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We consider a scenario in which a database stores sensitive data of users and an analyst wants to estimate
statistics of the data. The users may suffer a cost when their data are used in which case they should
be compensated. The analyst wishes to get an accurate estimate, while the users want to maximize their
utility. We want to design a mechanism that can estimate statistics accurately without compromising users’
privacy.

Since users’ costs and sensitive data may be correlated, it is important to protect the privacy of both
data and cost. We model this correlation by assuming that a user’s unknown sensitive data determines a
distribution from a set of publicly known distributions and a user’s cost is drawn from that distribution.
We propose a stronger model of privacy preserving mechanism where users are compensated whenever

they reveal information about their data to the mechanism. In this model, we design a Bayesian incentive
compatible and privacy preserving mechanism that guarantees accuracy and protects the privacy of both
cost and data.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; J.4 [Social and Behavioral Sciences]: Economics

General Terms: Algorithms, Economics

Additional Key Words and Phrases: Mechanism Design, Differential Privacy

1. INTRODUCTION

Using the Internet, it is fairly easy to collect sensitive personal data. Online service
providers implicitly compensate users who provide their personal data, by offering im-
proved services based on their data. However, this implicit exchange may not be fair
to the individual, since different people may have different costs — a loss in expected
utility over future events — for use of their data. Moreover, companies rarely give
well-defined guarantees concerning data privacy and compensation. When the com-
pensation is less than the individual’s perceived cost, the individual may choose not to
participate. Here, we explore mechanisms to fairly compensate individuals for use of
their personal data.
In order to motivate users to participate in a mechanism, the payment to a user

should be at least the cost to the user. Thus, the mechanism should learn informa-
tion about users’ costs. Ghosh and Roth [Ghosh and Roth 2011] initiate a study of this
problem. Their mechanism asks users to report their costs for the use of their data to
estimate statistics, and then selects some of the users (based on their stated costs) to
determine the statistics, and pays these users accordingly. This mechanism is prob-
lematic when costs and personal data are correlated, since users may be reluctant to
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reveal their costs if they are not guaranteed adequate compensation up front. For ex-
ample, suppose that a database indicates whether a vehicle has been damaged. When
the database can be publicly accessed, the owner of a damaged car cannot sell the car
for the same price as the price of an undamaged car. Thus, his cost for revealing data
is higher than the owner of an undamaged car. Revealing information about the costs
may also reveal information about whether the car is damaged. Thus, it is important
to also guarantee privacy of individual payments.
We study this problem where costs are correlated with data. We model this corre-

lation by assuming that a user’s unknown data determines a distribution from a set
of accurate and publicly known distributions and the user’s cost is drawn from that
distribution. We propose a model of a privacy preserving mechanism where users are
compensated whenever they reveal any information about their data to the mecha-
nism, whether directly, or indirectly by revealing their costs. In this model, we design
a Bayesian incentive compatible and individually rational mechanism, which produces
accurate statistics and protects the privacy of data and costs.

Problem Setting. There are n users, which we call players, denoted by [n]. Each
player has sensitive data Di ∈ [h], stored in a database D ∈ [h]n. Initially Di is the
private information of player i. However, since Di is also in the database, it’s value
may be verified with player i’s permission. In addition, player i has a value for his
loss of privacy of his data. This value vi is private to player i, but it is correlated with
Di. This correlation is modeled as follows: If Di = t ∈ [h] then vi ∼ Ft, where Ft is a
distribution of privacy costs for players of type t that is known to all players and the
mechanism. Ft correctly represents the distributions of costs of type t players.
A query is a function Q : [h]n → R, mapping a database to a response. An example

of a query is “what is the number of people i in the database D with Di = j?”. A
data analyst wants Q(D). Since the data are sensitive, the data analyst accesses the
database through a privacy preserving algorithm A. Therefore, the data analyst does
not receive Q(D) but receives an estimate A(D). To ensure the estimate is accurate,
the error |Q(D)−A(D)| should be small with high probability.
Differential privacy, introduced in [Dwork et al. 2006], is an accepted way to measure

privacy and privacy preserving algorithms. Two databases D and D′ are adjacent if
they differ in only one entry. An algorithm A satisfies ǫ-differential privacy, where
ǫ > 0, if for any pair of adjacent database D and D′ and any set I ⊆ R, Pr[A(D) ∈ I] ≤
eǫ Pr[A(D′) ∈ I]. When ǫ = 0, it implies that the algorithm does not depend on D. If
the error |Q(D)−A(D)| is small with high probability, then the algorithm should have
large ǫ. Thus, privacy guarantees come at the expense of the accuracy.
Although an ǫ-differentially private algorithm can protect sensitive data, if a player

allows his data to be used, he may incur a cost. We model this cost as linear in the
privacy loss ǫ and his expected cost vi.

1 Thus, for player i to agree to the use of his
data, his expected payment should be at least ǫvi.
A mechanism specifies a set of actions that players can take. The players take ac-

tions based on their data and private costs. Thus, the input of the mechanism is a
database and a vector of actions. The outputs are an estimate ŝ and a payment vector
p = (p1, . . . , pn). Since player i has a linear cost ǫvi, the utility of player i is pi − ǫvi if

1We can view this cost as due to the change in his utility from future events that depend on the answer
he gives to the analyst. This cost is approximately linear in ǫ and his expected utility, denoted by vi. Let
g(A(D)) be the distribution of future events that depends on A(D). Let wi be the player i’s utility for
future events. Since A is ǫ-differentially private, g ◦ A is also ǫ-differentially private. Thus, for random
variables y ∼ g(A(D)) and y′ ∼ g(A(D′)) and event b, Pr[y = b] ≤ eǫ Pr[y′ = b]. Therefore, we have
Ey∼g(A(D))[wi(y)] − Ey∼g(A(D′))[wi(y)] is approximately ǫEy∼g(A(D′))[wi(y)] or −ǫEy∼g(A(D′))[wi(y)],

when ǫ is small.
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Di is used in the mechanism, otherwise the utility is pi. We assume that all players
are rational and want to maximize their utilities. A mechanism is a direct mechanism
if the action set equals the set of all real numbers. That is, a direct mechanism asks
players to report their costs. A direct mechanism is truthful if every player reports his
true cost in order to maximize his utility. Truth telling is a concept defined for direct
mechanisms. In this paper, we propose an indirect mechanism. Thus, we want to ex-
tend the notion of truthfulness to indirect mechanisms. In our mechanism, there is a
straightforward mapping, described in Section 3, from player’s type set to player’s ac-
tion set. We say that a player decides truthfully if he picks the strategy corresponding
to his type under this mapping.
In our paper, we will assume that the query/goal of the analyst is to estimate nj =

|{i : Di = j}|. Without loss of generality, we assume throughout the paper that the
data analyst wants to estimate n1. We seek to design a mechanism with the following
properties.

(1) Accuracy: A mechanism M is k-accurate, if for any database D, Pr[|ŝ − n1| ≥
k] ≤ 1

3 , when every player decides truthfully. Note that the accuracy guarantee is
independent of the size of the database — the number k is fixed no matter how
large the database is, or the sampled set is.

(2) Differential Privacy: The estimate and payments satisfy ǫ-differential privacy.
(3) Truthfulness: A mechanism is dominant strategy truthful if, for every player, de-

ciding truthfully maximizes his utility. A mechanism is Bayesian incentive compat-
ible (BIC) if, for every player, assuming that other players’ costs are drawn from
F according to their data and decide truthfully, deciding truthfully maximizes his
utility.

(4) Individual Rationality: If a player’s utility is non-negative, then he should be
willing to participate. A mechanism is ex-post individually rational (EPIR) if the
utility is non-negative for every player when he decides truthfully. A mechanism
is ex-interim individually rational (EIIR) if the expected utility is non-negative for
every player when he decides truthfully, where the randomness comes from the
mechanism and the costs of other players.

(5) Payment Minimization: The summation of payments should be as little as pos-
sible.

To get permission to use a player’s data, the mechanism must compensate the player
by at least his perceived loss of privacy. But since costs are correlated with data, play-
ers may be reluctant to reveal their true costs, unless they will be compensated for
this. To avoid this seeming chicken-and-egg problem, the mechanism designer cannot
resort to the revelation principle, which states that any mechanism can be realized as
a direct and truthful mechanism. In fact, [Ghosh and Roth 2011] prove that if costs
and data can be arbitrarily correlated and player’s cost of privacy can be unbounded,
then for any k < n/2, no k-accurate, direct, dominant strategy truthful, EPIR, privacy
preserving mechanism exists. On the other hand, we give a mechanism that provides
k-accuracy for any input value k when costs are correlated with data, and there is no
bound on players’ cost of privacy. We get around the lower bound of [Ghosh and Roth
2011] by using an indirectmechanism, and modeling the correlation of values and data
via publically known (and allowably unbounded) distributions.

Privacy Issues when Costs are Correlated with Data. The objective of a privacy
preserving mechanism is that the increase in knowledge about a player’s data due to
output of the mechanism is small. Previous work on privacy in statistical databases
assumes that the mechanism is associated with the database, such that the mecha-
nism can access the whole database without compromising a player’s privacy. How-
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ever, if the mechanism is separated from the database, then a player might not trust
the mechanism and might not want to reveal private information to the mechanism.
In our problem, in order to estimate n1, the mechanism should learn information

about players’ data. Suppose that the mechanism has a prior belief G about the data
in D. That is, the mechanism believes that the probability of Di = j is PrG[Di = j]
according to the prior belief. The mechanism learns aboutDi if the mechanism believes
that Pr[Di = j] 6= PrG[Di = j] after running the mechanism, for some j. There are
two possible ways to learn about players’ data. The first way is to read Di explicitly.
The second way is to read players’ actions and deduce something about their Di. For
example, if the mechanism is direct and truthful, then the players report vi truthfully.
Suppose that the prior belief is that every player’s data are drawn from a uniform
distribution. That is, PrG[Di = j] is the same for all i and j. If Fj(vi) < Fj′ (vi) for some
j and j′, and player i truthfully reports vi, then the mechanism’s posterior belief is that
Pr[Di = j] < Pr[Di = j′], which is different from the prior belief. Learning anything
about a player’s data may compromise a player’s privacy and should be compensated.
Thus, there are two kinds of cost to a player that should be compensated, one is for
using the player’s data and one is for learning about the player’s data.
For the latter cost, we propose the concept of perfect data privacy, which is inspired

by the concept of perfect objective privacy introduced in [Feigenbaum et al. 2010]. A
mechanism satisfies perfect data privacy if whenever the mechanism’s posterior be-
lief about a player’s data differs from its prior belief, the mechanism pays the player.
Under perfect data privacy, mechanisms can learn about a player’s cost, as long as
that knowledge does not reveal anything about his data. However, for a perfectly data
private mechanism, if the mechanism learns about a player’s data, then the mecha-
nism always compensates the player, even when the mechanism does not not use the
player’s data to compute the estimate.

Our Main Contribution. We give a mechanism that is BIC, EIIR, O(ǫ−1)-accurate,
perfectly data private, and ǫ-differentially private. To achieve our privacy guarantees,
we propose a posted-price-like mechanism, described in Section 3. Given the set of
types of players and the distributions of costs, the mechanism writes a contract that
offers a different expected payment for each type. Each player is offered this contract.
If a player accepts the contract, then his payment is determined by his verifiable type
and the payment for his type in the contract. The player’s action is either to accept the
contract or reject the contract. A player decides truthfully if a player with type j accepts
the contract when ǫvi ≤ rj , where rj is the payment for type j in the contract. We
prove that this posted-price-like mechanism is BIC, EIIR, O(ǫ−1)-accurate, perfectly
data private, and ǫ-differentially private.
We seek a mechanism with a small payment. In Section 4, we define a benchmark

for the expected payment of a mechanism and compare the expected payment of our
mechanism to this benchmark in two different settings. When costs are non-negative,
we show that our mechanism is close to the benchmark.
We also prove a lower bound on the accuracy that a direct and data private mecha-

nism can achieve in Section 2.

1.1. Related Work

Selling Privacy. Our paper is closely related to the privacy preserving mechanisms
studied in [Ghosh and Roth 2011]. In [Ghosh and Roth 2011], they extend the defini-
tion of ǫ-differentially private algorithms to ǫ-differentially private mechanisms. Under
their definition of an ǫ-differentially private mechanism, the randomness only comes
from the mechanism. In our model, since we want to protect the privacy of the costs,
which are drawn from distributions, our definition of an ǫ-differentially private mech-
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anism relies both on the distributions of the costs and the randomness of the mecha-
nism.

Differential Privacy. A comprehensive survey of differential privacy appears
in [Dwork 2008]. Most of the previous results are based on random perturbations of the
output, and assume that the mechanism has the ability to access the whole database.
If the mechanism cannot access the whole database, Chaudhuri et al. [Chaudhuri and
Mishra 2006] and Klonowski et al. [Klonowski et al. 2010] show that random sam-
pling is enough to ensure differential privacy with high probability. That is, it is not
necessary to add more noise to the output.

Differential Privacy and Mechanism Design.McSherry et al. [McSherry and Tal-
war 2007] use a privacy preserving algorithm as a tool to design an approximately
dominant strategy truthful mechanism. Instead, we focus on treating senstive data as
a commodity that can be sold.

Privacy Concerns in Mechanisms. Traditional mechanism design theory focuses
on drawing private information from players in order to compute a result. However, if
players have privacy concerns, they may not want to reveal their information. Feigen-
baum et al. [Feigenbaum et al. 2010] study how to quantify the information leakage to
the mechanism based on communication complexity.
Xiao [Xiao 2011] quantifies the information leakage in a mechanism based on in-

formation theory. In his model, the outcome of a privacy preserving mechanism not
only motivates the players to participate but also protects the private information of
players. In independent work, Nissam et al. [Nissim et al. 2011] and Chen et al. [Chen
et al. 2011] consider privacy issues in mechanism design in the context of elections and
discrete facility location.

Posted-Price Mechanisms. In a posted-price mechanism, player i is offered a price
ri. If player i accepts that price, then i pays ri to get the allocation. Goldberg et
al. [Goldberg and Hartline 2005] show that the posted-price mechanism is collusion
resistant. Moreover, the players do not need to know or report their private values pre-
cisely. They only decide to accept or reject the price. Chawla et al. [Chawla et al. 2010]
point out that this could be useful in reducing the private information revealed to the
mechanism.

RevenueMaximization in BayesianMechanismDesign. In a classic paper, Myer-
son [Myerson 1981] characterizes the optimal BIC selling mechanism to maximization
the expected revenue. In procurement mechanisms, each player is a supplier and each
player’s production cost is private information. The auctioneer is the buyer and wants
to minimize the expected payment. In the computer science literature, an early pa-
per in this area characterizes the minimum-cost dominant strategy truthful auction to
buy an s-t path in a graph [Elkind et al. 2004]. Since then, there has been consider-
able interest in both frugal mechanism design (buying a feasible set at low cost), and
budget-constrained mechanism design (buying as good a set as possible subject to a
budget). Our work can be seen as a generalization of these questions to the setting of
bidders who are reluctant to reveal their costs, and the feasibility of a set depends on
the private costs (via the correlation with data).

2. MODEL AND LOWER BOUND

2.1. Model

There is a database D ∈ [h]n and n players, where each player has data Di. Player i
with Di = j has a private cost vi drawn from a distribution with cumulative distribu-
tion function Fj . Note that this definition is different from the traditional definition
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of a Bayesian setting. In the traditional definition, the distribution of vi is known to
every player and the mechanism. In our definition, the mechanism and players know
that each player’s vi is drawn from one of a set of distributions, but the particular dis-
tribution depends on the individual player’s data, which is unknown to everyone but
that player.
The goal of our mechanism is to estimate n1 based on D and determine the pay-

ment pi for every player i. A mechanism first specifies the set of possible actions Y
that players can take. Then, based on players’ actions and the database, the mech-
anism determines the estimate and payment. Formally, a mechanism is a function
M : Y n × [h]n → R× R

n. The mechanism has an a priori belief G about the data in D.
That is, the mechanism believes that the probability of Di = j is PrG[Di = j]. Recall
that the mechanism learns about Di if, after running the mechanism, the mechanism
believes that Pr[Di = j] 6= PrG[Di = j] for some j. We use a vector x ∈ {0, 1}n to indicate
whether the mechanism learns something about each player’s data. If the mechanism
learns about Di, then xi = 1. A mechanism is perfectly data private if, when xi = 1,
player i’s expected payment from the mechanism is at least ǫvi. We focus on random-
ized mechanisms in this paper, that is, xi and payment pi are random variables.
Next, we define the utility for a player. If xi = 1, there is a cost ǫvi to player i, since

something about Di is learned. For y ∈ Y n representing all players’ actions, the utility
for player i is ui(y, vi) = pi − ǫxivi, where (ŝ, p) = M(y,D). In this paper, we assume
that players are rational, so players want to maximize their expected utilities. The
strategy of player i is a function qi : R × [h] → Y mapping from vi and Di to an action.
Since players want to maximize their expected utilities, they will take the action that
is not worse than any other action.
Finally, we introduce the solution concept. A profile of strategies q1, . . . , qn is a

Bayesian-Nash equilibrium if for all i, vi, and y′i ∈ Y , E[ui(q(vi, v−i, D), vi)] ≥
E[ui((y

′
i, q−i(v−i, D−i)), vi)], where the randomness is from the mechanism and the

randomness of v−i. A direct mechanism is Bayesian incentive compatible (BIC) if
qi(vi, Di) = vi is a Bayesian-Nash equilibrium for every player i.

2.2. Lower Bound

In order to ensure that players have incentive to participate the mechanism, we wish
that the mechanism is individually rational. However, we can show that for any direct,
BIC, and EIIR mechanism, there is a lower bound of accuracy. Since the condition of
EIIR is weaker than EPIR, the lower bound for EIIR also implies a lower bound for
EPIR mechanisms.

LEMMA 2.1. If the functions Fi are arbitrary functions with unbounded range, then
for any k < n/2, no k-accurate, direct, BIC, EIIR, and perfectly data private mechanism
exists.

PROOF. Suppose thatM is a BIC, EIIR, perfectly data private, and k-accurate mech-
anism. First, we show that M must access at least one player’s cost or data. Assume
that M does not access any cost or data. Thus, M randomly output an estimate ŝ,
which is independent of costs and data. For a database D1 with all entries equal to
one, since M is k-accurate, Pr[ŝ ∈ [n, n − k]] ≥ 2

3 . Similarly, if a database D0 has no

entries equal to one, then Pr[ŝ ∈ [0, k]] ≥ 2
3 . Because k < n/2, [n, n − k] and [0, k] do

not overlap. But the summation of these two probabilities is greater than one, which
is impossible. Hence, M must access at least one player’s cost or data.
Suppose that Di ∈ {1, 2} and F1(v) 6= F2(v) for all v. For any v̂, if M access vi = v̂,

then the mechanism must pay player i, since F1(v̂) = Pr[vi = v̂|Di = j] 6= Pr[vi =
v̂|Di = j′] = F2(v̂) and M is perfectly data private. Let xi be the indicator random
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variable representing whether player i’s cost is accessed. Let pj be the random variable
representing player i’s payment. Since M is BIC, we suppose that players other than
i report truthfully. Since the mechanism decides to access vi based on v−i, Pr[xi = 1]
is independent of vi. Because M must access at least one player’s cost, we can find a
player i, such that Pr[xi = 1] > 0. For a fixed vi, the expected utility of i is E[pi] −
ǫviE[xi]. Since the range of F is unbounded, we can find another v′i >

E[pi]
ǫE[xi]

. Since M is

EIIR, we have E[p′i] ≥ ǫv′iE[xi]. Thus, for player i with cost vi, if i overbids v
′
i, the utility

is E[p′i] − ǫviE[xi] ≥ ǫv′iE[xi] − ǫviE[xi] > E[pi] − ǫviE[xi]. Thus, player i can increase
expected utility by overbidding. Hence, M is not BIC.

Our mechanism, which is explained in the next section, is an indirect mechanism
since it does not ask for players’ costs. The revelation principle, which states that if
there exists an indirect mechanism implementing a function in Bayesian-Nash equi-
librium, then there also exists a direct BIC mechanism implementing the same func-
tion, is irrelevant under the desire for perfect data privacy. It is easy to construct a
direct mechanism from our indirect mechanism. However, this direct mechanism ac-
cesses all players’ data without compensating all players. Thus, this direct mechanism
is not perfectly data private.

ǫ-Differential Privacy. The traditional definition of ǫ-differential privacy compares
the outcomes of the algorithm applied to adjacent databases. However, with a mecha-
nism that offers payments, the mechanism may use both the database and the replies
to the mechanism to compute an estimate and payments. Since replies depend on the
individuals’ costs, we compare the outcomes of the mechanism applied to two cost-data
pairs (v,D) and (v′, D′). A cost vector v = (v1, . . . , vn) is drawn according to a database
D, if vi is drawn from Fj , where Di = j. Two cost-data pairs (v,D) and (v′, D′) are ad-
jacent, if D and D′ differ only in the i-th entry and v and v′ are independently drawn
according to database D and D′. A BIC mechanism is ǫ-differentially private if, for
any pair of adjacent cost-data pairs, the estimate and payments satisfy ǫ-differential
privacy.

Bayesian Assumptions. Our definition of ǫ-differential privacy is based on the com-
mon belief F . That is, the player decides his strategy assuming that other players’
costs are drawn from F and all players believe this assumption. If a player allows his
data to be used, then he may incur a expected cost ǫvi. The expected cost to the player
depends on ǫ and thus also depends on the common belief F . Having a common belief
is a traditional assumption in the Bayesian setting. Moreover, most BIC mechanisms
become meaningless when the common belief is not true. Thus, we assume that the
common belief F is correct.

3. MECHANISM

In this section, we give a perfectly data private, BIC, EIIR, ǫ-differentially private, and
O(ǫ−1)-accurate mechanism. Every player i has dataDi ∈ [h]. To start, we assume that
Fj is continuous for j ∈ {1, 2}.
The mechanism designs and offers contracts to players. The contract guarantees an

expected payment to each player who accepts the contract. The players decide to accept
or reject the contract. Thus, the possible actions for players are “accept” or “reject”.
The mechanism uses the data of players who accept the contract to estimate n1. The
estimate is unbiased if the expected value of the estimate is n1. To obtain an unbiased
estimate, the set of players who accept the contract should be unbiased, that is, the
probability of a player accepting the contract should be equal for all players. Moreover,
since the mechanism pays players, the costs of players in the accepting set should be
bounded.
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The mechanism first finds αj for j ∈ [h], such that Fj(αj) = c, where c will be
determined later. Then, each player i is given a contract : “If Di = j, your expected
payment will be ǫαj .” A player i with Di = j decides truthfully if, when vi ≤ αj , player
i accepts the contract and rejects otherwise. Let W be the set of players who accept
the contract. If all players decide truthfully, the cost to each player in W is bounded
by maxj αj . Since for player i with Di = j, Pr[vi ≤ αj ] = c, every player accepts the
contract with probability c. Thus, W is an unbiased and cost-bounded sample set.
Since the probability that a player accepts the contract is c, the value m := |{i ∈ W :

Di = 1}| is a random variable bin(n1, c) from a binomial distribution2 Bin(n1, c). Since
the expected value of m is cn1,

m
c is an unbiased estimate of n1. We say m

c is a naı̈ve
estimate of n1.
We explain how to produce an estimate that satisfies ǫ-differential privacy. Although

the naive estimate is an unbiased estimate of n1, it does not satisfy differential privacy.
Consider an adjacent pairs of cost-data pairs (v,D) and (v′, D′), where D and D′ differ
in the i-th entry. Let n1 be the number of player i with Di = 1 and n′

1 be the number
of players i with D′

i = 1. The naive estimate does not satisfy differential privacy, since
if Di = 1 and vi ≤ ǫα1, then an outsider can infer Di easily by comparing the naive
estimates of n1 and n′

1. Thus, we should introduce a random noise to the naive estimate
to satisfy differential privacy.
The mechanism uses the Laplacian distribution as a source of the random noise. The

Laplacian noise is commonly used to obtain differential privacy. A Laplacian distribu-
tion with mean 0 and parameter b > 0 is denoted by Lap(b). The probability density
function of Lap(b) is

f(x) =
1

2b
exp

(

−|x|
b

)

.

Let lap(b) denote a random variable drawn from Lap(b).
In order to make estimate satisfy differential privacy, the mechanism adds random

noise lap(1ǫ ) to the naive estimate. Since the mean of the Laplacian noise is zero, s =
1
c (m + lap(1ǫ )) is an unbiased estimate of n1. However, s might be larger than n or be
negative, both of which are meaningless. We truncate s to get ŝ, that is when s > n, the
mechanism outputs n and when s < 0, the mechanism outputs 0.
We also use the Laplacian noises to produce payments that satisfy ǫ-differential

privacy. By the construction of the contract, for any player i with Di = j who accepts
the contract, the mechanism pays player i for ǫαj in expectation. If the mechanism pays
player i for ǫαj deterministically, then an outsider can infer player i’s data easily. Thus,
we should introduce noise to the payments. We add noise ǫ lap(γǫ ) to the payment,
where γ := |maxj αj −minj αj |. Thus, pi = ǫ(αj + lap(γǫ )). Since the expected value of
lap(γǫ ) is zero, the expected payment of player i is ǫαj , which satisfies the guarantee in
the contract. Moreover, since ǫαj is larger than ǫvi, the mechanism is EIIR. The formal
description of the mechanism is in Mechanism 1.

LEMMA 3.1. Mechanism 1 is perfectly data private.

PROOF. Let yi be player i’s reply to the contract. By construction of the contract,
if i decides truthfully, then Pr[yi = “accept” | Di = j] = c for all j ∈ [h]. That is,
the probability of accepting the contract and Di are independent. Thus, for any i, the
mechanism cannot learn about Di by reading yi. Moreover, the mechanism only reads

2A binomial distribution with parameter n and p is denoted by Bin(n, p). The probability density function
of Bin(n, p) is f(k;n, p) =

(n
k

)

pk(1 − p)n−k. Let bin(n, p) denote a random variable drawn from Bin(n, p).

The expected value of bin(n, p) is np and variance is np(1− p).
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Mechanism 1: ǫ-differentially private mechanism
input : privacy parameter ǫ; cost distributions Fj , j ∈ [h]
output: estimate ŝ; payment p

1 Pick a real number c ∈ (0, 1)
2 Find αj for all j ∈ [h], such that Fj(αj) = c.
3 For each player i, offer a contract:
4 If Di = j, the expected payment will be ǫαj .
5 Let W = {i : i accepts contract}.
6 Let m = |{i ∈ W : Di = 1}|.

7 Let s = 1
c
(m+ lap( 1

ǫ
)).

8 ŝ = s if s ∈ [0, n], 0 if s < 0, n if s > n

9 pi =

{

0 if i /∈ W

ǫ(αj + lap( γ
ǫ
)), where γ := |maxj αj −minj αj | if i ∈ W and Di = j

10 return (ŝ, p)

Di, where i ∈ W . Since player i ∈ W with Di = j is paid ǫαj in expectation and vi ≤ αj ,
the mechanism satisfies the requirement.

LEMMA 3.2. Mechanism 1 is BIC and EIIR.

PROOF. (BIC) The payments for players who is not in W are always 0. For player i,
there are two cases.
Case 1: Di = j and vi ≤ αj . Accepting the contract will get expected payment ǫ(αj −
vi) ≥ 0.
Case 2: Di = j and vi > αj . Accepting the contract will get expected payment ǫ(αj −
vi) < 0.
(EIIR) Suppose that every player decides truthfully. Then only players with vi ≤ αj

and Di = j for some j are in W . Since the expected payment for i with Di = j is ǫαj ,
the expected utility of the player is non-negative.

Two random variables x1 and x2 are ǫ-mutually bounded, if ∀I ⊆ R, Pr[x1 ∈ I] ≤
eǫ Pr[x2 ∈ I] and Pr[x2 ∈ I] ≤ eǫ Pr[x1 ∈ I].

LEMMA 3.3 (FACT 2 IN [GHOSH AND ROTH 2011]). If x1 and x2 are ǫ-mutually
bounded and f is a function, then f(x1) and f(x2) are also ǫ-mutually bounded.

LEMMA 3.4 ([DWORK ET AL. 2006]). Let x1 and x2 be two random variables. If

|x1 − x2| ≤ k, then x1 + lap(kǫ ) and x2 + lap(kǫ ) are ǫ-mutually bounded.

The next two lemmas address the ǫ-differential privacy of the payment and the es-
timate. Let (v,D) and (v′, D′) be adjacent cost-data pairs. Let (ŝ, p) and (ŝ′, p′) be the
results for (v,D) and (v′, D′) respectively.

LEMMA 3.5. For any I ⊆ R, Pr[ŝ ∈ I] ≤ eǫ Pr[ŝ′ ∈ I].

PROOF. Without loss of generality, we assume that 1 = Di and D′
i 6= 1. First, Pr[ŝ ∈

I] =
∫

v−i∈Rn−1 Pr[ŝ ∈ I | v−i] Pr[v−i]dv−i. Similarly, Pr[ŝ′ ∈ I] =
∫

v−i∈Rn−1 Pr[ŝ
′ ∈ I |

v−i] Pr[v−i]dv−i. Let q̂w and q̂′w be two random variables, which are equal to ŝ and ŝ′

when v−i = w. If q̂w and q̂′w are ǫ-mutually bounded for all w, then ŝ and ŝ′ are ǫ-
mutually bounded, since then

Pr[ŝ ∈ I] =

∫

w∈Rn−1

Pr[ŝ ∈ I | v−i = w] Pr[v−i = w]dw
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=

∫

w∈Rn−1

Pr[q̂w ∈ I] Pr[v−i = w]dw

≤
∫

w∈Rn−1

eǫ Pr[q̂′w ∈ I] Pr[v−i = w]dw

=

∫

w∈Rn−1

eǫ Pr[ŝ′ ∈ I | v−i = w] Pr[v−i = w]dw = eǫ Pr[ŝ′ ∈ I].

The case Pr[ŝ′ ∈ I] ≤ eǫ Pr[ŝ ∈ I] can be shown by a symmetric argument.
Here, we show that q̂w and q̂′w are ǫ-mutually bounded for all w. Fix v−i = w. Let

Ww and W ′
w be the sets of players accepting the contract when applying the algorithm

to inputs (v,D) and (v′, D′) respectively. Let mw := |{i : Di = 1, i ∈ Ww}| and m′
w :=

|{i : D′
i = 1, i ∈ W ′

w}|. When applying the mechanism to inputs (v,D) and (v′, D′),
the mechanism computes sw = 1

c (mw + lap(1ǫ )) and s′w = 1
c (m

′
w + lap(1ǫ )) respectively.

Then, the mechanism truncates sw and s′w to get ŝw and ŝ′w. By Lemma 3.3, since
multiplication and truncation are functions, it suffices to show that mw + lap(1ǫ ) and

m′
w+lap(1ǫ ) are ǫ-mutually bounded when v−i = w. SinceW \W ′ is either the empty set

or {i}, the difference betweenmw andm′
w is at most one. Thus, Lemma 3.4 implies that

mw + lap(1ǫ ) and m′
w + lap(1ǫ ) are ǫ-mutually bounded. Thus, q̂w and q̂′w are ǫ-mutually

bounded for all w, and hence ŝ and ŝ′ are mutually bounded.

LEMMA 3.6. For all i ∈ [n] and for all I ⊆ R, Pr[pi ∈ I] ≤ eǫ Pr[p′i ∈ I].

PROOF. Without loss of generality, we assume that Di = 1 and D′
i 6= 1. For player

j 6= i, if j /∈ W , the payment is zero. If j ∈ W , the payment to j depends only on the
data Dj and does not depend on the set of players receiving payments. Thus, pj does
not change and we only need to consider pi. Note that pi 6= 0 only happens if player
i is in W . If pi 6= 0, then pi is a random variable P 1 = ǫ(α1 + lap(γǫ )). Thus, for any

I ⊆ R \ {0}, the probability Pr[pi ∈ I] = cPr[P 1 ∈ I], where c is the probability of that a
player accepts the contract. The probability Pr[pi = 0] = (1− c) + cPr[P 1 = 0]. Suppose
that D′

i = j′. Symmetrically, let P 2 = ǫ(αj′ + lap(γǫ )), for any I ⊆ R\{0}, the probability
Pr[p′i ∈ I] = cPr[P 2 ∈ I] and Pr[p′i = 0] = (1− c) + cPr[P 2 = 0].
Thus, it suffices to show that P 1 and P 2 are ǫ-mutually bounded. By Lemma 3.3,

since multiplication is a function, it is sufficient to show that α1+lap(γǫ ) and αj′+lap(γǫ )
are ǫ-mutually bounded. By Lemma 3.4, since |α1−αj′ | ≤ γ, α1+lap(γǫ ) and αj′+lap(γǫ )
are ǫ-mutually bounded.

LEMMA 3.7. Mechanism 1 is

√

3(n1(1−c)
c + 2

ǫ2c2 )-accurate.

PROOF. Since the error term |ŝ−n1| is smaller than |s−n1|, we can analyze |s−n1|
to get a bound on the error. Since E[m] = cn1, E[s] = 1

c (E[m] + E[lap(1ǫ )]) = n1 by
linearity of expectation.

|ŝ− n1| ≤ |s− n1| =
1

c
|m+ lap(

1

ǫ
)− n1c| =

1

c
|bin(n1, c) + lap(

1

ǫ
)− E[bin(n1, c) + lap(

1

ǫ
)]|.

In order to prove that accuracy with high probability, we use Chebyshev’s inequality.

LEMMA 3.8 (CHEBYSHEV’S INEQUALITY). Let X be a random variable with ex-
pected value µ and variance σ2. For any real number k > 0, Pr[|X − µ| ≥ kσ] ≤ 1

k2 .
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We set k =
√
3 and let X ∼ bin(n1, c) + lap(1ǫ ) with V ar[X ] = n1c(1− c) + 2

ǫ2 to get

Pr

[

|bin(n1, c) + lap(
1

ǫ
)− E[bin(n1, c) + lap(

1

ǫ
)]| ≥

√

3(n1c(1− c) +
2

ǫ2
)

]

≤ 1

3
.

This is equivalent to

Pr

[

1

c
|bin(n1, c) + lap(

1

ǫ
)− E[bin(n1, c) + lap(

1

ǫ
)]| ≥

√

3(
n1(1 − c)

c
+

2

ǫ2c2
)

]

≤ 1

3
.

Thus, Pr

[

|ŝ− n1| ≥
√

3(n1(1−c)
c + 2

ǫ2c2 )

]

≤ 1
3 .

The mechanism can pick c freely. If the mechanism picks a constant c such that
n(1−c)

c ≤ 2
ǫ2c2 , the mechanism is O(ǫ−1) accurate.

We will extend this result to general data entry and discrete cost distributions in
Section 3.1. Thus, we have the main theorem.

THEOREM 3.9. Mechanism 1 is BIC, EIIR, O(ǫ−1)-accurate, perfectly data private,
and ǫ-differentially private.

3.1. Extensions and Computational Issues

General Database Entries. Suppose that the entry of database has d attributes,
that is, Di ∈ [h]d. Given a sequence a1, . . . , ad, where aj ∈ [h], the data analyst wants
to estimate |{i : ∀jDij = aj}|. For any Di, we can transform Di to a single attribute

data D′
i = 1 +

∑d−1
i=0 Dij × di, such that D′

i ∈ [hd]. Then, we can apply the mechanism

to estimate the number of players with D′
i = 1 +

∑d−1
i=0 aj × di.

Discrete Cost Distributions. When Fj is a discrete probability function, the major
difficulty is that for a given c and j, we may not find a suitable αj , such that Fj(αj) = c,
because the cumulative probability function of a discrete distribution is a step function.
However, the mechanism can provide different contracts to different players and this
ability allows us to design a mechanism for discrete case.
The basic idea is that the mechanism uses randomness to pick αj such that every

player has equal probability c to accept the contract. For a given c and for each j, if
there is no αj such that Fj(αj) = c, then the mechanism finds the largest α−

j and the

smallest α+
j such that Fj(α

−
j ) = c−j < c and Fj(α

+
j ) = c+j > c. Note that a player i

with Di = j accepts the contract if his cost is smaller than the expected payment.
If the expected payment is α+

j , then the player accepts the contract with probability

c+j > c. On the other hand, if the expected payment is α−
j , then the player accepts

the contract with probability c−j < c. Let βj =
c−c−

j

c+
j
−c−

j

. Player i is given a contract “If

Di = j, your expected payment is ǫαj in expectation,” where Pr[αj = α−
j ] = 1 − βj and

Pr[αj = α+
j ] = βj . Thus, Pr[vi ≤ αj ] = c−j +βj(c

+
j −c−j ) = c, where the randomness is over

the distribution of costs and the random choice of αj . We can prove that the mechanism
is perfectly data private, BIC, and EIIR by arguments similar to those in the proofs of
Lemmas 3.1 and 3.2. Since every player has equal probability c to accept the contract,
we can show that the mechanism satisfies ǫ-differential privacy of estimate and is
O(ǫ−1)-accurate by arguments similar to those in the proofs of Lemmas 3.5 and 3.7.
In order to satisfy differential privacy of payments, we let γ := maxj α

+
j − minj α

−
j .
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Then, the payments satisfy ǫ-differential privacy by an argument similar to the proof
of Lemma 3.6.

Cost of Mechanism. For a fixed ǫ, when c increases, the accuracy of Mechanism is im-
proved, since Mechanism 1 uses more players’ data. However, Mechanism 1’s expected

total payment also increases. Since Mechanism 1 is
√

3(n1(1−c)
c + 2

ǫ2c2 )-accurate, there

is a trade-off between the accuracy and the expected total payment. Since the mecha-

nism can pick c freely, for a given ǫ >
√

8
n , the mechanism can pick c =

1+
√

1−8ǫ−2/n

2 .

Let α = maxj αj . The expected total payment is ǫαcn = αn(
ǫ+
√

ǫ2−8/n

2 ). Then, Mecha-
nism 1 picks a suitable ǫ, such that the expected total payment ǫαcn = B. Hence, the
mechanism is budget-feasible in expectation and is O( 1

ǫc) = O(αnB ) accurate.

Fixed Accuracy. If the data analyst wants a k-accurate mechanism, we can pick c =
1

1+k2/6n and ǫ = 2
√
3(1+k2/6n)

k , such that the mechanism is k-accurate. The expected

total payment is ǫαcn = 2
√
3αn
k .

Computing F
−1(c). In an ideal model, when Fj is a continuous distribution, we as-

sume that mechanism can access the closed form of Fj , such that the mechanism can

compute α = F−1
j (c) accurately. However, when the mechanism cannot access the

closed form of Fj , F
−1
j (c) may not be computable. When it is impossible to access the

closed form of Fj , we assume that there is an oracle, which returns Fj(v) for any given
value v. In the oracle model, the mechanism finds α−

j , α
+
j for all j, such that Fj(α

−
j ) < c,

Fj(α
+
j ) > c, and α+

j − α−
j < δ for δ < 1/n using binary search. Then, the mechanism

uses the method that we use for discrete cost distributions to construct the contract.

That is, let βj =
c−c−

j

c+
j
−c−

j

. Player i is given a contract “If Di = j, your expected pay-

ment is ǫαj in expectation,” where Pr[αj = α−
j ] = 1 − βj and Pr[αj = α+

j ] = βj . Thus,

Pr[vi ≤ αj ] = c−j + βj(c
+
j − c−j ) = c, where the randomness is over the distribution of

costs and the random choice of αj . Hence, the mechanism is still perfectly data pri-
vate, BIC, EIIR, ǫ-differential private, and O(1/ǫ)-accurate. In the oracle model, the
expected payment for player i with Di = j who accepts the contract is at most α+

j . In
the ideal model, the expected payment for player i with Di = j who accepts the con-
tract is F−1

j (c), which is smaller than α+
j . Since α+

j − F−1
j (c) is at most δ < 1/n, the

difference between the expected payments in the ideal model and in the oracle model
is at most 1/n for each player. Thus, the difference between the expected total payment
in the ideal model and in the oracle model is at most 1.

4. OPTIMALITY

In this section, we define a benchmark for the expected payment of a mechanism and
compare the expected payment of Mechanism 1 to this benchmark in two different
settings. The benchmark mechanism is not only truthful but also knows Di for all
i and has no privacy requirements. We show that when all costs are non-negative,
Mechanism 1 is provably close to the benchmark.
The benchmark is the minimum expected payment among all truthful mechanisms

M∗ that satisfy the following properties. In order to get a meaningful estimate, for
any k < n/2, a k-accurate mechanism learns a subset of players’ data. We call this
subset a sample set. Since obtaining an estimate based on an unbiased sample is a
common approach in statistics, we assume that M∗ uses an unbiased sample. Suppose
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that there are nj players with Di = j for j ∈ [h]. Since the sample set is unbiased,
there exists c such that M∗ buys wj = cnj data from players with Di = j. After getting
an unbiased sample, M∗ uses w1/c as the straightforward estimate of n1. Since the
choices of cmay effect the accuracy guarantee, we compare the payment of Mechanism
1 to the payment of M∗, where Mechanism 1 and M∗ have the same size of sample
sets. Thus, M∗ is a truthful mechanism that gets an unbiased sample with size cn for
a fixed number c.
Since there is no competition between players with data j and players with data

j′ 6= j, M∗ can run auctions for players with Di = j for all j ∈ [h] independently
and buy wj data from players with Di = j. The mechanism that guarantees buying w
units is called w-unit procurement mechanism. Thus, M∗ is a mechanism that runs a
truthful, wj -unit procurement mechanism for each j ∈ [h].
Mechanism 1 buys in expectation wj data from players with Di = j for j ∈ [h]. We

compare the expected payment of Mechanism 1 for buying in expectation wj data from
players with Di = j with the expected payment of M∗ for buying wj data from players
with Di = j for each j. If the expected payment of Mechanism 1 is at most r times the
expected payment ofM∗ for each j, then the total expected payment of Mechanism 1 is
at most r times the total expected payment of M∗. Thus, we focus on a single auction
that all players have the same Di and both Mechanism 1 and the M∗ want to buy w
data from n players.
For multi-unit procurement mechanisms, let xi be the indicator random variable

denoting whether the mechanism buys from player i. Let vi be the cost to the player i,
if xi = 1. Let pi be the payment of player i. The utility for player i is pi−xivi. Note that
when we consider privacy preserving mechanisms, the utility of player i is pi − ǫxivi.
However, since ǫ is the same for all players, we can ignore ǫ without loss of generality,
that is, scaling every player’s cost by ǫ. Without loss of generality, we suppose that
players report costs v1 ≤ v2 · · · ≤ vn.

4.1. Envy-free Benchmark

A mechanism is envy-free if for all v and for all i, j, pi − vixi ≥ pj − vixj . We show
that for any envy-free, multi-unit procurement mechanism, every data that is bought
by the mechanism is purchased at the same price. Suppose that a multi-unit procure-
ment mechanism buys data from two players at two different prices. Since the player
with the lower price wants to have the higher price, the mechanism is not envy-free.
We compare the expected payment of Mechanism 1 with the expected payment of the
optimal, envy-free, dominant strategy truthful, multi-unit procurement mechanism.
We use envy-free mechanisms as a benchmark, because for procurement mechanisms
in a Bayesian setting, the optimal mechanisms are known to charge a fixed price.3

We introduce another commonly used solution concept as follows. A profile of strate-
gies q1, . . . , qn is a dominant strategy equilibrium if for all i, vi,v−i, and y′i ∈ Y ,
E[ui(q(vi, v−i, D), vi)] ≥ E[ui((y

′
i, q−i(v−i, D−i)), vi)], where the randomness is from the

mechanism. A direct mechanism is dominant strategy truthful if qi(vi, Di) = vi is a
dominant strategy equilibrium for every player i. The following lemma characterizes
the total payment for any dominant strategy truthful, EPIR, and envy-free mecha-
nisms.

LEMMA 4.1 (THEOREM 4.6 IN [GHOSH AND ROTH 2011]). No dominant strategy
truthful, EPIR, and envy-free w-unit procurement mechanism can have total payment
less than wvw+1.

3Envy-free benchmarks are also common in prior-free mechanism design [Hartline and Roughgarden 2008].
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Let F be the cumulative distribution function of players’ costs, that is, F (a) = Pr[v ≤
a]. By Lemma 4.1, the total expected payment of any dominant strategy truthful,
EPIR, and envy-free w-unit procurement mechanism is at least wEv∼F [vw+1]. Thus,
our benchmark is wEv∼F [vw+1].
Now, we compare the benchmark with the expected payment of Mechanism 1. There

are two cases. First, when there exists α such that F (α) = w
n , Mechanism 1 offers a

posted price α for each player in order to buy w players’ data in expectation. If player
i accepts the price, the mechanism buys from player i with expected payment α. Since
each player has probability w

n to accept the contract, the total expected payment of
Mechanism 1 is wα.
Second, when there is no α such that F (α) = w

n , we give an extension to Mechanism
1 in Section 3.1. The extension finds the largest α− and the smallest α+, such that

F (α−) < w
n and F (α+) > w

n . Let c
− := F (α−), c+ := F (α+), and β :=

w
n
−c−

c+−c− . Then, the

mechanism offers a price α+ with probability β and price α− with probability 1−β. For
a player with cost at most α−, since the player always accepts the offer, the expected
payment is (α−(1 − β) + α+β). For a player with cost equal to α+, since the player
accepts the offer only when the offered price is α+, the expected payment is α+β. For a
player with cost larger than α+, since the player always rejects the offer, the expected
payment is 0. Since each player has a cost at most α− with probability c− and has a
cost equal to α+ with probability c+ − c−, each player’s expected payment is c−(α−(1−
β)+α+β)+ (c+− c−)α+β. Thus, the total expected payment is n(c−(α−(1−β)+α+β)+
(c+ − c−)α+β) by the linearity of expectation. Moreover,

n(c−(α−(1 − β) + α+β) + (c+ − c−)α+β) = n(c−(α−(1 − β) + α+β) + (
w

n
− c−)α+)

= n(
w

n
α+ + c−(α−(1− β) + α+β − α+))

= n(
w

n
α+ + c−((1 − β)(α− − α+))

= n(
w

n
α+ − c−((1 − β)(α+ − α−)))

= w(α+ − nc−

w
(1− β)(α+ − α−)).

When there exists α, such that F (α) = w
n , the expected payment of Mechanism 1

is wα. When α does not exist, the expected payment is w(α+ − nc−

w (1 − β)(α+ − α−)).

Thus, we should compare both wα and w(α+− nc−

w (1−β)(α+−α−)) with wEv∼F [vw+1].

It suffices to compare α and α+ − nc−

w (1− β)(α+ − α−) with Ev∼F [vw+1].

LEMMA 4.2. 1. If there exists α such that F (α) = w
n , then Ev∼F [vw+1] ≥ 1

2α.

2. If there is no α such that F (α) = w
n , then Ev∼F [vw+1] ≥ 1

2 (α
+ − n

w c−(1−β)(α+−α−)).

PROOF. We show the second statement. The first statement follows by setting α− =
α+ = α.
Let η = α+ − nc−

w (1− β)(α+ − α−). By conditional probability,

E[vw+1] = Pr[vw+1 ≤ η]× E[vw+1 | vw+1 ≤ η] + Pr[vw+1 > η]× E[vw+1 | vw+1 > η]

≥ Pr[vw+1 > η]× η (costs are non-negative).

It suffices to show that Pr[vw+1 > η] ≥ 1
2 . Since c− < w

n ,
nc−

w < 1. Since β < 1 and
nc−

w < 1, α− < η < α+. If vw+1 > η, then vw+1 ≥ α+, since α+ is the smallest num-
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ber larger than α− with non-zero probability. Let v(i) denote the cost of player i. If
vw+1 ≥ α+, then at most w players’ v(i) are no larger than α−. Since each v(i) is inde-
pendently drawn from F , Pr[v(i) ≤ α−] = c−. Let Xi be the indicator random variable

such that Xi = 1 if v(i) ≤ α−, otherwise Xi = 0. Let X =
∑n

i=1 Xi. The probability that
at most w players have v(i) no larger than α− is Pr[X ≤ w]. Since the Xi’s are indepen-
dent, identical, indicator random variables, X is a random variable from a binomial
distribution Bin(n, c−). Thus, Pr[vw+1 ≥ α+] = Pr[bin(n, c−) ≤ w].
Now, we show that Pr[bin(n, c−) ≤ w] ≥ 1

2 . We say m is the median of a distribution

D over real numbers if, Pr[Z ≤ m] ≥ 1
2 and Pr[Z ≥ m] ≥ 1

2 , where Z is a random
variable drawn from D. For a binomial distribution Bin(n, p), the expected value np
and the median m satisfy ⌊np⌋ ≤ m ≤ ⌈np⌉ [Kaas and Buhrman 1980]. Since c− < w

n ,
the expected value of bin(n, c−) is smaller than w. Since ⌈nc−⌉ ≤ w, the median m of
Bin(n, c−) is at most w. Thus, Pr[bin(n, c−) ≤ w] ≥ 1

2 .

Lemmas 4.1 and 4.2 imply the following theorem.

THEOREM 4.3. Mechanism 1’s expected payment is 2-approximate to the bench-
mark.

4.2. Anti-regular Distributions

In this section, we compare the expected payment of Mechanism 1 with the expected
payment of the optimal BIC, multi-unit procurement mechanism. We first character-
ize randomized BIC procurement mechanisms. For a randomized mechanism and a
given bid vi, let x̄i(vi) be the probability that the mechanism buys from player i and
let pi(vi) be the random variable denoting the payment for player i, where both x̄i and
pi’s randomness come from the mechanism and v−i. Suppose that when vi = ∞, the
mechanism will not buy from player i. That is, x̄i(∞) = 0 and E[pi(∞)] = 0. The charac-
terization for the BIC, procurement mechanisms is analogous to the characterization
of BIC selling mechanisms, which is a well-known result in auction theory.

LEMMA 4.4. A randomized procurement mechanism is BIC if and only if for every
i the procurement probability x̄ and payment p satisfies
(i) x̄i(vi) is decreasing in vi;
(ii) E[pi(vi)] = vix̄i(vi) +

∫∞
vi

x̄i(t)dt.

To prove the optimality of selling mechanisms, Myerson [Myerson 1981] introduces
a virtual value function. The analogous function for procurement mechanisms is a

virtual cost function, which is φ(z) := z+ F (z)
f(z) . Thus, to ensure that φ(z) is well-defined

and the integral of f is well-defined (used in the proof of Lemma 4.5 and Lemma 4.7),
we assume

ASSUMPTION 1. Let f be the density probability function of distribution F with
range [a, b] ⊆ [0,∞). f is piecewise continuous and f(z) is positive for all z ∈ [a, b].

A distribution F is anti-regular if F satisfies Assumption 1 and φ(z) is increasing in
z.4

When the distribution F is anti-regular, [Elkind et al. 2004] characterize the op-
timal dominant strategy truthful mechanism to minimize the expected payment for
path auctions. Although their problem is not exactly the same as w-unit procurement
mechanisms, their result can be extended to procurement mechanisms easily.

4For selling mechanisms, a distribution is regular if the virtual value φ′(z) = z − 1−F (z)
f(z)

is increasing in z.
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LEMMA 4.5. When the distribution F is anti-regular, the optimal BIC w-unit pro-
curement buys from the w players with the smallest virtual cost.

Since φ(z) is increasing in z, the optimal mechanism buys from the first w players.
By Lemma 4.4, the expected payment for player i ≤ w is vw+1. Thus, the total ex-
pected payment of the optimal BIC mechanism is wEv∼F [vw+1]. Thus, our benchmark
is wEv∼F [vw+1]. We compare the expected payment of Mechanism 1 with wEv∼F [vw+1],
when F is anti-regular.

THEOREM 4.6. When F is anti-regular, Mechanism 1’s expected payment is 2-
approximate to the benchmark.

PROOF. Since F satisfies Assumption 1 by definition of anti-regular, F−1 is well-
defined. The total expected payment of Mechanism 1 is wF−1(wn ). When F is
anti-regular, the benchmark is wEv∼F [vw+1]. By Lemma 4.2, Mechanism 1 is 2-
approximate.

4.3. General Distributions

When the distribution satisfies Assumption 1 but φ(z) is not increasing in z, buying
from the w players with smallest virtual cost may result in a non-truthful mechanism.
We can use the ironing procedure, which is designed by Myerson [Myerson 1981], to
resolve this issue. For a fixed cost vector v, ironing procedure irons on interval [a, b),
if vi ∈ [a, b), then vi is replaced by a random number v′i, which is drawn from the
distribution F on [a, b). By a way similar to Myerson’s method, we can identify a set S
of intervals, such that the ironed virtual cost function φ̄(z) = E[φ(z)] is increasing in z.
Moreover, for an ironed interval [a, b), φ̄(z) is the same for all z ∈ [a, b).

LEMMA 4.7. The w-unit procurement mechanism that buys from the w players with
smallest ironed virtual cost and breaks ties uniformly at random is the optimal BIC
mechanism when the distribution satisfies Assumption 1.

Thus, our benchmark is the expected payment of the optimal BIC mechanism, M ,
when the distribution satisfies Assumption 1. In order to calculate the expected pay-
ment of M , we specify the payment rule as follows. Let x̄i(vi, v−i) be the probability
that M buys from player i, where the randomness comes from the mechanism. Since
M buys from the w players with smallest ironed virtual cost, x̄i(vi, v−i) is decreasing
in vi for any fixed v−i. Let pi(vi, v−i) be the random variable denoting the payment for
player i, where E[pi(vi, v−i)] = vix̄i(vi, v−i)+

∫∞
vi

x̄i(t, v−i)dt and the randomness comes

from the mechanism. It is easy to see that this payment rule satisfies Lemma 4.4.
We compare the expected payment of Mechanism 1 with the benchmark.

THEOREM 4.8. Let F satisfy Assumption 1. Let S be the set of ironed intervals for
F . If every interval [a, b) ∈ S satisfies a ≥ b/r for some r > 1, then the expected payment
of Mechanism 1 is 2r-approximate to the benchmark.

PROOF. Since F satisfies Assumption 1, F−1 is well-defined. The expected pay-
ment of Mechanism 1 is wF−1(wn ). We compare the expected payment of the op-

timal BIC mechanism, M , with wF−1(wn ). Let pi(v) be the random variable repre-
senting the payment for player i in M when the cost vector is v. We show that
Ev∼F,M [

∑

i∈[n] pi(v)] ≥ Ev∼F [vw+1]/r, which implies Ev∼F,M [
∑

i∈[n] pi(v)] ≥ F−1(wn )/2r

by Lemma 4.2 and hence Mechanism 1 is 2r-approximate.
There are two sources of randomness in mechanism M . One is from the cost vector v

since v is drawn from a distribution F . Another one isM itself sinceM is a randomized
mechanism. For a fixed cost vector v, let pvi be the random variable representing the
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payment for player i, where the randomness only comes fromM . We show that for any
fixed v, EM [

∑

i∈[n] p
v
i ] ≥ wvw+1/r. This implies Ev∼F,M [

∑

i∈[n] pi(v)] ≥ Ev∼F [vw+1]/r.

There are three cases.
Case 1: vw+1 is not in any ironed interval. SinceM chooses the w players with smallest
ironed virtual costs and the ironed virtual cost is increasing, M buys from the first
w players. For player i ≤ w, if vi increases to t < vw+1, by the monotonicity of φ̄,
the mechanism still buys from player i. That is x̄i(t, v−i) = 1 for all t < vw+1. When
t > vw+1, the mechanism will not buy from player i. Thus, by definition of the expected
payment, the expected payment for each player i ≤ w is vi +

∫∞
vi

x̄i(t, v−i)dt = vi +
∫ vw+1

vi
x̄i(t, v−i)dt = vw+1. Since expected payment for player i > w is 0, EM [

∑

i∈[n] p
v
i ] =

wvw+1.
Case 2: vw+1 is in an ironed interval [a, b) but vw /∈ [a, b). Since for all player i ≤ w,
vi /∈ [a, b), M buys from the first w players. For player i ≤ w, x̄i(t, v−i) = 1 for all
t < a. By definition of the expected payment, the expected payment for player i ≤ w
is vi +

∫∞
vi

x̄i(t, v−i)dt ≥ vi +
∫ a

vi
x̄i(t, v−i)dt = a. Thus, EM [

∑

i∈[n] p
v
i ] ≥ wa ≥ wb/r ≥

wvw+1/r.
Case 3: vw+1 and vw are in the same ironed interval [a, b). Let l1 = |{i : vi < a}| and
l2 = |{i : vi ∈ [a, b)}|. Thus, l1 < w and l1 + l2 > w. The mechanism always buys from
the first l1 players. Since φ̄(t) is the same for all t ∈ [a, b) and the mechanism breaks
ties uniformly at random, the mechanism buys from player i, l1 + 1 ≤ i ≤ l1 + l2,
with probability w−l1

l2
. For player i ≤ l1, x̄i(t, v−i) = 1 if t < a. By definition of the

expected payment, the expected payment for player i ≤ l1 is vi +
∫∞
vi

x̄i(t, v−i)dt ≥
vi+

∫ a

vi
x̄i(t, v−i)dt = a. For player i, l1 < i ≤ l1+ l2, when vi increases to t < b, since φ̄(t)

is the same for all t ∈ [a, b), the probability that the mechanism buys from player i does
not change. That is, x̄i(t, v−i) =

w−l1
l2

if t ∈ [a, b). By definition of the expected payment,

the expected payment for player i, l1 < i ≤ l1 + l2, is vix̄i(vi, v−i) +
∫∞
vi

x̄i(t, v−i)dt =
b(w−l1)

l2
. Therefore, EM [

∑

i∈[n] p
v
i ] ≥ al1 + l2

b(w−l1)
l2

≥ wa ≥ wb/r ≥ wvw+1/r.
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