Assignment 2 - Software I, Spring 2004 (0368-2157-09/12)

http://www.cs.tau.ac.il/~efif/courses/Softwarel Spring 04

Due: April 20, 2004

Required Knowledge rand, srand, arrays, functions, recursion
Before starting to answer the questions, please read very carefully the “Submission Guidelines”!.

Ex 2.1 dice.c

Modify the dice-rolling program as follows:
1. simulate the rolling of 3 dice instead of 2.

2. compute the floating-point average p of all the rolls of the 3 dice

D e Ti

n

Iu:

3. compute the standard deviation s, which is expressed as

i=1

You may use the sqrt() function from the math library.

The program should read the random-generator seed and the number of tries, and print out the
average and the standard deviation, followed by a histogram. Use double type to represent any real
number in the program, and print out the result with 6 digits of precision for the fraction part. Each
line of the histogram has the following format: sum of rolls, followed by a colon, followed by a space,
followed by the count in parenthesis, followed by stars depicting the count. The count is aligned to the
right, and truncated to the 5 least significant decimal-digits, or padded with spaced. The number of
starts in the longest sequence should be 20, and the number of starts in the other should be normalized
accordingly, and rounded to the nearest integer, or down in case of a tie.

"http://www.cs.tau.ac.il/~efif/courses/Softwarel_Spring 04



dice

10

10000

10.485600

2.978388

3: ( 46)*

4: ( 141)*x

5: (1 291) kxkxx

6: ( 4B5)*kkkkkxx

T2 ( T13)kkxkskkkskkkkk

8:  ( 1010) s,skskkskskskokkokkokkokkk ok
9: (1166 kskskkskskskokskokkok ok kK kK k
10: ( 1223) kskkskokskokskokskokokkokkok ok kK
11:  ( 1209) skskskskokskok sk ok sk ok ok 3k ok ok ok koK
12: ( 1105) skskskskokskokskokskkokkok ok kK
13: ( 985) kskkskokskokkokkokkkkkk
14: ( 721) kkkkkkkkkkkok

15: ( 469) k*kkkx%x

16: (1 292)*kxkkx

17: ( 123)*x

18: ( bBl)x

Ex 2.2 det

Write a program that reads a positive integer number n, followed by an n x n matrix, and computes
the determinant of the matrix.

You may assume that n < 10. The matrix is represented as n rows of n integers in each row, the
integers are separated by one or more spaces, each row is terminated by a newline. (Do not use a
multi-dimensional array to store the matrix.)

Use a recursive method for computing the determinant. Suppose you wish to find the determinant
of a 4 x 4 matrix. Then each element in the first row of this matrix is to be multiplied with a suitable
3 x 3 determinant. But while evaluating the determinant of a 3 x 3 matrix, we again need to multiply
the elements of the first row of the 3 x 3 matrix by the appropriate determinants of the 2 x 2 matrices.
That is where recursion comes in. The sign (+/-) should change for every alternate element. The logic
used here is: to evaluate an n X n determinant, we multiply the first row elements of this determinant
with a corresponding n — 1 x n — 1 determinant by first copying the n — 1 X n — 1 determinant into a
separate array. We continue this process recursively until we reach a 1 x 1 determinant and then retrace.

For example:

1
det | 4
7

co Ot N

3
5 6 4 6 4 5
g =1 x det [ 8 9 } — 2 x det [ 7 9 } + 3 x det [ 7 8 } =0



Ex 2.3 palindrome

Write a program that reads an input line, determines whether it is a palindrome or not, and prints out
“true” or “false” accordingly.

A palindrome is a string that is the same when read backward or forward.

Disregard spaces, non alphabetic and numeric characters, and ignore case distinctions. For example,
the following are palindromes:

Was it a rat I saw?

Dennis and Edna sinned.

step on no pets

A Fool, A Tool, A Pool; LOOPALOOTALOOFA!

Madam, I’m Adam.\\

A man, a plan, a cat, a ham, a yak, a yam, a hat, a canal-Panama!

The program should disregard characters beyond the first 80, and terminate upon EOF as well as
the end of the line.

Ex 2.4 rec_string

A null-terminated array of type char is called a string. Null-terminated means that the array contains
a special character ' \0 ’. The sequence of characters from the beginning of the array up to, but not
including, the special character * \0 ’ is the content of the string. The standard C library stdlib.h
manipulates strings. It contains the following functions:

1. Return string length
int strlen ( const char * string );
Returns the number of characters in string before the terminating null-character.

string - null-terminated string.
return value - the length of string.

2. Copy string
char * strcpy ( char * dest, const char * src );
Copies the content pointed by src to dest stopping after the terminating null-character is copied.
The array dest is assumed (without checking) to be long enough to contain the src string.

dest - destination string, assumed to be long enough to contain src.
src - null-terminated string to copy.
return value - dest is returned.

3. Append string
char * strcat ( char * dest, const char * src );
Appends src string to dest string. The terminating null character in dest is overwritten by the
first character of src. The resulting string includes a null-character at the end. The array dest
is assumed to be long enough to contain src string.

dest - a null-terminated string long enough to contain both src and dest.
src - null-terminated string to append.
return value - dest is returned.



4. Compare two strings

int strcmp ( const char * stringl, const char * string2 );

Compares stringl to string2 character by character. This function starts comparing the first
character of each string. If they are equal to each other continues with the following pair until
the characters differ or until end of string (the special character * \0 ’) is reached.

stringl - null-terminated string.

string2 - null-terminated string.

return value - returns a value indicating the lexicographical relation between the strings:
< 0 - stringl is less than string?2

0 - stringl is the same as string?2

> 0 - stringl is greater than string2

Implement these functions using recursion, without using loops. The use of any functions from the
string library is forbidden (do not include <string.h> in your source file, to avoid confusion). Place
the code of all the four functions in a single file rec_string.c.

To test your code, follow the steps below. This is optional, and provided only for your convenience.
The concept of makefiles will be explained later in the course.

1.

2.

3.

make sure that rec_string.c does not contain the main function.
make sure that the file rec_string.c compiles successfully.

grab the files below from the assignment web-page and place them in the same directory where
rec_string.c resides: test.c, makefile, and test.in.

. type:

make

This command will compile the source files rec_string.c and test.c, link their object files and
produce an executable file called test, run the executable with the input test.in, and compare
the output using diff with the output obtained when the standard string-functions are used
instead.

. you can modify test.c and test.in to enhance the testing

. to remove the intermediate files, type:

make clean

Very important: your submission must include the single file named rec_string. c containing all four
functions. It must not contain a main function!

Good Luck!



More Information on the Submission

Files Name

The files for the exercises should be located under ~/softwarel/assign2, and their names should match
the name of the exercise. Note that names are case sensitive (i.e. ex1.C is different than ex1.c).

Giving Permission to the Files

Before submitting the solution set, please give permission to the files by executing the following com-
mand:
chmod 705 ~ ~/softwarel ~/softwarel/assign2 ~/softwarel/assign2/*

Sample Files

In order to test your programs, we have prepared some input and output files which you may compare
to your own output. You may use the command diff or diff -b in order to compare your files to the
sample files.

In order to read the input from a file and to write your output into a file you should use redirection.
For example:

det < infile > outfile

The input and output data files may be found in the assignment web-page. The names of these files
match the names of the corresponding programs, where the input files have a .in extension, and the
output files have a .out extension.



