An Integrated Framework for Exact and Efficient Collision Detection of Convex Polyhedra

Research Proposal

Efi Fogel

efif@post.tau.ac.il

School of Computer Science, Tel Aviv University
Outline

- Introduction
- Warm up — 2D Collision Detection
- Infrastructure
- The Cubical Gaussian Map
- 3D Minkowski Sums
- 3D Collision Detection
- Summary
- The CGM Data-Structure
Assembly Process — the execution of an assembly algorithm that specifies assembly and/or disassembly operations on the sub components of a product and the ordering of these operations

- It is possible for two or more components to arrive at a state, where they are in contact with each other during the process

- An algorithm that operates in an inexact manner may occasionally result in the wrong decision, and damage the assembly process
Collision Detection and Proximity Queries
- Dobkin & Kirkpatrick hierarchy, Dobkin & Kirkpatrick
 \(O(n + m)\) preprocessing time + \(O(\log n \log m)\) query time
- GJK algorithm — implicit Minkowski sum computation,
 Gilbert & Johnson & Keerthi, Cameron
- LC algorithm — examines polytopes features, Lin & Canny

Penetration Depth
- Randomized approach, Agarwal et al.

Minkowski Sums
- Approximations, e.g., Varadhan & Manocha
- Kinetic framework & Convolution, Guibas at al., Basch et al.
- Slope diagrams, Ghosh, Bekker & Roerdink

Libraries
- SOLID — based on an improved GJK alg., Bergen
- SWIFT — based on an advanced LC alg., Ehmann & Lin
- QuickCD — uses bounding-polytopes hierarchy, Mitchell
Introduction: Collision Detection and Proximity Queries of Convex Polyhedra

- Efficient algorithms
- Complete implementation
 - Exact results are guaranteed
 - All degenerate cases are handled
 - Competitive performance
- Implemented on top of CGAL
 - Arrangement and Polyhedral Surface packages
- Uses a dual representation — Cubical Gaussian Map
- An integrated framework, which consists of 3 layers:

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>2D Arrangement data-structure & operations (overlay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Cubical Gaussian Map data-structure & operations</td>
</tr>
<tr>
<td>Application</td>
<td>Simulations, Demonstrations, Tests, & Benchmarks</td>
</tr>
</tbody>
</table>
Introduction
Proximity Queries

P and Q are two closed convex polyhedra in \mathbb{R}^d

P translated by a vector t is denoted by P^t

\[
\delta(P, Q) = \min \{ ||t|| \mid P^t \cap Q \neq \emptyset, t \in \mathbb{R}^d \} \quad \text{separation distance}
\]
\[
\pi(P, Q) = \inf \{ ||t|| \mid P^t \cap Q = \emptyset, t \in \mathbb{R}^d \} \quad \text{penetration depth}
\]
\[
\pi_d(P, Q) = \inf \{ a \mid P^{\vec{a}} \cap Q = \emptyset \} \quad \text{directional penetration depth}
\]
P and Q are two closed convex polyhedra in \mathbb{R}^d

$$M = P \oplus Q = \{p + q \mid p \in P, q \in Q\}$$ Minkowski sum

The minimum separation distance between P and Q is the same as the minimum distance between the origin and the boundary of the Minkowski sum of P and $-Q$
Warm-up — 2D Collision Detection

mink2d

An interactive program that simulates and demonstrates 2D collision detection
<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>2D Arrangement data-structure & operations (e.g., overlay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Cubical Gaussian Map data-structure & operations</td>
</tr>
<tr>
<td>Application</td>
<td>Simulations, Demonstrations, Tests, & Benchmarks</td>
</tr>
</tbody>
</table>
Infrastructure

Arrangement of CGAL

Given a collection Γ of planar curves, the arrangement $A(\Gamma)$ is the partition of the plane into vertices, edges and faces induced by the curves of Γ.

- **CGAL** — Computational Geometry Algorithms Library
- **kernel** — a model of the geometric kernel concept
 - Constant-size geometric primitives (points, segments)
 - Predicates and constructors (orientation(p,q,r))
- **modules** — geometric data-structures
 - (Polyhedron_3, Triangulation_2, Arrangement_2)
- **miscellaneous** — windowing, I/O, circulators, etc.
Planar_map_2<Traits,Dcel> — maintains planar maps constructed from interior disjoint x-monotone curves. Topology and geometry are separated:

- **Dcel** — maintains the incidence relation on the vertices, edges, and faces
- **Traits** — defines the abstract interface between planar maps and the geometric primitives they use

Planar_map_with_intersections_2 — maintains planar maps constructed from general curves (may intersect or be non-x-monotone)

Arrangement_2 — maintains planar maps of intersecting curves along with curve history
Infrastructure

Planar Map Traits

- Parameter of package
 - Defines the family of curves in interest
 - Package can be used with any family of curves for which a traits class is supplied

- Aggregate
 - Geometric types (point, curve)
 - Operations over types (accessors, predicates, constructors)

- Encapsulates implementation details
 - The number type used
 - The coordinate representation (Cartesian, homogeneous)
 - Extraneous data stored with the geometric objects
Infrastructure
Segment Traits

- Parameterized with a geometric kernel
- Segments represented only by their end points leads to cascaded representation of intersection points
- The *caching* traits avoids the problem
 - Caches information, e.g., the underlying line
 - Faster when constructing a dense arrangements
- Indiscriminate normalization can be harmful
Using kernel traits

Inserting 1000 random curves with \texttt{Quotient<\texttt{Gmpz}>} is \(\sim 50\%\) faster with the cached traits vs. the kernel traits.

The \texttt{LEDA} rational kernel uses heuristics to normalize the numbers. Therefore, the speedup is minor.

The \texttt{Quotient<\texttt{MP_Float}>} number type cannot be used at all with the kernel traits, as its precision is limited.

Using caching traits

By caching segment traits, the construction time is significantly reduced.

The LEDA rational kernel uses heuristics to normalize the numbers. Therefore, the speedup is minor.

The \texttt{Quotient<\texttt{MP_Float}>} number type cannot be used at all with the kernel traits, as its precision is limited.
Red-Blue intersection — the intersection between segments of 2 sets, each consisting of segments that are pairwise disjoint in their interiors

Map Overlay — the planar subdivision S that is the overlay of 2 planar subdivisions S_1 and S_2. There is a face f in S, if and only if there are faces f_1 and f_2 in S_1 and S_2 respectively such that f is a maximal connected subset of $f_1 \cap f_2$

- A superset of the red-blue intersection problem
- Requires only extra linear time
- Can be computed in $O(n \log n + k)$ optimal time
- Can be computed in $O(n + k)$, if each subdivision is simply connected

n — total number of segments, k — number of intersections
The Cubical Gaussian Map

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>2D Arrangement data-structure & operations (e.g., overlay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Cubical Gaussian Map data-structure & operations</td>
</tr>
<tr>
<td>Application</td>
<td>Simulations, Demonstrations, Tests, & Benchmarks</td>
</tr>
</tbody>
</table>
The Cubical Gaussian Map

Definitions

Unit Cube — the parallel-axis cube circumscribing the unit sphere (its edges are of length 2)

Cubical Gaussian Map — the set-valued function from a polytope P to the six faces of the unit cube

A Tetrahedron

The primal
The CGM
The CGM unfolded
The Cubical Gaussian Map

player

An interactive program that “plays” 3D models stored in an extended VRML format
The overlay of the Gaussian maps of two polytopes P and Q identifies all the pairs of features of P and Q respectively that have common supporting planes, as they occupy the same space on the unit sphere, thus, identifying all the pairwise features that contribute to the boundary of the Minkowski sum of P and Q.

- Each planar map in a CGM is a convex subdivision
- One algorithm that shows good results was implemented already
- It computes the Minkowski sum of a set of polytopes
- It runs it in $O(k \log(m + n))$ time

m, n, k — number of facets in $P, Q, P \oplus Q$
A Dioctagonal Pyramid and the Minkowski Sum of 2 Orthogonal Dioctagonal Pyramids

The primal

The CGM

The CGM unfolded
An Icosahedron and the Minkowski Sum of 2 Identical Icosahedrons

The primal

The CGM

The CGM unfolded
A Geodesic Sphere and the Minkowski Sum of 2 Slightly Rotated Geodesic Spheres

The primal The CGM The CGM unfolded

The primal The CGM The CGM unfolded
An interactive program that simulates and demonstrates 3D collision detection
Minkowski Sums of Convex Polyhedra

Open Problems

- Exact complexity of $P \oplus Q$ with n, m facets resp.
- What is the exact upper bound?

 Conjecture:

 $\frac{(m+1)(n+1)}{2}$ \hspace{1cm} mn is odd

 $\frac{(m+1)(n+1)+1}{2}$ \hspace{1cm} mn is even

- What is the exact lower bound when no degeneracies are present?

- Inverse problem given a convex polyhedron M

 Is M the valid non-degenerate Minkowski sum of a pair of convex polyhedra?

 Compute the set of polyhedra pairs, such that the Minkowski sum of each pair is M
The number of features of the six planar maps of the CGM of the squashed dioctagonal pyramid polytope

<table>
<thead>
<tr>
<th>Planar map</th>
<th>V</th>
<th>HE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, ((x = -1))</td>
<td>12</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>1, ((y = -1))</td>
<td>36</td>
<td>104</td>
<td>18</td>
</tr>
<tr>
<td>2, ((z = -1))</td>
<td>12</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>3, ((x = 1))</td>
<td>12</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>4, ((y = 1))</td>
<td>21</td>
<td>72</td>
<td>17</td>
</tr>
<tr>
<td>5, ((z = 1))</td>
<td>12</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>304</td>
<td>59</td>
</tr>
</tbody>
</table>
Experimental Results

- A data base of several hundreds models of convex polyhedra was created
- Complexity of the primal and dual representations

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V E F</td>
<td>V HE F</td>
</tr>
<tr>
<td>Tetrahedron</td>
<td>4 6 4</td>
<td>38 94 21</td>
</tr>
<tr>
<td>Octahedron</td>
<td>6 12 6</td>
<td>24 48 12</td>
</tr>
<tr>
<td>Icosahedron</td>
<td>12 30 20</td>
<td>72 192 36</td>
</tr>
<tr>
<td>Dioctagonal Pyramid</td>
<td>17 32 17</td>
<td>105 304 59</td>
</tr>
<tr>
<td>Pentagonal Hexecontahedron</td>
<td>92 150 60</td>
<td>196 684 158</td>
</tr>
<tr>
<td>Truncated Icosidodecahedron</td>
<td>120 180 62</td>
<td>230 840 202</td>
</tr>
<tr>
<td>Geodesic Sphere level 4</td>
<td>252 750 500</td>
<td>708 2124 366</td>
</tr>
</tbody>
</table>
Experimental Results

Time consumption of Minkowski-sum computation

<table>
<thead>
<tr>
<th>Object 1</th>
<th>Object 2</th>
<th>Minkowski Sum</th>
<th>CH</th>
<th>CGMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icosahedron</td>
<td>Icosahedron</td>
<td>12 30 20</td>
<td>72</td>
<td>192</td>
</tr>
<tr>
<td>Dioctagonal Pyramid</td>
<td>Orthogonal Dioctagonal Pyramid</td>
<td>162 352 192</td>
<td>344</td>
<td>1136</td>
</tr>
<tr>
<td>Pentagonal Hexecontahedron</td>
<td>Truncated Icosidodecahedron</td>
<td>527 964 439</td>
<td>719</td>
<td>2744</td>
</tr>
<tr>
<td>Geodesic Sphere level 4</td>
<td>Rotated Geodesic Sphere level 4</td>
<td>814 1952 1146</td>
<td>1530</td>
<td>5060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V HE F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>72 192 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>344 1136 236</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>719 2744 665</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1530 5060 1012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>134.35 2.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D Collision Detection
under Translation

\[P^u \cap Q^w \neq \emptyset \iff v - u \in M = P \oplus (-Q), \]
\[\delta(P^u, Q^w) = \min\{ \|t\| \mid (v - u + t) \in M, t \in \mathbb{R}^3 \}, \]
\[\pi_d(P^u, Q^w) = \inf \{ \alpha \mid (v - u + \hat{d}\alpha) \notin M \}. \]

- Explicit computation of \(M \) in a preprocessing phase
- The combinatorial structure of \(M \) is invariant to translations of \(P \) and \(Q \)
- Implicit computation of \(M \)
- Only portions of the boundary of \(M \) necessary to answer the query are constructed
3D Collision Detection under Translation and Rotation

- Handle polytopes that undergo rigid motions
- Exploit spatial and temporal coherence between successive queries
 - Spatial - only the local neighborhood is considered to determine witnesses
 - Temporal - last answer is used as a hint in the next invocation
- Handle exact rotations in 3D
- Avoid Reconstruction of the CGM when the polytope is rotated
- Avoid construction of the entire Minkowski sum
Main Research-Contributions

- Improved operations on planar arrangements
 - Map overlay in particular
- The CGM data structure & operations on it
- Minkowski sums in 3D
 - Exact & efficient computation
 - Understanding of certain theoretical issues
- Exact, efficient, & competitive collision detection and proximity queries of convex polyhedra that undergo rigid motions in 3D
- Efficient rational rotations in 3D