7a6a5a4a3a2a1a0, we can efficiently compute a × 2 (or
a × x). The resulting value will be a6a5a4(a3 + a7)(a2 +
a7)a1(a0 + a7)a7, where + is addition in Z2. This can
be explained by understanding that multiplication by 02 is
essentially multiplication by the single-termed polynomial x.
This will result in all degrees of a being incremented by 1.
If the resulting polynomial has degree 8, then the irreducible
polynomial must be added. If the resulting polynomial is not
8, then nothing is done. We see that each bit in the above
expression that is a sum of some ai and a7, if a is of degree
7, then the resulting degree is 8, and the irreducible polynomial
is added. This will result in ai + a7 = ai + 1. If a is not of
degree 7, then the resulting degree will not be 8. This will
result in ai + a7 = ai + 0 = ai because 0 is the identity of
addition in Z2.

III. A MIXCOLUMNS ARCHITECTURE

The implementation of the architecture based on the mathe-
matics in the previous section can be presented in four simple
modules. Diagrams of the first three modules can be found in
Figures 1, 2 and 3.

The multiplication by the term x is simply a one-bit shift
to the left, and an addition by the irreducible polynomial x8 +
x4 + x3 + x + 1 if the coefficient of the term x7 of the input
is 1. This simple module is shown in Figure 1.

a7 a6 a5 a4 a3 a2 a1 a0

a’0a’1a’2a’7 a’3a’6 a’5 a’4

Fig. 1. Multiplication by constant polynomial x (module of a × 2)

To generate the multiplications of a × 2n, i.e., a · xn, (0 ≤
n ≤ 3) in GF (28), we simply need to cascade various a× 02
(i.e, a · x) modules found in Figure 1. Figure 2 shows how
these connections are made. The switch gates module in the
figure denotes an eight bit array of switch gates, each of which
takes the inv line as the base and one of wires in the wire
array as the source. This is to propagate the signal of the wire
array to the next x2 module if the inv line is set. If the line is
not set, then logic 0 will be sent to the next x2 module from
the sink of the switch gates. The interpretation of the function
of this gate is that a × 22 (i.e, a · x2) and a × 23 (i.e, a · x3)
for module input a will be calculated if the inverse of the
mix columns operation is to be performed. If the operation is
simply the forward operation, then multiplication by powers 2
and 3 are not used, and the input to the last two a×2 modules
should be 0. Thus, the output of these two modules is then the
identity element 0, and does not affect the XOR gates that
follow in the next module.

The module a× 2n (Figure 2) can be used to calculate two
element multiplication in equations (3) and (4) as illustrated
in Figure 3. Each ⊕ denotes an eight bit array of XOR gates
that XOR the corresponding elements of the two input arrays.
The hexadecimal numbers NL/NR in Figure 3 that mark the
outputs of some of the ⊕ gates denote that the value wi ×N
is output from the gate array. NL is the number N used for
encoding, while NR is the number N used for decoding. We
see that NR − NL = t for some t ∈ {08, 0C}. It should
be clearer now that if dec is set, then N = NR, otherwise
N = NL.

Finally we can derive the logic circuit to compute the
mix column operation as show in Figure 4. Four of the
modules found in Figure 3 are used, one for each byte of
the input word. We label the outputs from these modules as

4638



x2

. . .

Switch Gates

p p pq q q

r r r

7 7 6 6

67

0 0

0

. . .

inv

x2

8

8

Switch
Gates

a x 2

Logic 0

8

2

1

x2

a x 2 3a x 2 1

8

a

a x 2 0

inv

Fig. 2. Multiplications of a·xn (0 ≤ n ≤ 3) in GF (28) (module of a×2n)

a dec

8

in inv

x01 x02 x04 x08

a x 2
n

x01/09 x03/0B x01/0D x02/0E

Fig. 3. Matrix product generator (module of product generator).

0109, 030B, 010D, and 020E where each output represents
the product of the input wi and some number n where 0 ≤
i ≤ 3. The number n is the first number in the output label
associated with that line if the dec line is not set, otherwise
n is the second number. We calculate w′

i by adding, with
XOR arrays, the appropriate outputs from the four modules
that generate wi × n for some n ∈ GF (28). This is given by
the following equations:

w′
3 = w3 × E + w2 × B + w1 × D + w0 × 9

w′
2 = w3 × 9 + w2 × E + w1 × B + w0 × D

w′
1 = w3 × D + w2 × 9 + w1 × E + w0 × B

w′
0 = w3 × B + w2 × D + w1 × 9 + w0 × E

(6)

Though the above equation is for the decode operation, the
encode operation requires the exact same wiring of the exact
same output from the four modules that generate the wi × n
outputs. Since these modules have already determined if the
forward or the inverse values are output on the wire arrays,
the connections described in the above equations will work

w’2 w’0w’3 w’1

w1w2 w0w3dec

Product Generator Product Generator Product Generator Product Generator

01/09 03/0B 01/0D 02/0E 01/09 03/0B 01/0D 02/0E01/09 03/0B 01/0D 02/0E01/09 03/0B 01/0D 02/0E

Fig. 4. Top-level view of the mix columns design.

for the forward operation as well. Therefore, the results of
the forward operation will be output if the dec line is not set
whereas the results of the inverse operation will be output in
the same spot if the dec line is set.

w’0w’1w’3 w’2

w 0w 3 w 2 w 1

x2 x2 x2x2

Fig. 5. A mix columns architecture that computes only the forward operation.

We also give a brief description of an architecture for the
mix columns design that only computes the results of the
forward operation. Some implementations of AES desire only
the forward operation, such as the one found in [2]. We make
special note of this design because it actually has less than
half the amount of gates as in the design in Figure 4. Figure
5 shows the simple architecture of this encode-only module.
We have removed the decode line, eight of the multipliers and
many XOR arrays that were used to add in the wi × 04 and
wi × 08 results, as they are not used in the forward operation.

IV. COMPARISON

The total number of gates in the presented design is 292XOR+
32AND and it results in a critical path of 6 · TXOR + TAND.

In [3], 16 multipliers are used for Mix Columns Operation,
with 212 gates each. Replacing these multipliers with four

4639



instances of our design (one for each column) can reduce
the overall gate count by 2, 096 gates, which is a significant
improvement considering that the paper claims 15, 493 gates in
its high-performance design (14% of total gates are reduced).
We also note that the design in [3] uses composite field
arithmetic in the implementation of the s-box. Since the s-box
and the mix columns (or its inverse) operations are performed
in different clock cycles in the design in [3], and the s-box
design has a critical path of at least 15 · TXOR (the AND
gates were not considered in the analysis in the paper), we
see that our design would not be the critical path in the whole
AES design.

TABLE I

THE COMPARISONS OF SPACE AND TIME COMPLEXITY OF DIFFERENT

MIX-COLUMN ARCHITECTURES FOR ENCRYPTION ONLY

Design Gates Critical Path Results
Proposed Figure 5 140 4 GE Encode Only

[2] 176 5 GE Encode Only
[4] 176+ 6+ GE Encode Only

Another design that is quite similar to our design is found
in [2]. In this paper, only the forward operation is presented,
not the inverse. Also, though they obtain the results with the
same concept presented in our design, many unnecessary gates
are used in the calculation of w × 2 (i.e., w · · ·x) because
of the multiplexing between the left-shifted result and the
addition of the irreducible polynomial into the left-shifted
result by using the left-most bit as the selection line. Our
design avoids this by using that selection line as a direct XOR
into corresponding xi terms in the irreducible polynomial. This
demands a maximum of 3XOR gates to multiply by x as
opposed to the many that were used in their design when
using the selector.

Table 1 illustrates the comparisons made between our de-
sign and another designs that implements only forward Mix
Column operation, where GE refers to gate equivalents.

V. CONCLUSION

A fast and low complexity architecture for the AES Mix
Column and Inverse Mix Column operations is proposed
in this paper. The short critical path, small gate count and
versatility (between encode and decode) is desirable for most
architectural descriptions of AES. The performance compar-
isons indicate that the proposed mix-column architectures have
less complexity than previous relevant work. In particular,
the total number of gates in [4] can be reduced 14% off by
applying our proposed mix-column architecture.

ACKNOWLEDGMENT

This research work is supported by the funding of Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).

REFERENCES

[1] N. I. of Standards and Technology, Federal Information Pro-
cessing Standard 197, The Advanced Encryption Standard (AES),
http://csrc.nist.gov/publications/fips/fips197/fips197.pdf, 2001.

[2] H. Kuo, I. Verbauwhede, and P. Schaumont, “A 2.29 gbits/sec, 56
mw non-pipelined rijndael aes encryption ic in a 1.8v, 0.18 um cmos
technology.” [Online]. Available: citeseer.nj.nec.com/kuo02gbitssec.html

[3] S. Mangard, M. Aigner, and S. Moninikus, “A highly regular and scalable
aes hardware architecture,” IEEE Transactions on Computers, vol. 52,
no. 4, pp. 483–491, April 2003.

[4] A. Rudra, P. Dubey, C. Jutla, V. Kumar, J. Rao, and P. Rohatgi, “Efficient
rijndael encryption implementation with composite field arithmetic,” in
Proc. Workshop Cryptographic Hardware and Embedded Systems, ser.
CHES, 2001, pp. 171–184.

4640


