Assignment 5 - Software I, Spring 2004 (0368-2157-09/10/11/12)

http://www.cs.tau.ac.il/~efif/courses/softwarel

Due: Jun. 20, 2004

This last assignment is optional. If you do not submit it on time, then your assignment
grade will be determined by the first four assignments. If you submit it, it will be taken into
account only if it increases your final assignment grade.

Ex 5 dev

In this assignment you are asked to create a simple development environment for a degenerate CPU.
The development environment consists of 1 perl script, namely gen, 2 programs, namely asm, and sim,
and a single makefile for all. The gen script generates C source-files that specify the instruction set of
the CPU based on an input text file. The asm program uses the code generated by the gen program
to read a text file that contains a program written in symbolic assembly, and converts it to a sequence
of binary instructions. It writes the instruction sequence into a binary file. Finally, the sim program
reads the program file produced by the asm, and executes the instructions it contains sequentially. It
also uses the code generated by the gen program.

The CPU consists of at most 256 registers. Each register can accommodate an int. The instruction
word consists of 32 bits divided into 4 fields as follows:

opcode - the operation code

operandg - the index of the register to hold the first operand if applicable
operand; - the index of the register to hold the second operand if applicable
result - the index of the register to hold the result if applicable

The set of potential operations the CPU can perform is known in advanced, and listed below. Let
R[0] ... R[255] denote the CPU register file of 256 registers. Let oy and o1 denote the 2 operand fields,
and let r denote the result field.

add - R[r] < RJoo] + R|o1]

sub - R[r] < Rog] — R[o1]

mul - R[r] < R[og] * R[o1]

div - R[r] < Roo]/R[o1]

in - read an int from the standard input into R[r]

out - write the int in R[og] to the standard output

gen

This script generates two C source-files, namely inst.h and inst.c as follows.

The position of the fields within the instruction word, the length of each field in bits, and the possible
values the opcode field may contain are all specified in a text file, possibly edited by a non-programmer
in a fixed format, provided as input to the gen script. There are 2 types of statements in a legal input
file. A field statement specifies a field in the instruction word, and a value statement specifies all legal
values the last specified field may contain.

A field statement starts with the field keyword, followed by one the 4 field names, namely opcode,
operand0, operandl, and result, followed by the field starting position in the instruction word in
bits, followed by the field length in bits. A wvalue statement starts with the value keyword, followed by
a mnemonic name, followed by the corresponding value itself in hexadecimal format.

For each field statement in the input file the gen program must generate 3 directive statements that
specify the starting position of the field in bits, the length of the field in bits, and the field mask. The
3 directives are written into inst.h. For example, some input field statements follow:

field opcode O 8
field operand0 8 8
field operandl 16 8
field result 24 8

The output generated directives to be stored in inst.h follow:

#define OPCODE_POS 0
#define OPCODE_LEN 8
#define OPCODE_MASK 0x000000£f £

#define OPERANDO_POS 8
#define OPERANDO_LEN 8
#define OPERANDO_MASK 0x0000f£f00

#define OPERAND1_POS 16
#define OPERAND1_LEN 8
#define OPERAND1_MASK 0x00££0000

#define RESULT_POS 24
#define RESULT_LEN 8
#define RESULT_MASK 0x££000000

For each walue statement in the input file the gen program must generate 1 directive statement that
specifies the value of the option. For a set of legal field values, a directive that specifies the number of
values in the set is generated as well. For example, some input value statements follow:

value add Ox1
value in 0x3
value out 0x4

Assuming that the last field specified was opcode, the generated output directives to be stored in inst.h
follow:

#define OPCODE_ADD 0x1
#define OPCODE_IN 0x3
#define OPCODE_OUT 0x4
#define NUM_OPCODES 3

In addition, the gen script must generate an array of opcodes initialized with all possible opcodes and
write it into the inst.c file. An element in the array is a structure that consists of the opcode mnemonic
name and the corresponding value. For example:

Opcode Opcodes[] = {

{ , OPCODE_ADD},
{"in", OPCODE_IN},
{ , OPCODE_OUT}

}s

The gen script must insert the statement that includes inst.h at the beginning of the inst.c file. It
also inserts the definition of the Opcode struct, and the declaration of the Opcodes array as extern into
the inst.h file.

Finally, the code in the inst.h file must be embedded within ifndef, define, endif pragmas as
listed below, to protect it from being compiled more than once.

#define INST_H
code

The spec. file must specify all 4 fields (opcode, operand0, operandl, and result. Otherwise, you
will get compilation errors when compiling asm or sim specified below. This is acceptable. Naturally,
you may verify that they are specified already in gen, and exit with an error code, in case one or more
is missing. Not all 6 opcodes must be specified, but this deficiency has no direct effect on gen.

As a convention the name of any specification input file ends with the “.t” suffix (for text). Suppose
that spec.t contains the examples above. Typing the command below will produce inst.h and inst.c
as specified.

gen spec.t

asm

The asm program reads a text file that contains source code in symbolic assembly, and converts it to
a sequence of instruction words. It writes the instruction words into a binary file at the same order
they appear in the input file. As a convention the name of any input file ends with the “.s” suffix (for
symbolic assembly). By default the output file name has the same base name as the input file name,
and ends with the “.e” suffix (for executable).

In symbolic assembly a comment starts with the ‘#’ symbol and ends at the end of the line. Each
statement represents a single instruction, starts with the mnemonic name of the operation, and ends at
the end of the line, or at the ‘4’ symbol. Each one of the 4 binary operations are followed by oy, o1,
and r in this order. The in operation is followed by r, and the out operation is followed by og.

For example, suppose that an input file prog.s contains:

A simple example

in 2

in 3

add 2 3 4

out 4

Given that the opcodes of in, add, and out are 0x3, 0x1, 0x4 respectively, typing the command:

asm prog.s

results with a binary file prog.e containing:
0x02000003 0x03000003 0x04030201 0x00000404

The asm. c source-code file includes inst.h and uses the directives in it, as well as the opcodes defined
in the global array in inst.h. Link asm.o with inst.o to generate asm.

Not all 6 opcodes must be specified in the input spec file. asm and sim, must be prepared to handle all
6 operations (asm must distinguish between in, out, and all the rest, as they have different arguments).
A good solution is to embed the code that processes a given operation within #ifdef,#endif pair as
follows:

#ifdef OPCODE_ADD

(process OPCODE_ADD)

#endif

sim

The sim program reads the executable produced by the asm program and simulates its execution.
For example, executing the program above:

sim prog.e
10
20

results with:
30

The sim program also uses inst.h generated by gen, but it doesn’t have to be linked with inst.o.

makefile

Provide a makefile that supports the following commands:
make asm - generates asm

make sim - generates sim

make prog.e - applies asm on the source file prog.s to generate the executable prog.e, where prog
stands for the base name of an input file.

make clean - removes all the object and executable files, and inst.h and inst.c

Assume that the makefile variable $SPECFILE contains the name of the input file to gen. Place the
statement below at the top of the makefile to set it to spec.t by default.

SPECFILE 7=spec.t

Make sure that all dependencies are accounted for in the makefile, so that when a certain file is touched,
all files that depend on it, but no other files, are rebuilt. For example, making prog.e in a clean state,
starts a chain reaction where gen is executed to generate inst.h and inst.c, then asm is compiled,
linked, and executed to generate prog.e.

