
Multi-way Geometry Encoding

Daniel Cohen-Or, Rami Cohen and Revital Irony

The School of Computer Science, Tel-Aviv University

Abstract

The problem of representing a 3D model in a more compact manner was ex-
tensively studied. While much attention has been paid to the compression of the
connectivity, compressing the geometry remains challenging. We introduce a novel
geometry-encoding algorithm, which is based on traversing the vertices in an order
that improves the performance of the geometry prediction. We analyze the predic-
tion scheme and show how a multi-directional prediction can improve the encoding
of the geometry. We suggest an approximated multi-directional prediction and show
that it leads to the best geometry compression ratios published so far.

1 Introduction

Large 3D models require deep compression for their efficient transmission over
the network and for archiving them. As a consequence, interest in 3D encoding
techniques has increased in recent years.

As in other visual media, some compression techniques are lossy while others
are lossless. Lossy methods for 3D models either use mesh simplification to
reduce the number of faces (triangles) that represent the model, or remeshing
techniques [9], where the original mesh is replaced by another mesh that well
approximates the original one and can be efficiently encoded. See [5] for a
survey of recent developments in mesh compression.

Lossless mesh compression techniques need to encode both the geometry (co-
ordinates) and the topology (connectivity) of the mesh. Although these are
not entirely independent, their encoding is often treated as two separate pro-
cesses, which are usually applied interleaved. Much attention has been paid
to the compression of the connectivity [13] [14] [11] [6] [7] [1]; state-of-the-art
connectivity compression is extremely effective [14] [1]. Compressing the geom-
etry remains challenging, since the encoded geometry is on average five times
larger than the encoded connectivity, even at 10–12 bits per uncompressed

Preprint submitted to Elsevier Science 1 December 2002



coordinate. Higher precision even further amplifies the importance and need
for effective geometry encoding.

Karni and Gotsman [8] introduced a lossy geometry compression based on a
spectral method [12], which computes the eigenvalues and eigenvectors of a
large sparse matrix associated with the mesh topology. Computing the eigen-
vectors requires large amounts of computation and memory. Karni and Gots-
man addressed this issue by partitioning the mesh into relatively small patches
and compressing each patch separately. They compute low-frequency eigen-
vectors for each patch. Thus, the partitioning approach requires the compu-
tation of eigenvectors of many small matrices instead of those of one large
matrix. In essence, partitioning trades encoding and decoding time and space
for compression rates. Alliez and Isenburg [3] presented a generalization of
the geometry coder by Touma and Gotsman to polygon meshes. They let the
polygon information dictate where to apply the parallelogram predictor, and
made predictions within a polygon rather than across polygons.

This paper presents a lossless geometry encoding technique based on travers-
ing the vertices in an order that improves the performance of the geometry
prediction, which is multi-directional. We analyze the prediction scheme and
show in Section 2, how a multi-directional prediction can improve the geome-
try encoding. In Section 3 we introduce a novel geometry encoding algorithm,
which is based on the special traversing order of the vertices, that improves
the geometry prediction. As will be demonstrated in the results (Section 5)
this leads to the best compression ratios known so far.

2 Multi-way Geometry Predictors

The geometry encoding process begins by quantizing the coordinates if they
are initially expressed as floating-point numbers. Hereafter, we assume that
the coordinates are integers, and that both the encoder and the decoder know
the connectivity of the mesh.

The absolute coordinates of vertices are encoded by relative coordinates, which
are essentially displacements from a predicted location. The relative coordi-
nates are integers and most of them are small. Such distribution yields lower
entropy, which enables encoding with fewer bits. Better prediction schemes
yield smaller displacements with lower entropy.

The parallelogram-prediction rule [14] uses a traversal of the triangles of the
mesh. The predicted location of the unknown vertex p of the next triangle
is based on completing the current triangle into a parallelogram (see Figure
1(a)). We call this completing operation folding. The vector (displacement)

2



between the predicted location and the exact location of p is then encoded.
This method produces small displacements, and is the best predictor known.
However, the parallelogram prediction of a point is based on a single neighbor
in only one direction (backwards in the traversal), while a better prediction
would be based on all neighboring vertices in all directions. We regard the
parallelogram scheme as a 1-way predictor, as opposed to a k-way predictor
that uses a multiplicity of directions to predict the location of a vertex. Figure
1(b) shows the folding of a number of triangles rather than one. In the figure,
only three triangles are used. Each triangle predicts a point, and their average
is usually closer to p than the point predicted by a single triangle.

Let M be a given triangulated mesh with n vertices. Each vertex v ∈ M is
represented using absolute cartesian coordinates, denoted by vi = [xi, yi, zi].
We define the F coordinates of vi to be the differences between the absolute
coordinates of vi and the average folding of its immediate neighbors in the
mesh (see Figure 1(b)).

More formally, let us denote by Rj the triangles incident upon vi, and by Tj

the triangles that are not in Rj but share an edge with a triangle in Rj. Each
of the triangles in Tj can be “mirrored” about its common edge with Rj to
yield a point that can be used as a prediction to vi (the mirroring predictor
is similar to the parallelogram predictor, but seems to be a somewhat better
predictor in our experiments). Now, F is defined as the average of all the
prediction points of Ti.

In general, it is rather easy to transform absolute coordinates to relative coor-
dinates. The transformation back from relative to absolute is not trivial since
to find the location of a vertex, requires the surrounding vertices to already
be decoded. A simultaneous solving of all the vertices might be possible using
relaxation techniques. However, to guarantee the convergence of the relax-
ation to the exact absolute coordinates, the relative coordinates need to be
represented accurately with many precision bits, which hampers the compres-
sion. Applying the relaxation process to the quantized coordinates prevents
the recovery of all the precision bits of the original geometry.

A k-way prediction is applied by progressive geometry-encoders [4] [10] [2],
which use a hierarchy of progressively coarse-to-fine meshes. They encode the
displacements of a subset of vertices in a mesh with respect to a small set of
surrounding vertices from a coarser mesh. In these methods, the displacements
are encoded as relative coordinates based on a k-way predictor. However, since
the compression is hierarchical, the displacements tend to grow in magnitude
as the mesh becomes coarser and coarser.

3



Fig. 1. The folding schemes. In (a) a 1-way prediction is used to predict the location
of the bold vertex; the vector displacement is encoded. In (b) a k-way prediction is
used. An average of two foldings is used as the prediction. Typically, this yields a
better prediction than a 1-way prediction.

3 k-way Geometry Encoding

In the following we show how the F coordinates can be approximated using
an iterative reconstruction process. The approximation predicts the location
of a given vertex based on k triangles that are already decoded. This requires
traversing the mesh in a special order such that in each step the prediction of
a vertex is based on more than one triangle. To achieve this, the traversal of
the triangle is not sequential, but in each step, the encoded triangle is selected
according to some prediction criterion.

Let A be the set of triangles that has been decoded so far during the traversal
(the dark triangles in Figure 2). The next vertex to be encoded, denoted by
q, must be on a triangle T connected to the border of A. That is, one of the
edges of T is already decoded, and adjacent to a decoded triangle W ∈ A. By
folding W , the location of q can be predicted. As discussed above, if q is on
k triangles connected to A the prediction is likely to be better than a 1-way
prediction. In Figure 2(a) the bold vertex has a 4-way prediction, since it is
on four triangles connected to a set of triangles already encoded. Thus, during
the traversal, each vertex not yet decoded has its prediction degree.

A possible traversal order can be such that in each step the vertex with the
highest prediction degree is selected. In the case of two vertices with the same
prediction degree, a secondary sort is made on the basis of the variance between
the predictions. Such a greedy method has an average of a 2-way prediction.
This is because on an average mesh with n vertices there are 2n triangles only.
Since each folding recovers one triangle, and no triangle is recovered twice,
no more than 2n foldings are possible. Since the expected average is 2, it is
enough to select in each step a vertex with a 2-way prediction. The traversal

4



Fig. 2. The prediction degree. In (a) the bold vertex has a prediction degree of 4,
while in (b) only three.

is implemented by stepping among the candidate vertices and selecting the
first one to have a prediction degree greater than one.

The traversal is always applied to meshes whose boundaries are already de-
coded. It requires explicitly encoding one triangle connected to the boundary
to start the traversal. As we shall see in Section 5, this k-way prediction con-
sistently yield a better prediction than a 1-way prediction.

4 A Two-step Method

Based on the k-way prediction scheme, the surface can be reconstructed in
two steps. First we use only the connectivity information to compute a rough
approximation to the geometry. The geometry is then corrected by using dis-
placements, to result with the exact geometry. The computation of the ap-
proximated geometry in the first step starts with known boundaries. Based on
the geometry along boundaries, the k-way predictions are computed, assuming
the displacements are zero. Relaxation and smoothing operations are applied
to achieve a rough approximation to the mesh.

To generate the initial boundaries, the mesh is split into disk-like patches.
Better predictions can be achieved if that the boundaries appear along ridge
and ravines of the surface. The vertices along boundaries serve as a geomet-
ric anchor to the reconstruction of the geometry of other vertices, that are
positioned solely based on the known geometry of the boundary and some ex-
pected mean values. The amount of data required for the boundary is typically
rather small.

In Figure 3 the boundaries were first transmitted and reconstructed. We can
see that the approximate location of vertices can be quite successful. The
views in figure 3 are better approximations than typical initial meshes used by
progressive mesh techniques since they contain all the vertices of the original

5



Fig. 3. Models reconstructed at step 1 from an initial stream consisting of the
boundary data plus the connectivity data of the patches. They require only about 9
bpv. The rest of the data, which consists of the geometry corrections requires about
20 bpv.

model, but not in their exact location.

The k-way prediction scheme is applied in a different order to the above. Here
the vertices are sorted according to their distance from the mesh boundary
to give priority to the closer vertices. Once the triangles are folded into an
initial position, an edge relaxation is applied. The algorithm iterates on all
vertices, except for those on the boundary, and scans their coincident edges,
trying to reposition the vertex so that the edge length approaches the average
edge length. After every five iterations, a smoothing operation is applied, by
displacing each vertex towards the average position of its adjacent vertices.

Model quant. #v #T Virtu3D Our

Horse 12 bits 19k 39k 19.79 17.54

14 bits 25.89 23.64

David 12 bits 24k 47k 22.37 19.02

14 bits 28.92 25.16

Dinosaure 12 bits 50 100k 20.42 19.12

Venus 14 bit 14k 28k 25.17 21.57
Table 1
A comparison between Virtue3D compression and our compression with a vertex
quantization of 12 and 14 bits. The results are given by the number of bits per
vertex.

6



Table 2
Geometry entropy using 1-way prediction vs. k-way prediction. As the predication
is based on more ways, consistently the entropy gets lower.

Models 1-way 2-way 3-way 4-way 5-way 6-way All-ways

Crocodile (12b) 15.54 15.63 15.09 14.47 14.11 13.85 13.69

Venus (12b) 19.24 17.91 17.16 16.54 16.06 15.76 15.48

Dinosaure (12b) 17.47 16.33 15.57 15.08 14.68 14.47 14.34

David (14b) 23.50 22.34 21.58 20.97 20.56 20.33 20.20

Horse(12b) 15.95 15.12 14.41 13.88 13.55 13.34 13.23

Bunny(14b) 25.98 23.52 23.28 20.98 19.85 20.16 19.87

Venus(14b) 20.67 19.48 18.76 18.19 17.78 17.55 17.46

5 Results

To evaluate the performance of our geometry coder, we tested it on several
meshes. The compression results obtained from some typical meshes are sum-
marized in Tables 1–4. We compared the bits per vertex ratio achieved by our
geometry encoder with the ratio obtained by the parallelogram rule of Touma
and Gotsman (TG) [14], using a commercial version of their algorithm, imple-
mented in the ”virtue 3D optimizer” product of Virtue Ltd. For that purpose,
we used a connectivity encoding which is competitive with that of TG.

As shown in Table 1, our encoder improves the bit per vertex (bpv) ratio by 2.3
bits on average for models that were pre-quantized to 12 bits per coordinate,
and by 3.2 bits for models that were quantized to 14 bits. The Venus model is
very detailed and the dinosaur is very sparse, so these models were processed
only with 14 and 12 bits respectively.

We achieve better ratios than TG on the geometry. Since the geometry in-
formation is more dominant than the connectivity, we get better compression
ratios. Moreover, as the dynamic range of the mesh (bits per coordinate)
increases, the benefit from our algorithm increases. This includes the com-
pression of other attributes, like UV coordinates, normals, and colors.

The performance of the k-way geometry prediction with respect to the 1-
way prediction is quantified in Table 4 in terms of the number of bits of
their entropy. The results of this comparison imply that we can save up to
approximately 1 bit per vertex by using k-way prediction instead of 1-way.
There are several ways to compute the 1-way prediction of each vertex. In our
table we chose the best folding of 1-way prediction for each vertex. However,
the prediction of a typical 1-way encoder is usually restricted to the order
in which triangles are reconstructed. Hence the actual 1-way prediction is

7



somewhat worse than detected in the table, so the gap between 1-way and
k-way is even bigger, and exhibits itself with more bits (see Table 1).

The vertices on the boundaries are efficiently encoded by a delta encoding,
where the next vertex along the path is predicted based on the previous edge.

6 Conclusions and Future Work

We have introduced a lossless geometry compression technique for meshes.
The technique is based on a k-way predictor with which we improve the ge-
ometry encoding. Our results show a significant improvement in the geometry
encoding, that outperform the results given by the best-known method.

In the future we would like to improve the relaxation performed at the first
step by using, for example, the average curvature value. This may further
improve the first approximation that leads to a better compression of the patch
geometry data. Another direction is to accompany the geometry encoding
method by a connectivity-encoding scheme, such that the geometry predictions
to place the vertices would match the connectivity traversal.

References

[1] Alliez P. and Desbrun M., Valence-Driven Connectivity Encoding of 3D Meshes,
Eurographics ’2001 Conference Proceedings, (2001) 480–489

[2] Alliez P. and Desbrun M., Progressive Compression for Lossless Transmission
of Triangle Meshes, SIGGRAPH ’2001 Conference Proceedings, (2001) 198–205

[3] Alliez P. and Isenburg M., Compressing Polygon Mesh Geometry with
Parallelogram Prediction, to appear in Proceedings of Visualization 2002 (2002)

[4] Cohen-Or D., Levin D. and Remez O., Progressive Compression of Arbitrary
Triangular Meshes, IEEE Visualization ’99, (1999) 67–72

[5] Gotsman C., Gumhold S. and Kobbelt L., Simplification and compression
of 3D meshes, Proceedings of the European summer school on Principles of
Multiresolution in Geometric Modeling (PRIMUS), Munich (2001)

[6] Gumhold S. and Stra W.ßer”, Real Time Compression of Triangle Mesh
Connectivity , SIGGRAPH 98 Conference Proceedings, Annual Conference
Series, (1998) 133–140

[7] Isenburg M. and Snoeylink J., Face Fixer: Compressing Polygon Meshes With
Properties, Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings,
Annual Conference Series, (2000) 263–270

8



Fig. 4. Large triangular mesh used in our tables of results.

[8] Karni Z. and Gotsman C., Spectral Compression of Mesh Geometry , Siggraoh
2000, Computer Graphics Proceedings, (2000) 279–286

[9] Khodakovsky A., Schröder P. and Sweldens W”, Progressive Geometry
Compression, Siggraph 2000, Computer Graphics Proceedings, (2000) 271–278

[10] Pajarola R. and Rossignac J., Compressed Progressive Meshes, IEEE
Transactions on Visualization and Computer Graphics, 6(1) (2000) 79–93

[11] Rossignac J., Edgebreaker: Connectivity Compression for Triangle Meshes,
IEEE Transactions on Visualization and Computer Graphics, 5(1) (1999)

[12] Taubin G., A Signal Processing Approach to Fair Surface Design, Computer
Graphics, 29 Annual Conference Series, (1995) 351–358

[13] Taubin G. and Rossignac J., Geometric Compression Through Topological
Surgery , ACM Transactions on Graphics, 17(2) (1998) 84–115

[14] Touma C. and Gotsman C., Triangle Mesh Compression, Graphics Interface’98,
(1998) 26–34

9


