
Assignment 3 - Software I, Spring 2004 (0368-2157-09/10/11/12)

http://www.cs.tau.ac.il/~efif/courses/Software1 Spring 04

Due: May 11, 2003

Required Knowledge arrays, malloc, free, getopt, glut, ppm
Before starting to answer the questions, please read very carefully the “Submission Guidelines”1.

Ex 3 photo

In this assignment you are asked to implement a couple of operations on two-dimensional images, using
the photo program shown in class as your framework. The first operation is to reflect an input image
either horizontally or vertically, and the second operation is to scale down an input image using a spec-
ified method. You need to implement two methods as explained below. Before you continue, please
download the source file of the photo program from the web practice-page at
http://www.cs.tau.ac.il/~efif/courses/Software1 Spring 04/code/photo/photo.c, and famil-
iarize yourself with the code. Then, add the implementation of the command-line options below.

The photo program reads an image in binary Portable Pixmap File (PPM) format as input2. In
this format each pixel is a triplet of red, green, and blue samples one character each, in that order. The
program opens a window using the glut library, and displays the image on the window. You need to
enhance the program to perform the required operation non interactively based on various command
line options. For your convenience, you may enhance the program to perform the same operation
interactively, as a response to various user key-strokes. The syntax of the command line is:

photo [options] filename

The various options are listed below and the filename is the name of a PPM-image file.
The source file photo.c that you downloaded contains already a function that reflects an imgae hori-
zontally. You need to implement a function that reflects an image vertically and add the appropriate
code to tie each of these functions with the user selection.

Terms and Definitions (required for the scale operations)

Let ws and hs be the width and the height of the source image respectively, and wd and hd be the width
and the height of the destination image respectively. Let Cs[i, j] and Cd[i, j] denote the pixel colors of
the source image and destination image respectively at position [i, j]. The formulae below for Cd[i, j]
must be applied to each of the red, green, and blue components separately.
Let (x, y) be the non-integer position in the source image that corresponds to the position [i, j] in the
destination image, and let dx and dy be the fractional part of x and y.

x = i × ws/wd dx = x − bxc

y = j × hs/hd dy = y − byc

1http://www.cs.tau.ac.il/~efif/courses/Software1 Spring 04/subgd.php
2Binary PPM format implies that the image data is binary, but the header is ASCII

1



[i, j]

(x, y)

dy

dx

Destination Image Source Image

Command Line Options

-f factor

set the scale factor. The default is 1.0.

-h

print this help message.

-r direction

reflect the image about the indicated direction. Accepted directions are:

horizontal

reflect the image about horizontally (already implemented).

vertical

reflect the image vertically.

-s method

scale down the image using the indicated method. The accepted methods are:

nearest

this indicates the nearest-neighbor method, which is the default. The nearest-neighbor
method is the most simple method to resize an image. This method finds the closest corre-
sponding pixel in the source image for each pixel in the destination image.

Cd[i, j] = Cs[bxc , byc]

cubic

this indicates the cubic B-Spline method. This method estimates the color of a pixel in
the destination image by the average of the colors of the 16 pixels surrounding the closest
corresponding pixel in the source image.

Cd[i, j] =

2
∑

m=−1

2
∑

n=−1

Cs[bxc + m, byc + n]R(m − dx)R(n − dy)

2



where

R(x) =
1

6
[P (x + 2)3 − 4P (x + 1)3 + 6P (x)3 − 4P (x − 1)3]

P (x) =

{

x x > 0
0 x ≤ 0

Assume that the border of the source image is replicated as many times as necessary, when
computing the pixels near the border of the destination image. That is, Cs[i, j] = Cs[0, j] for
i < 0, and Cs[i, j] = Cs[i, 0] for j < 0.

-t

test the reflect and scale down operation.

If this option is not indicated, the program displays the input image, and awaits for instructions
from the user in form of key strokes. When this is entered by the user however, the program
executes in non-interactive mode. First, the image is read. Then, it is transformed according to
the indicated options. If both reflection and scaling are required, reflect first then scale. Finally,
its signature is calculated as explained below, and printed out in hexadecimal format with 8 digits
padded with 0’s. The program exits immediately after. This option will be used by the automatic
testing script. The signature is the weighted3 sum carried out in unsigned int given by:

h
∑

j=0

w
∑

i=0

(j × w + i)(R[i, j] + G[i, j] + B[i, j])

where w and h are the image width and height respectively, and R[i, j], G[i, j], and B[i, j] are the
red, green, and blue components of pixel [i, j] respectively.

Examples

Input:

photo -f 2.0 -s cubic -t photo.ppm

Output:

0x493da39b

This command tests the cubic B-spline scale method on the input image photo.ppm. The image is
scaled down by a factor of 2.0.

Input:

photo photo.ppm

This command displays the input image photo.ppm.

3The weight is applied to have different signatures of reflected images in different directions.

3



Additional instructions

• Use double type to represent all real numbers in the program and to carry out all arithmetic
operations on these numbers.

• For your convenience add the option below to the keyboard function, to allow the user to transform
the image interactively.

’h’ - reflect the image horizontally

’v’ - reflect the image vertically

’n’ - scale down the image using the nearest-neighbor method

’b’ - scale down the image using the cubic B-Spline method

• The program must be linked with the glut library. Add the command line option -lglut to the
compilation command line:

gcc -Wall -lglut -o photo photo.c

• The program uses the glut library, which in turns uses the openGl library. This imposes a restric-
tion on the image width — it must be a multiple of 4 to be displayed properly. Make sure to pad
each line in the image with black (0 value) pixels accordingly.

• Make sure that every allocated memory block is deallocated when the program exists, or better
yet, when the block is not needed any longer.

• If you want to practice on windows but still compile with gcc under cygwin, you need to issue the
following compile-and-link command instead:

gcc -Wall -lglut32 -lopengl32 -o photo photo.c

• If you want to compile with Visual Studio, you can download the cross-platform source-code file
from:
http://www.cs.tau.ac.il/~efif/courses/Software1 Spring 04/code/photo/cp photo.c. (No-
tice that it is a different file.) If cl and link are accessible from the command line, you can issue
the command:

cl -nologo -c cp_photo.c

link -nologo -subsystem:console -libpath:lib glut32.lib opengl32.lib cp_photo.obj

Beware, the signatures produced by an executable compiled on windows with Visual Studio may
deviate from those produced by an executable compiled with gcc on Linux.

• You can use IrfanView to convert more images to PPM format. IrfanView is free and can be
downloaded from http://www.irfanview.com/.

• The C source file photo.c should be located under ~/Software1.

• As usual, before submitting the solution set, please give permission to the files by executing the
following command:

chmod 705 ~ ~/software1 ~/software1/assign3 ~/software1/assign3/*

4


