
Assignment 2 - Software I, Summer 2003 (0368-2157-20)

http://www.cs.tau.ac.il/~efif/courses/software1

Due: Aug. 13, 2003

Before starting to answer the questions, please read very carefully the “Submission Guidelines”1. Make
sure your programs detect invalid input data, and print out appropriate error messages. Do not add
“friendly” messages to your programs, as they are tested automatically by other programs.

Ex 2.1 reverse1

Write a program that reads input lines and prints each line backwards immediately when the ’\n’

character is reached. A line terminates with the ’\n’ character. The entire input terminates with the
EOF. Implement a function with the prototype below that reverses a given input string in place.

void reverse(char line[], int len)

The program should process only the first 80 characters of each input line.
For example, input:

abcd

output:

dcba

Ex 2.2 reverse2

Write a program that reads input lines and prints each line backwards as in the previous exercise.
This time the program should be able to process infinitely long lines using recursion without allocating
memory explicitly.

Ex 2.3 point

Write a program that computes a final intersection point as follows. The program reads a sequence of
1 + 3k points for some integer k. Each point is given by a pair of x and y floating point coordinates.
The program reduces 4 points to a single point repeatedly as described below until all input points are
consumed. Each pair of points define a line. The program reduces a set of 4 points to the intersection
point of the 2 lines defined by the 4 points respectively.

1http://www.cs.tau.ac.il/~efif/courses/software1

1



Verify that the number of points in the input is indeed 1 + 3k for some integer k.
Use the following type to hold the x and y point coordinates:

typedef double Point[2];

Print out the result with 6 digits of precision for the fraction part. Print negative zero (-0.000000) as
zero (0.000000).
For example, input:

0.0 1.0

2.0 1.0

1.0 0.0

1.0 2.0

-1.0 -1.0

-1.0 1.0

1.0 -1.0

output:

0.000000 0.000000

Ex 2.4 apd

Write a program that computes all pair distances between nodes in an unweighted undirected graph
using the version of Seidel’s algorithm described below. Let G be an undirected, unweighted, connected
graph with vertex set {1, 2, . . . , n} and adjacency matrix A = (aij), where aij is 1, if nodes i and j are
connected with an edge, and 0 otherwise. The program reads an integer n followed by the n2 boolean
numbers of an adjacency matrix A. It prints a matrix D = (dij), where dij is the length of the shortest
path between nodes i and j.

Algorithm 1 APD - All Pairs Distances

Require: A : n× n boolean matrix
Ensure: D : n× n distance integer-matrix
1: B ← (A2 ∪A) ∩ ¬I {Boolean Product}
2: if B ∪ I = J then

3: return D ← 2B −A

4: end if

5: C ← APD(B)
6: for r ← 0, 1, 2 do

7: Cr ← (cr
ij), where cr

ij =

{

1 cij + 1 (mod 3) = r

0 cij + 1 (mod 3) 6= r

8: Xr ← Cr ·A {Boolean Product}
9: end for

10: return D ← (dij), where dij =

{

2cij x
cij (mod 3)
ij = 0

2cij − 1 x
cij (mod 3)
ij = 1

2



I is the identity matrix, and J is a matrix of all 1’s. You really don’t need to understand the algorithm,
but if you do want to, keep reading.

The boolean matrix B computed in (1:) is the adjacency matrix of the graph G′, obtained by connecting
every two vertices i and j by an edge iff there is a path of length 1 or 2 between i and j in G. G ′ is
a complete graph iff G has diameter at most 2. In this case dij = 2 if aij = 0 and dij = 1 if aij = 1.
Thus, the algorithm returns the correct values in (3:) for graphs of diameter at most 2.

cij computed in (5:) is the shortest path between i and j in G′. If i = i0, i1, . . . , i2s−1, i2s = j is a
shortest path in G between i and j for some s, then i = i0, i2, . . . , i2s−2, i2s = j is a shortest path
between i and j in G′. On the other hand, if i = i0, i1, . . . , i2s−1 = j is a shortest path in G between i

and j for some s, then i = i0, i2, . . . , i2s−2, i2s−1 = j is a shortest path between i and j in G′. Therefore,
dij even implies dij = 2cij , and dij odd implies dij = 2cij − 1.

After cij ’s are computed recursively in (5:), we determine the parities of the dij ’s in statements (5:)
through (10:), in order to deduce their values from the respective cij ’s.

Let k be adjacent to j in G. If k is on the shortest path between i and j, then dij = dik +1. Otherwise,
dij ∈ {dik, dik−1}. Therefore, once dik is established, dij must be in {dik−1, dik , dik +1}. Therefore, we
can compute Cr in (7:) for 3 values only, and still have the following property for the Boolean product
computed in (8:):

x
cij (mod 3)
ij =

{

1 ∃k, cik = cij − 1 and akj = 1

0 no such k exists

Moreover, if dij = 2cij − 1 is odd, then there is least one k, (the one on the shortest path), such that
dik = 2cij − 2 = 2cik. In other words, cik + 1 = cij . Similarly, if dij = 2cij is even, there is no such a k.

In other words, cik must be in {cij , cij + 1}. Therefore, x
cij (mod 3)
ij = 0 if and only if dij is even.

Good Luck!

More Information on the Submission

Files Name

The files for the exercises should be located under ~/software1/assign2, and their names should match
the name of the exercise. For example, the C source file and corresponding executable for exercise 2.1,
namely reverse1, should be ~/software1/assign2/reverse1.c and ~/software1/assign2/reverse1

respectively. Note that names are case sensitive (i.e. reverse1.C is different than reverse1.c).

Giving Permission to the Files

Before submitting the solution set, please give permission to the files by executing the following com-
mand:
chmod 705 ~ ~/software1 ~/software1/assign2 ~/software1/assign2/*

3


