Big Data Analytics Using R

Eddie Aronovich

October 23, 2014
Table of contents

1 BIG DATA DEFINITION
 - Definition
 - Characteristics
 - Scaling
 - Challenge

2 Parallelization principles
 - Divide and Conquer
 - Amdahl’s and Gustafson’s Law
 - Life experience
 - Where to parallelize?
 - Storage issues

3 Tools
 - Explicit Parallelism
 - Hadoop
 - Hadoop - HDFS
Gartners’ term (probably)

Simple (personal) Definition

Too much data to be easily processed.
Used mainly for marketing and FUD
Characteristics

- **Volume**
Characteristics

- Volume
- Velocity

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V
Characteristics

- Volume
- Velocity
- Veracity
Characteristics

- Volume
- Velocity
- Verity
- Veracity (integrity)
ScaleUp vs. ScaleOut

<table>
<thead>
<tr>
<th>ScaleUp</th>
<th>ScaleOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>More resources packed in one box</td>
<td>More boxes used</td>
</tr>
<tr>
<td>Expensive (growing expenses)</td>
<td>Cheaper on average</td>
</tr>
<tr>
<td>"Closed box" approach</td>
<td>"Best of breed"</td>
</tr>
<tr>
<td>Technical complexity</td>
<td>Usage is not trivial</td>
</tr>
</tbody>
</table>

"You want Scale Out? Well, Scale Out costs. And right here is where you start paying... in sweat..."
ScaleUp vs. ScaleOut

- Scale Up - more ... in one box
ScaleUp vs. ScaleOut

- **Scale Up** - more … in one box
 - expensive (growing exp)
 - "closed box" approach
 - technical complexity
ScaleUp vs. ScaleOut

- **Scale Up** - more ... in one box
 - expensive (growing exp)
 - "closed box" approach
 - technical complexity

- **Scale Out** - more boxes
ScaleUp vs. ScaleOut

- Scale Up - more ... in one box
 - expensive (growing exp)
 - "closed box" approach
 - technical complexity

- Scale Out - more boxes
 - cheap (avg.)
 - best of breed
 - usage is not trivial

"You want Scale Out? Well, Scale Out costs. And right here is where you start paying ... in sweat...."
ScaleUp vs. ScaleOut

- Scale Up - more ... in one box
 - expensive (growing exp)
 - "closed box" approach
 - technical complexity

- Scale Out - more boxes
 - cheap (avg.)
 - best of breed
 - usage is not trivial

"You want Scale Out? Well, Scale Out costs. And right here is where you start paying ... in sweat...."
How long it takes to read / write data?

Generating a 1e7 var using runif() and writing it - 10-16 sec.

Reading the same (96MB) file takes 1.5-6 sec.

Generating 1e9 var was not possible on the host I used.

Calculating mean() and var() on all data was not possible.
How long it takes to read / write data?

- Generating a $1e7$ var using `runif()` and writing it - 10-16 sec.
How long it takes to read / write data?

- Generating a 10^7 var using `runif()` and writing it - 10-16 sec.
- Reading the same (96MB) file takes 1.5-6 sec.
How long it takes to read / write data?

- Generating a 1×10^7 var using `runif()` and writing it - 10-16 sec.
- Reading the same (96MB) file takes 1.5-6 sec.
- Generating 1×10^9 var was not possible on the host I used.
How long it takes to read / write data?

- Generating a 1e7 var using runif() and writing it - 10-16 sec.
- Reading the same (96MB) file takes 1.5-6 sec.
- Generating 1e9 var was not possible on the host I used
- Calculating mean() and var() on all data was not possible
How long it takes to read / write data?

- Generating a 10^7 var using runif() and writing it - 10-16 sec.
- Reading the same (96MB) file takes 1.5-6 sec.
- Generating 10^9 var was not possible on the host I used
- Calculating mean() and var() on all data was not possible
And in parallel?

Create 100 files, each size 1e7 and write them on the disk.

For each file: read it, compute mean() and var() for each file.

BUT - reading 100 files takes 100 times reading of one file :-((

Compute mean and var of all files and

compute total VAR

Eddie Aronovich
Big Data Analytics Using R
And in parallel?

- Create 100 files, each size 1e7 and write them on the disk.
And in parallel?

- Create 100 files, each size 1e7 and write them on the disk
- For each file: read it, compute mean() and var() for each file
And in parallel?

- Create 100 files, each size 1e7 and write them on the disk
- For each file: read it, compute mean() and var() for each file
- BUT - reading 100 files takes 100 times reading of one file :-(

Eddie Aronovich Big Data Analytics Using R
And in parallel?

- Create 100 files, each size 1e7 and write them on the disk
- For each file: read it, compute mean() and var() for each file
- BUT - reading 100 files takes 100 times reading of one file :-(
- Compute mean and var of all files and
And in parallel?

- Create 100 files, each size 1e7 and write them on the disk
- For each file: read it, compute mean() and var() for each file
- BUT - reading 100 files takes 100 times reading of one file :-(
- Compute mean and var of all files andcompute total VAR
Now you know why you are here at this time!
<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Data can not be gathered on one node</td>
</tr>
</tbody>
</table>
One is not enough

Data

- Data can not be gathered on one node
- One computer can not process all data
One is not enough

Data

- Data can not be gathered on one node
- One computer can not process all data
- Data transfer is not feasible
One is not enough

Data
- Data cannot be gathered on one node
- One computer cannot process all data
- Data transfer is not feasible

Processors
- One process, One thread (old and simple)
One is not enough

Data
- Data cannot be gathered on one node
- One computer cannot process all data
- Data transfer is not feasible

Processors
- One process, One thread (old and simple)
- Multiple processes, One host
One is not enough

Data
- Data can not be gathered on one node
- One computer can not process all data
- Data transfer is not feasible

Processors
- One process, One thread (old and simple)
- Multiple processes, One host
- Multiple hosts
One is not enough

Data
- Data can not be gathered on one node
- One computer can not process all data
- Data transfer is not feasible

Processors
- One process, One thread (old and simple)
- Multiple processes, One host
- Multiple hosts

Reference
High-Performance and Parallel Computing with R by Derik Eddelbuettel
Splitting tasks - How to?

- Functional
Splitting tasks - How to?

- Functional - requires sync
Splitting tasks - How to?

- Functional - requires sync
- Data
Splitting tasks - How to?

- Functional - requires sync
- Data - requires pre/post processing
Splitting tasks - How to?

- Functional - requires sync
- Data - requires pre/post processing
- Combination
Splitting tasks - How to?

- Functional - requires sync
- Data - requires pre/post processing
- Combination ← Hadoop made it easy!
Can we parallelize forever?

Gustafson’s Law

\[S(P) = P - \alpha(P - 1) \]

- \(S \) - scale-up, \(P \) - number of processors,
- \(\alpha \) - proportion that cannot be parallelized

Amdahl’s Law

\[T(P) = T(1)(\alpha + \frac{1}{P} \cdot (1 - \alpha)) \]

- \(T \) - processing time
Thumb rules

- Programs are small, data is big \Rightarrow move program to data!
Thumb rules

- Programs are small, data is big ⇒ move program to data!
- Parallel processing requires conversion of results ← Do it wise!
Thumb rules

- Programs are small, data is big \Rightarrow move program to data!
- Parallel processing requires conversion of results \leftarrow Do it wise!
- Queuing systems overhead is proportional to $\#$ of jobs & hosts
Thumb rules

- Programs are small, data is big ⇒ move program to data!
- Parallel processing requires conversion of results ← Do it wise!
- Queuing systems overhead is proportional to # of jobs & hosts
- Multiple hosts might require authentication process.
Thumb rules

- Programs are small, data is big \Rightarrow move program to data!
- Parallel processing requires conversion of results \leftarrow Do it wise!
- Queuing systems overhead is proportional to $\#$ of jobs & hosts
- Multiple hosts might require authentication process.
- Checklist: Pre-processing, Synchronization and Post-processing
Little supercomputing center

- Local cluster
Little supercomputing center

- Local cluster
- Hosting services
Little supercomputing center

- Local cluster
- Hosting services
- Cloud
Little supercomputing center

- Local cluster
- Hosting services
- Cloud
 - Storage (beware of outgoing traffic costs)
Little supercomputing center

- Local cluster
- Hosting services
- Cloud
 - Storage (be aware of outgoing traffic costs)
 - CPUs
Little supercomputing center

- Local cluster
- Hosting services
- Cloud
 - Storage (beware of outgoing traffic costs)
 - CPUs

Nice tool: segue - Allows running R jobs on AWS
The data won’t fit in ...

- Loading the data is the first stage, but ...

- The data is large and the memory is small ...

- I/O is a performance killer

- NAS / SAN is usually better than simple disk

- Mounting remote file systems, e.g., sshfs (degrades performance)

- Distributed file systems (without parallel processing) → usually cheap, maintenance

- Move the program, not the data!
The data won’t fit in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
The data won’t fit in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
 - The data is large and the memory is small ...
The data won’t fit in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
 - The data is large and the memory is small ...
 - I/O is a performance killer
The data won’t fit in...

- Loading the data is the first stage, but...
 - Mapping instead of loading
 - The data is large and the memory is small...
 - I/O is a performance killer

- NAS / SAN is usually better than simple disk
The data won’t fit in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
 - The data is large and the memory is small ...
 - I/O is a performance killer

- NAS / SAN is usually better than simple disk
- Mounting remote file systems e.g. sshfs (degrades performance)
The data won’t feet in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
 - The data is large and the memory is small ...
 - I/O is a performance killer

- NAS / SAN is usually better than simple disk
- Mounting remote file systems e.g. sshfs (degrades performance)
- Distributed file systems (w/o parallel processing) ← usually cheap, maintenance
The data won’t feet in ...

- Loading the data is the first stage, but ...
 - Mapping instead of loading
 - The data is large and the memory is small ...
 - I/O is a performance killer
- NAS / SAN is usually better than simple disk
- Mounting remote file systems e.g. sshfs (degrades performance)
- Distributed file systems (w/o parallel processing) ← usually cheap, maintenance
- Move the program, not the data!
MPI tools (beyond the scope of this talk)

Snow and Snowfall

https://www.stat.berkeley.edu/classes/s244/snowfall.pdf

biopara
Clusters and Grids

- Queuing systems:
 - Can run almost any program
 - Very simple to use (for command liners)

- Grids:
 - Requires authentication issues
 - Huge amount of resources
 - Ubiquitous mostly in the academic environment
Example: condor queuing system

```bash
Executable = /usr/local/bin/R
arguments = --vanilla --file=path/file.r
when_to_transfer_output = ON_EXIT_OR_EVICT
Log = eddiea-ed2.log
Error = del.eddiea-ed2.err.$(Process)
Output = del.eddiea-ed2.out.$(Process)
Requirements = ARCH=="X86_64" && 
                (target.FreeMemoryMB > 6000 )
notification= never
Universe = VANILLA
Queue 3000
```
Clouds

- Use resources as service (Ben-Yehuda et al.)
- Very cheap for peak usage or low frequency
- Wrong usage might be very expensive
- Look for the service you need (it would usually be better and cheaper)
- In case of problem - Google it.
Hadoop - overview

- An open source reliable, scalable, distributed computing system
- Designed to scale up from single servers to thousands of machines
- Each offering local computation and storage
- Designed to detect and handle failures at the application layer or hardware
Hadoop - components

- Hadoop Common
- HDFS
- YARN, MR
- Many other tools (incl. R package)
Using hadoop file system (HDFS)

```r
library(rhdfs)
hdfs.init()
hdfs.ls('/')
```
Using hadoop file system (HDFS)

```r
library(rJava)
.jinit(parameters="-Xmx8g")
```
Writing an R object (1e8) to hdfs

```r
f = hdfs.file("/a.hdfs","w",buffersize=10485760)
> system.time(hdfs.write(a,f,hsync=FALSE))
user  system elapsed
 7.392   2.192  15.072
> hdfs.close(f)
[1] TRUE
```
Writing an R object (1e8) to tmpfs

```r
> a <- runif(1e8)
> system.time(save(a, file = 'a1'))

user  system elapsed
 99.648   0.316   99.893
```
Hadoop - map reduce

- Splits each process into Map and Reduce
- `map` - Classifies the data that would be processed together
- `reduce` - Processes the data
- Hadoop takes care of all the "behind the scenes"
library(rmr2)
Sys.setenv(HADOOP_STREAMING=".../hadoop-streaming")
Sys.setenv(HADOOP_HOME=".../hadoop")
Sys.setenv(HADOOP_CMD=".../bin/hadoop")
Simple mapper

```r
pi.map.fn <- function(n){
    X <- runif(n)
    Y <- runif(n)
    S = sum((X^2 + Y^2) < 1)
    return(keyval(1, n/S))
}
```
MR parameters

```r
pi.reduce.fn <- function(p){
  keyval(4*mean(p))
}
```
The MR process

```r
PI=function(n, output=NULL){
  mapreduce(input=n, output=output, input.format="text",
            map=pi.map.fn, verbose = TRUE)
}
```
From command line

```bash
hadoop jar {PATH}/hadoop-streaming-2.5.1.jar
   -file map.R -mapper map.R
   -file reduce.R -reducer reduce.R
   -input input_file -output out
```

- `map.R` and `reduce.R` in this case have to be Rscript
- Files should be located in HDFS
Moving to cloud increases agility
The bottom line

- Moving to cloud increases agility
- Moving to cloud reduces costs
The bottom line

- Moving to cloud increases agility
- Moving to cloud reduces costs
- Moving to cloud improve operations
The bottom line

- Moving to cloud increases agility
- Moving to cloud reduces costs
- Moving to cloud improve operations
- Moving to cloud offers new business
The bottom line

- Moving to cloud increases agility
- Moving to cloud reduces costs
- Moving to cloud improve operations
- Moving to cloud offers new business

You can’t refuse!
Thank you