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This article introduces a method for partial matching of surfaces represented by triangular meshes. Our method matches surface

regions that are numerically and topologically dissimilar, but approximately similar regions. We introduce novel local surface

descriptors which efficiently represent the geometry of local regions of the surface. The descriptors are defined independently of

the underlying triangulation, and form a compatible representation that allows matching of surfaces with different triangulations.

To cope with the combinatorial complexity of partial matching of large meshes, we introduce the abstraction of salient geometric

features and present a method to construct them. A salient geometric feature is a compound high-level feature of nontrivial

local shapes. We show that a relatively small number of such salient geometric features characterizes the surface well for

various similarity applications. Matching salient geometric features is based on indexing rotation-invariant features and a

voting scheme accelerated by geometric hashing. We demonstrate the effectiveness of our method with a number of applications,

such as computing self-similarity, alignments, and subparts similarity.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

General Terms: Algorithms
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1. INTRODUCTION

Matching is a fundamental task in a vast number of geometric applications in numerous fields such as
computer-vision, robotics, molecular-biology, and others [Veltkamp and Hagedoorn 2001]. Recently, as
a result of the extensive availability of three-dimensional (3D) models, interest in 3D shape-retrieval
techniques has increased. Until now, research has focused on global matching, where similarity is mea-
sured between entire models [Tangelder and Veltkamp 2004]. Partial matching is the task of matching
subparts or regions. The parts that are matched are not predefined, can be any subshape of a larger
shape, and can be in any orientation or scale. Partial matching is a much harder problem than global
matching, since it needs to search for and define the subparts prior to measuring similarities.

In this article we focus on partial shape matching of surfaces represented by triangular meshes.
Generally, it is difficult to define a metric that agrees with the human perception of resemblance. Even
with a given similarity measure, it is a challenge to match shapes that have different representations. In
addition, there is a huge combinatorial complexity barrier to cross to make partial matching practical.
For example, the four lotus flowers shown in Figure 1 are part of the surface of the Buddha model.
Matching them requires an extensive search of the over 1M triangles of the Buddha model. Note that
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Fig. 1. Left: curvature analysis of the Buddha model and the local surface descriptors. Blue is low curvature and red is high.

Right: the self-similarity of the four lotus flowers, which are detected by our partial matching technique.

the shapes of the flowers are incomplete and nonidentical; also, the flowers are positioned at various
orientations, and their extent is not known a priori.

To alleviate the problem, we define a sparse set of local surface descriptors across the surface. These
descriptors represent local regions of the surface, defined independently of the underlying triangulation,
and thus form a compatible representation that allows measuring the similarity between regions with
possibly dissimilar triangulations. Since the number of descriptors is significantly smaller than the
number of vertices, they reduce the combinatorial complexity of the surface representation. By carefully
defining the descriptors, their descriptive power is sufficiently high and effective. Nevertheless, the
number of descriptors is still too large to allow efficient partial matching of large and complex surfaces.
Thus, we define salient geometric features which form compound higher-level descriptors. A salient
geometric feature, or in short, a salient feature, consists of a cluster of descriptors that locally describe
a nontrivial region of the surface.

The salient features of a surface typically characterize the surface well and form a basis for a nonglobal
similarity measure among subparts of shapes. Salient feature matching permits various notoriously
hard applications, such as finding similar parts across a single surface or a number of surfaces. For
example, in Figure 1, the four lotus flowers of the Buddha model are detected by searching for self-
similarity, that is, nontrivial subparts which match other subparts over the same surface.

In the paper we make the following contributions:

—Partial matching. We address the problem of partial-matching for triangular meshes. The method
extends recent results on global matching of 3D models.

—Local surface descriptors. We introduce new local surface descriptors which efficiently encode regions
of the surface. These are defined independently of the underlying triangulation, and form a sparse
compatible representation that allows matching of surfaces with dissimilar triangulations.
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—Salient geometric features. We introduce the abstraction of salient geometric features and present a
method to construct them. A salient geometric feature is a compound high-level feature that charac-
terizes a local partial shape. With each salient feature we associate a number of rotation-and-scale
invariant indices to accelerate matching operations and similarity measures.

—Applications. We show a number of geometric applications in which partial matching is vital. We
apply our method on various large and complex meshes to demonstrate its efficiency.

2. BACKGROUND

The problem of similarity and matching of shapes has been extensively studied in numerous fields such
as computer-vision, robotics, molecular-biology, and others [Veltkamp and Hagedoorn 2001]. Most of
the work has focused primarily on matching shapes in 2D images. Matching 3D models seems an easier
problem since the geometry is given, and there is no occlusion or disrupting external effects such as
lighting and reflections. On the other hand, 3D models typically lack a simple parameterization domain,
and thus registration and feature correspondence are more difficult tasks.

In the computer graphics field, matching of 3D shapes was developed mainly for shape retrieval.
Recently, new methods were developed for the retrieval of 3D models in the context of a Web search
engine, based on geometric properties rather than textual ones [Elad et al. 2001; Vranic et al. 2001;
Iyer et al. 2003; Shilane et al. 2004; Min 2004]. However, partial matching methods, which are vital in
2D matching with occlusions, have not received much attention in 3D shape retrieval [Tangelder and
Veltkamp 2004].

Most of the techniques aim at retrieving similar models based on their overall geometries. In other
words, the similarity is based on the global properties of the 3D models such as moment invariants
[Elad et al. 2001; Cybenko et al. 1997], Fourier descriptors [Vranic et al. 2001; Saupe and Vranic 2001;
Ohbuchi et al. 2003b], histograms and shape distributions [Osada et al. 2001; Ohbuchi et al. 2003a],
and harmonic-based representations [Funkhouser et al. 2003; Kazhdan et al. 2003].

These methods rely on the ability to first align and normalize models by some global similarity trans-
formation (rotation + uniform scale) that normalizes the models and establishes some correspondence
between them. Such global alignment methods do not discriminate between the details, and can easily
cause similar local features to be misaligned and, consequently, result in an improper global similarity
measure. This has motivated Kazhdan et al. [2004] to control the anisotropy influence as a means to
compensate for the misalignments of the global methods. In this respect, the partial matching tech-
nique that we introduce here can be used to align two models that have little global similarity. With
our partial matching method, we can explicitly match corresponding prominent features and establish
a global alignment derived from the partial matching (see Figure 2).

Graph-based methods rely on the fact that 3D model topology is an important shape characteristic.
Topology is typically represented as a relational data structure such as graphs [Hilaga et al. 2001; Chen
and Ouhyoung 2002; Sundar et al. 2003]. A graph-based representation facilitates the partial matching
of subparts that have the same topology.

In Funkhouser et al. [2004] the authors presented a method for 3D matching based on the sum of
squared distances between two model’s shape descriptors. The method can also allow varying weights
(importance) of different parts of the model using the original model shape descriptor, thus enabling a
part-in-a-whole matching. The method relies on the assumption that the models are aligned to bring
the matching parts closer to one another in 3D space.

A part-in-a-whole matching method can be classified as a partial matching under an identity transfor-
mation. For a general partial matching, one would like to match parts under any rigid motion transfor-
mation and sometimes under a scale transformation as well. One can also consider a broader spectrum
of transformations, for example, affine or perspective. In this article we develop a partial shape matching
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Fig. 2. Matching a model of a man and a model of a woman in different poses. In spite of the obvious difference between them,

the algorithm matches the two (bottom left) better than a global PCA alignment (bottom right).

method that supports matching under rigid transformations and uniform scale, known as a similarity
transformation. Our method does not globally align the shapes, a fact that negates the possibility of
matching, for example, the hand of a statue with a large base, to the hand of the same statue without
the base.

Partial matching is a fundamental building block in the recognition and the registration of 3D objects
from depth images generated by range scanners [Frome et al. 2004]. In such applications the query
is usually view-dependent and resolution-dependent. Usually, these techniques are based on matching
local descriptors, such as Spin images and shape context [Johnson and Hebert 1999; Huber et al. 2004].
Unlike those descriptors, the surface descriptors we develop in our work are scale-independent and
adaptive in the sense that they are carefully built to efficiently represent mesh regions as large as
possible. We further elaborate on these methods in Section 9.

The extraction of “interesting” points or salient features in image space has been studied extensively
[Marr 1982]. The definition of interesting surface features, or salient features, is a central issue in
our work. As we elaborate below, our definition of interesting parts is heavily based on the surface
curvature. Shum et al. [1996] recognized the importance of the surface curvature as a means to match
3D shapes (see also Zaharia and Preteux [2001]).

2.1 Salient Geometric Features

Human perception and the ability to recognize and interpret shapes is a broad and extensively studied
subject. Indeed, it is not one task, but many: color, shading, shape, motion, texture, and context are all
typically used in the process, not to mention cultural background and personal associations. A central
problem in computer graphics and modeling is the understanding of the concept of “shape.” For our
purpose we use the formal definition of shape defined in Dryden and Mardia [1998]: “all the geometrical
information that remains when location, scale, and rotational effects (Euclidean transformations) are
filtered out from an object.”

There is a consensus that representing shapes in terms of their parts may aid the recognition process
in human vision [Hebb 1949]. In 2D, it can help in the handling of occlusions and in 3D, in the handling
of nonrigid bodies. A critical question is: “which parts?” In our research we define, by means of general
computational rules, the salient parts of an object that encapsulate enough of its characteristics to be
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used in a “first-index” search [Hoffman and Singh 1997]. By “salience of a part” we mean that we aim
at a small number of parts that capture the object’s shape. Their salience determines, in part, their
efficacy as an index.

Our approach is built on the theory of salience of visual parts proposed by Hoffman and Singh [1997].
According to their theory, the salience of a part is a function of its size, relative to the whole object, the
degree to which it protrudes, and the strength of its boundaries. In this work, we aim at developing
quantitative definitions for these measures that can be applied to meshes. The emphasis is on the
computation of the “strength of the boundaries”. Our approach is that this is a function of the curvature
values. We propose that the salience of a part depends on (at least) two factors: its size relative to
the whole object, and the number of curvature changes and strength. In Section 5 we describe the
computation method for defining salient geometric features.

3. OVERVIEW

Given a 3D mesh, we analyze its geometric properties and define a sparse representation of the mesh
with local shape descriptors. Then we extract interesting and salient geometric features from the mesh.
These features are indexed and stored in a model database that can be queried efficiently for partial
matching. Matching subparts requires transforming them into a common coordinate system. A naive
implementation would be to store all the models in all the possible coordinate systems defined by each
vertex and its neighborhood. Then, for a given query, we would test all possible orientations and scalings
defined by the vertices of the query. This approach would cause a ”combinatorial explosion” of tests, far
beyond our computational abilities, especially with models containing thousands of vertices and more.

To overcome these combinatorial barriers, we present three methods:

—Represent the given mesh with a sparse set of shape descriptors. Each descriptor represents a local
region that has a good quadric fit.

—Define a small set of salient geometric features and index them. The salient features represent
interesting parts of a given shape.

—Precompute a geometric hash table that enables fast partial matching under rotation and scale
transformation.

In Sections 4–6 we describe the methods which

—analyze the model’s surface;

—define local shape descriptors;

—define salient geometric features and store a vector of indices;

—query the model database for partial matches using indexing and geometric hashing.

Then in Section 7 we discuss performance issues of our method. In Section 8 we show a number of
applications and results based on our partial matching algorithm. In Section 9 we elaborate on the
relation between our geometric hashing method and the histogram based methods, and we conclude in
Section 10 and discuss future work.

Before we move on, we refer to Figure 3, where the essence of partial matching is illustrated. The
figure shows three partial matches of the models in (a) and (b). Note that only small portions of the two
models actually match. This example emphasizes the fact that partial matching is more than matching
subparts of the given models, and that the matched portions are not predefined.

4. LOCAL SURFACE DESCRIPTORS

A local surface descriptor is a point p on a surface and its associated quadric patch that approximate
the surface in a local neighborhood of p. The key idea is that a small set of descriptors can represent
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Fig. 3. Partial matching. Three portions of the eagle model (b) are superimposed on a frame over which elevation deformation

is applied (a). The three copies have different scales and orientations. The three portions of the eagle are matched with the

full eagle model by applying partial matching (c)–(e) . Note that the overlap between each matched pair is only partial. The

matching is performed by transforming pairs of triplets of local shape descriptors into a common coordinate system. The local

shape descriptors are illustrated with small yellow spheres.

a shape, provided that each descriptor effectively represents the local surface region around it. This
representation is adaptive to the geometry of the shape. Smooth regions are represented by a relatively
small number of descriptors, since each quadric patch can locally approximates a large region. Less
smooth regions of high frequency require a relatively large number of descriptors. Note in Figure 5(b)
the density of local shape descriptors around the suction cups and at the smoother regions. As a means
to analyze the local surface, we associate curvature values with each descriptor. In the following, we
describe the quadric fitting scheme and the algorithm to construct an efficient set of descriptors.

4.1 Quadric Fitting and Curvature Estimation

Using the method presented in Douros and Buxton [2002], the surface is locally approximated at each
vertex by an analytic quadric patch that approximates the surface well. For each quadric patch, a
representative point is selected and the differential properties of the patch at that point are then
calculated analytically.

For the implicit surface F (x, y , z) = 0, we use a quadric which has nine coefficients. The fitting of such
a surface is easy to formulate as a least squares minimization that can be solved as an eigenproblem.
This allows the method to work on any type of point cloud in 3D, regardless of the orientation of the
underlying surface. Note that such a representation does not single out any coordinate axis.

For each vertex v of the mesh, we fit an implicit surface, and its projection onto the implicit surface
is denoted by ṽ. The curvature tensor and curvature derivatives at v are estimated by those computed
analytically at ṽ [Ohtake et al. 2004]. To increase the robustness, we test a number of neighborhood
sizes around each vertex, and select the quadric that has a median curvature. There are faster tech-
niques to estimate discrete curvatures [Alliez et al. 2003; Rusinkiewicz 2004], but since these curvature
computations are offline, we implemented a quadric fitting technique which we found to be generally
more robust. Figure 4 illustrates the local quadric fittings and the estimated curvature map.

4.2 Compact Representation

To generate a rather small and yet effective set of local surface descriptors, we define a local surface
patch and associate it with a descriptor that represents the patch. Our method uses a region-growing
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Fig. 4. Examples of the quadric fitting. Red points are samples on a grid defined by the principal axes (in blue). The mesh is

colored by the Gaussian curvature.

Fig. 5. Example of suction cups on a tentacle of the octopus model. (a) original tessellation and the quadric patches in bold.

(b) The local surface descriptors are located at the yellow points. Note that their density is adaptive with respect to the surface

shape.

technique to iteratively define the local patches. We sort the mesh vertices according to their absolute
Gaussian curvature in descending order, and for each vertex, we grow the largest possible “quadric
patch” that approximates its neighborhood. All the vertices included in the local patch are then excluded
from the sorted list, and the iterative process continues to define the next patch. Our method is greedy
in the sense that in each step we define the largest possible region around the selected vertex that
meets the prescribed error threshold. We use 10−4 of the model bounding box diagonal length for
all the examples shown in this article. We measure the quality of a quadric fitting using the sum of
squared algebraic distances of the fitted points from the fitting surface. An algebraic distance is much
easier to evaluate than a Euclidean distance and although it is less robust it is an effective measure of
quality.

Once a patch is defined, we select a representative point at the center of its mass, and associate with
it the highest curvature across the patch. Figure 5 illustrates the result on a tentacle of the octopus
model. Recall that one of the main objectives of the local surface descriptors is to define a representation
independent of the given model tessellation. Thus, we randomly (not necessarily uniformly) sample the
surface [Osada et al. 2001; Elad et al. 2001], and use these random samples for the quadric fitting. See
Figure 6 for an example of the curvature computed over two different tessellations. It can be seen that
the curvature maps and distribution of the local surface descriptors are similar despite the different
tessellations.

5. COMPUTING SALIENT GEOMETRIC FEATURES

Loosely speaking, a salient geometric feature is a region of the surface which has a nontrivial shape.
We construct a salient geometric feature by clustering together a set of descriptors that are interesting
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Fig. 6. The curvature map computed over the same model with different tessellations. Blue is low curvature and red is high.

enough in the sense that they have a high curvature relative to their surroundings, and a high variance
of curvature values. The salient geometric feature is a function of one free parameter h, the scale, which
is defined by the radius of a sphere that bounds the salient feature.

For each descriptor, we grow a cluster of descriptors around it by incrementally adding a descriptor
from its neighborhood that maximizes the current saliency grade, which will be shortly defined. The pro-
cess stops when the contribution of an additional descriptor is insignificant. We perform this process on
all the descriptors while allowing some degree of overlapping between clusters (in our implementation
we allowed up to 20% overlapping).

The saliency grade of a cluster F consisting of d ∈ F descriptors is a function of the following four
terms:

—
∑

d∈F Area(d ), where Area(d ) is the area of the patch associated with d relative to the sphere size;

—
∑

d∈F Curv(d ), where Curv(d ) is the curvature associated with d ;

—N (F )—the number of local minimum(s) or maximum(s) curvatures in the cluster; and

—Var(F)—the curvature variance in the cluster.

A saliency grade S can be defined as a linear combination of these four terms. However, empirically
we found the following expression more effective:

S =
∑
d∈F

W1 Area(d )Curv(d )3 + W2 N (F )Var(F ). (1)

The first term Area(d )Curv(d )3 expresses the saliency of the region, by combining its relative size and
curvature. Curv(d ) can be either the Gaussian curvature or the maximal curvature component. Figure 7
shows the two curvature maps of the women from the Thai statue, showing no significant differences.
Note that a maximal curvature can be a better choice in case of CAD models that have large areas with
zero Gaussian curvature. The second term N (F )Var(F ) expresses the degree of interestingness of the
cluster, and adds up to the saliency of the cluster, as shown in Figure 8. We used 0.5 for the weights
W1 and W2. The definition of salient parts is not too sensitive to the heuristics used to define them,
since we are not interested in a particular part, but rather, in generating a number of salient features
that characterize the model well (see Figure 9). It should be emphasized that the constants employed
in Equation (1) require no manual tuning, and all the examples and experiments used in this article
use the same expression.

In other words, we define a salient geometric feature as a region of the model which is salient and
interesting compared to other parts of the model. The top graded clusters define the salient geometric
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Fig. 7. A curvature analysis over the three women from the Thai statue. The images are results of using Gaussian curvature

(left) versus Max curvature (right). The minor difference indicates that definition of salient features is insensitive to the analysis.

Fig. 8. The left image shows the local surface descriptors colored by the curvatures. In the image on the right, the saliency

grades are visualized on a scale from blue to red. The patches are colored according to the saliency grade of the salient feature

that contains them.

feature of a given shape. Some results of salient geometric feature are illustrated in Figure 9. We
extract only the most salient features, either those with grades in the top 10% or those that meet some
prescribed threshold.
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Fig. 9. Examples of salient geometric features (in orange) defined automatically by analyzing the surfaces. The individual parts

are in red.

6. INDEXING AND GEOMETRIC HASHING

The representative salient features of the model are defined and extracted offline and stored in a
rotation-and-scale-invariant database. Each salient feature is associated with a vector index (a sig-
nature) and inserted into a geometric hash table. The vector of indices is used as a geometric sig-
nature that allows fast access to parts that have general similar shapes. To be effective, we use
rotation-and-scale-invariant geometric signatures. However, the signature alone is not discriminative
enough and does not provide the actual transformation that matches them. By employing geomet-
ric hashing [Lamdan and Wolfson 1988] the explicit transformation that best matches the shapes is
determined.

In our implementation we use the four terms that were used to define the saliency grade, as expressed
by Eq. (1), as a similarity-invariant vector index. Note that other elaborated indices, like normalized
moments could be used as well. However, implementing the indexing using the saliency terms reinforces
our claims for the efficiency of salient features.

We use geometric hashing to accelerate the retrieval of partial matches from a model database. Briefly,
geometric hashing is a mechanism that accelerates partial matching under rigid transformation and
possibly a uniform scale. The method determines the best transformation from among a large set of
transformations by means of a voting scheme. The method quantizes the transformation space into a six-
dimensional table. Given two objects, A and B, for each triplet of points on A and each triplet on B, the
transformation between the triplets is computed and a vote is recorded in the corresponding cells of the
table. The entry with the most votes defines the aligning transformation. To avoid an exhaustive search
of all the

(|A|
3

)·(|B|
3

)
transformations, geometric hashing encodes offline all the candidate transformations

in a large hash table, so that, given a query model of size |Q |, it needs to query the hash table only for(|Q |
3

)
transformations, regardless of how many models are encoded in the hash table. The precomputed

hash table obviates a search over each of the model triplets.
In our implementation, we use salient geometric features as object and local surface descriptors as

points that are used to define the triplets and votes in the hash table. The hash table contains all the
salient geometric features from all models in the database. Typically, each salient feature consists of
around 20–30 local surface descriptors. We define candidate transformations between triplets of points
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Table I. Some Statistics for Large and Small Models (LDSs are local
surface descriptors and SGFs are salient geometric features.)

Buddha Octopus Enterprise Fort

# of Vertices 543,652 149,666 26,270 2,328

# of Faces 1,087,716 299,332 51,355 4,460

# of LSDs 5,330 1,912 647 132

# of SGFs 113 47 19 12

Building Time 19 min 6.5 min 65 s 4 s

Storage Size 3.5 GB 930 MB 97 MB 9.4 MB

Query Time 36 s 13 s 3 s 1 s

taken from a small neighborhood (up to two rings), so that the number of alignment tests typically
required is only in the order of |Q |, rather than

(|Q |
3

)
.

By combining indexing and geometric hashing, we successfully find partial matches between the
query and the salient features stored in the hash table. The index is used to quickly reject salient
features during the voting phase. The transformation that matches two given salient features is the
building block for various matching and similarity applications as described below.

7. TIME AND STORAGE CONSIDERATIONS

The proposed method enables performing most of the work necessary for partial matching in offline
mode, allowing fast query time. Table I shows examples of the time and storage space needed for our
preprocess step.

In its core, a partial matching problem require intensive computations for searching and comparisons.
We use a rather time consuming analysis of the surface to create a sparse and adaptive set of descriptors.
To index our constructed salient geometric features, we use geometric hashing. The main advantage
of geometric hashing for indexing is that it allows a scale independent mechanism which is important
for our applications. For simple cases, where no scale is needed, one can consider implementing other
methods for indexing the salient geometric features, such as spin images and shape context [Johnson
and Hebert 1999; Huber et al. 2004].

Some applications or scenarios may demand a more efficient preprocess step. As we mentioned above,
there are fast methods to estimate discrete curvatures and quadric coefficients [Petitjean 2002; Alliez
et al. 2003; Rusinkiewicz 2004]. These methods can speed up the discrete curvature estimation for
good-quality models, but are less robust for models with irregular tessellations.

In addition, there is a large body of work on how to improve the efficiency of geometric hashing, both
in time and space requirements [Wolfson and Rigoutsos 1997].

8. APPLICATIONS AND RESULTS

Partial matching, in general, is a fundamental tool for various geometric applications. In particular,
there are numerous applications for surface processing. We describe here three applications that we
have experimented with so far: self-similarity, shape alignment, and subpart retrieval.

8.1 Self-Similarity

Figure 10 shows the results of a search for self-similarity. The surface is analyzed by identifying a
popular feature that characterizes the surface. The idea is to automatically identify salient features
that have a multitude of similar occurrences across the given surface. In the figure, the suction cups on
the tentacle of the octopus model are identified (see Figure 5 for a close view of these cups). Note that
the suction cups have a relatively large variety of sizes. Figure 1 is another result of a self-similarity
application, by which we learned about the existence of the four lotus flowers on the Buddha model.
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Fig. 10. Self-similarity. The suction cups on the tentacle of the octopus model have a similar shape. Note that their size varies

across the model.

Fig. 11. Symmetry analysis of the elephants (up left). Similar regions on the three elephants are detected and colored.

Table I shows some statistics for applying a query to the Buddha and Octopus models which are large,
and to two other smaller models.

In the above examples, copies of all the salient features are searched under rotation and uniform scale
transformations. The algorithm first sorts the salient features of the given surface, and then, for each
of the k salient features with largest saliency grades, we apply a search for partial matching. Figure 11
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Fig. 12. The Thai statue from the Stanford 3D scanning repository. The model, which consists of 10M polygons, has a rough

three-way symmetry.

shows a self-similarity analysis applied to part of the huge model of the Thai statue from the Stanford
3D scanning repository. This model, shown in Figure 12, consists of 10M polygons, which is beyond the
capacity of our system. In our experiments, we processed only parts of it: the three women shown in
Figure 7, and the three elephants shown in Figure 12. The statue has a rough three-way symmetry,
but the three parts of the handmade statue do not match since they are not perfect copies. We applied
our self-similarity analysis and for each match we grow larger regions that form compatible parts.
The regions are grown as long as they match up to some error tolerance. The results of this three-way
symmetry analysis are shown in Figure 11.

8.2 Shape Alignment

Most global matching methods first determine a rigid-body transformation and a uniform scale, which
align two models together as closely as possible, before measuring the distance between them. This is
typically achieved by a principal component analysis (PCA) applied to the whole model. Such a global
analysis is prone to errors when the shapes disagree even in an apparently minor region. Figure 2
shows an alignment between models of a man and a woman. The example shows that, although the
two models have obvious differences in their geometric shapes and poses, by partial matching of their
salient geometric features, it is possible to align the two where they match.

Another example is shown in Figure 13 where the same models appear in two different poses. The
latter example emphasizes that a global PCA alignment fails to align them correctly, whereas the partial
match alignment correctly aligns wherever possible. Our alignment is based on a majority scheme that
finds the transformation which satisfies most of the salient features.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.



Salient Geometric Features for Partial Shape Matching and Similarity • 143

Fig. 13. Model alignment based on global principle component analysis (PCA) (right) and partial matching (left).

Fig. 14. Overview of our framework for shape retrieval. Given a database of models (a), we analyze each model’s geometric

properties and define a sparse representation of its mesh with local shape descriptors (b). Then we extract interesting and salient

geometric features from each model (c). These features are indexed and stored in a model database that can be queried efficiently

for partial matching (d). The steps described above are performed offline. When given a query model online (e), we analyze it in

the same fashion, defining local surface descriptors (f) and salient geometric features (g). For each salient geometric feature, we

query the model database for a list of matching features (h). Using these matches, we return the models that have larger number

of matches (i).

Our alignment algorithm first searches for matches between pairs of salient features one from each
model. Then for each such match, the associated transformation gets a grade that reflects the number
of salient features it successfully align. The most successful transformation is voted, and applied to
bring the two given models close wherever possible. The voted transformation defines a correspondence
between the two models. Once this correspondence is defined, the corresponding features can be brought
closer in the least-squares sense.

8.3 Partial Shape Retrieval

Applying partial shape retrieval allows subparts of a larger shape which might be dissimilar to the
query to be retrieved. An overview of our framework for partial shape retrieval is shown in Figure 14.
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Fig. 15. Two examples ((b) and (c)) of successful matches of the coarse human hand (a), and two false positive matches ((d) and

(e)).

Fig. 16. Similarity retrieval results for a query with a plant model. The models retrieved are not necessarily globally similar,

but contain partial similarities. Note that the figure does not show the eight best matches, but the first five and some samples

from the first 72 matches.

Figure 15 shows an example of retrieving human hands. Such a mechanism is vital for an efficient
modeling by example [Funkhouser et al. 2004], since it finds similar shapes under rotation and uniform
scale transformations which are part of a larger dissimilar shape. See, for example, Figure 16 where
the query is a plant. The models retrieved are not necessarily globally similar (e.g., some plants are
tall and some short and wide), but they have enough partial similarities. Note that Figure 16 does not
show the best matches, but the first five and some samples from the first 72 matches.

Interesting results, which cannot be achieved by global matching techniques, are shown in Figures 3
and 17. The two examples in Figure 17 show cases where the semantics of the retrieved shapes are
different from the query object; nevertheless, the subparts are geometrically similar to the geometry of
the query object.

To evaluate the performance of our method for partial matching, we report on the precision-recall
experiments conducted over the Princeton Shape Benchmark (PSB) model database [Shilane et al.
2004]. We used only the natural models where the classifications included classes such as human
hands, human feet, human faces, animal limbs, etc. Table II shows a summary of our results using the
evaluation methods from [Shilane et al. 2004]:

—nearest neighbor: the percentage of closest matches that belong to the same class as the query;

—first tier and second tier: the percentage of models in the queryís class that appear within the top K
matches, where K depends on the size of the query class; and

—e-measure: a composite measure of the precision and recall for a fixed number of retrieved results.

For more details on the discrimination methods, see Shilane et al. [2004].
Our experiments were conducted on the P4-3.0 GHz with 2 GB of memory. We used the “saliency

grade” (Equation (1)) as an index. However, it should be stressed that most models in the PSB database
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Fig. 17. Partial matching. The submarine (in orange) is matched to two parts of the Enterprise (left) and four towers of the

castle (right).

Table II. Summary of Our Experiments on the Princeton Shape

Benchmark Database and the Precision-Recall Measures
General # of salient features 1843

Average # of surface descriptors 18

Storage size 1850 MB

Timing Generate time 55 min

Average compare time 23 s

Discrimination Nearest neighbor 87.3%

(all models) First tier 78.2%

Second tier 84.9%

E-measure 42.5%

Nearest-neighbor Human hand 93.4%

per class Human feet 86.2%

examples Animal limb 81.6%

Human head 76.1%

have a coarse triangulation (see, for example, Figure 15(a)). In such cases, the saliency grade is too
crude and can be quite different for similar coarse shapes. To avoid this, for coarse models, we directly
used the local surface descriptors in the geometric hash table. Nevertheless, our precision-recall scores
were quite good with respect to the typical results achieved in global matching [Shilane et al. 2004].
It should be noted that much of the success depended on the definition of the classes. For example,
human hands are well defined, while other classes, like animal limbs or human faces, are harder to
define.

9. HISTOGRAM-BASED DESCRIPTORS

Partial matching plays an important role in the recognition and registration of 3D objects from depth
images or point clouds produced by range scanners [Johnson and Hebert 1999; Huber and Hebert 2003;
Frome et al. 2004]. In these applications, the query scene is usually view-dependent and resolution-
dependent, and the data is often noisy and incomplete.

Treating partial matching with purely local descriptors, such as surface curvature, is less stable in the
presence of noise. Thus, stable point descriptors rely on local neighborhood support. For example, spin
images [Johnson and Hebert 1999] and shape contexts [Frome et al. 2004] are well-known quantized
representations of the local neighborhood of a given point.

These descriptors take as input a point cloud P and a basis point p, and capture the regional shape
of the scene at p using the distribution of points in a small support surrounding p. The support region
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Fig. 18. Spin images computed at similar shapes of different scales on the stars model. The figure illustrates four spin images at

locations for which humans perceive as similar shapes of different scales. It can seen that, while the spin images are similar when

computed over shapes with similar scale (left images), they are dissimilar for similar shapes of different scales (right images).

Fig. 19. The L2 distance between spin images computed around the same points at different scales and the spin image at

scale 1.0. The graph shows the sensitivity of the spin-image signature to scale.

is discretized into bins, and a histogram is defined by counting the number of points contained within
each bin. These histograms can be used directly as the local descriptor or can be further enhanced by
additional transformations such as spherical-harmonic representation.

These local descriptors can serve as an alternative for our local surface descriptors. However, these
descriptors are not scale-invariant and they are not adaptive to the geometry, as we shall explain next.

The histogram-based descriptors [Johnson and Hebert 1999; Huber and Hebert 2003; Frome et al.
2004] are not scale-invariant. For example, in Figure 18, we illustrate four spin images at locations for
which humans perceive as similar shapes of different scales. It can seen that, while the spin images
are similar when computed over shapes with similar scale (left images), they are dissimilar for similar
shapes of different scales (right images). Spin images’ sensitivity to scale is shown in Figure 19. Applying
some scale normalization is not applicable since the matched instances are not known a priori.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.



Salient Geometric Features for Partial Shape Matching and Similarity • 147

Fig. 20. The stars model (a) consists of 18 stars of three different scales. A medium-scale star is used as a query. The result of

using spin images and our method are shown in (b) and (c), respectively. This example illustrates the fact that our method is

scale-independent.

Fig. 21. This figure shows the tradeoff between the number of descriptors and the number of correct matches. It can be seen

that our method requires only a small number of descriptors to successfully find all the partial matches.

In our method, we match salient features using geometric hashing, which is inherently a scale-
invariant method, as can be seen in Figures 3 and 20. To illustrate the difference between spin image
descriptors, and our descriptor, we employ the spin-image descriptor in a different setting. We distribute
a number of spin images over the surfaces, and for each spin-image descriptor we compute its best
matches rather than a single match. Then we employ a voting scheme by computing the transformation
that gets the most of matchings between corresponding descriptors (see Figure 20).

Another interesting issue is the tradeoff between the efficiency and the fidelity of the matching. A
dense set of spin images is likely not to miss the best match. However, an exhaustive approach would
be overly costly. In our method a sparse set of descriptors are carefully defined by with respect to
underlined geometry by analyzing the surface as described in Section 4. Figure 21 shows the tradeoff
between the number of descriptors and the number of correct matches. It can be seen that our method
requires only a small number of descriptors to successfully find all the partial matches.

It should be noted that in our method the selection of the descriptors which requires the analysis
of the surface is time-consuming and computed offline. Unlike the histogram-based techniques, we
invest computation time to create a sparse and adaptive set of descriptors with a good discriminative
power.
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Fig. 22. Registration of four synthetic scans. The surface of each scan has normals enclosed in a normal cone. Matches of

overlapping areas were found using our method.

10. CONCLUSIONS AND FUTURE WORK

In this article, we have described a method for partial matching of triangular meshes. The method gener-
alizes the recent global geometric matching techniques developed for shape retrieval. The methodology
we used is based on an analysis of the surface to define a set of sparse local surface descriptors that
captures the essence of the geometry of the original mesh. The sparseness of the descriptors allows
one to deal with complex meshes and with large regions that have no significant details. Our method
is designed to handle fine meshes since it analyzes the surface curvature over discrete representation.
When the mesh is coarse, the local curvature measure is too crude to convey significant information for
the analysis. The fidelity of the local surface descriptors, and consequently the efficiency of the salient
features, directly depends on the quality of the mesh and the curvature analysis. We believe that both
local surface descriptors and salient features are of considerable importance for mesh processing, and
more research is definitely needed to investigate other approaches.

The local surface descriptors are a set of points with no connectivity. This permits one to deal with
nonmanifold objects or with point sets. However, more work is required to investigate the extension of
partial matching to points.

We have presented a number of applications based on partial matching of surfaces. However, these
are applications we have already experimented with; there are other possible directions that we would
like to pursue:

—Surface registration. Partial matching of two pieces of surface is an essential step in the registration
and stitching of two surfaces into a coherent larger surface. This may be applicable to range scanners
and to the reconstruction of a complete shape from a number of scans. Figure 22 shows a synthetic
example of four scans of the dragon model registered into one coherent shape using our method. Note
that surface registration scenario usually does not require scale invariant matching, so a more simple
indexing method can be considered to reduce the preprocessing time of geometric hashing.

—Surface reconstruction. Another application is the reconstruction of a surface from a sparse and noisy
samples. Figure 23 shows a piece of a CAD model reconstructed by tessellating the sampled region
by copying matching parts from the given model itself.

—Surface style. Two surfaces, which may be globally dissimilar, can share similar closely related geo-
metric features. The style of a shape may be defined by the self-similarity of its geometric features.
This can lead to a classification process based on common features.
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Fig. 23. Reconstructing part of a CAD model from sparse samples by copying matching parts from the model itself.

—Object correspondence. An important extension of the alignment application is, as we have shown,
the definition of cross-mesh partial correspondence. The correspondence of features can also consider
the geometric location of the features to define a more global similarity measure. Correspondence, in
general, can be applicable to numerous applications, for example, object-space morphing.
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