Ray Casting

Based on slides of Thomas
Funkhouser

3D Rendering

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays N~
through
view plane

Simplest method
is ray casting

Ray Casting

» For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance

o ° ° o o o
—

) ° o o [} }
S~

3 ° o o o o

o o o o o o

o o o o o o

o o o o o o o o To—o0

Ray Casting

» For each sample ...

o Construct ray from eye position through view plane

o Find first surface intersected by ray through pixel

o Compute color sample based on surface radiance
Rays

through
view plane

R TeTs
Elu‘.m@ggg Samples on
Z view plane

IS

Eye position

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (inti =0; i <width; i++) {
for (intj = 0;j < height; j++) {
Ray ray = ConstructRay ThroughPixel(camera, i, j);
Intersection hit = FindlIntersection(ray, scene);
imageli][j] = GetColor(hit);

}
}
return image;
}
Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (inti=0;i <width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = Findlntersection(ray, scene);
imageli][j] = GetColor(hit);
}
}

return image;

Constructing Ray Through a Pixel

Up direction

Ray: P =P, +tV

Constructing Ray Through a Pixel
» 2D Example

©® = frustum half-angle
d = distance to view plane

right = towards x up

ewmpz

P1 =P, + d*towards - d*tan(®)*right
P2 = P, + d*towards + d*tan(®)* right

P=P1 + (i/width + 0.5) * 2*d*tan (®)*right ——
V=(P-Py /PRy Ray: P=Po+tV

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (inti =0; i <width; i++) {
for (intj = 0;j < height; j++) {
Ray ray = ConstructRay ThroughPixel(camera, i, j);
Intersection hit = Findl nter section(ray, scene);
imageli][j] = GetColor(hit);
}
} .
return image;

}

Ray-Scene Intersection

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
* Octrees
» BSP trees

Ray-Sphere Intersection

Ray: P =P, +tV
Sphere: |P-0J2-r2=0

Ray-Sphere Intersection |

Ray: P = Py, +tV

Sphere: [P-0OJ?-r2=0

Algebraic Method

Substituting for P, we get:
|Po+tV-0]2-r2=0

Solve quadratic equation:
at?+bt+c=0
where:
a=1
b=2Ve(P,-0)
c=|Py,-C]2-r2=0

P=P,+tV

Ray-Sphere Intersection Il

Ray: P =P, +tV
Sphere: |P-0J2-r2=0

Geometric Method

L=0-P,

ta,=LeV
if (t., <0) return O

d?=LeL-t,?
if (d2 > r?) return O

tye = sqrt(r? - d?)
t= tca - thc and tca+ thc

P=P,+tV

Ray-Sphere Intersection

 Need normal vector at intersection
for lighting calculations

N=(P-0)/|[P-QOl

Ray-Scene Intersection

* Intersections with geometric primitives
o Sphere
» Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
* Octrees
* BSP trees

Ray-Triangle Intersection

 First, intersect ray with plane

» Then, check if point is inside triangle

Ray-Plane Intersection

Ray: P =P, +tV
Plane:PeN+d=0

Algebraic Method

Substituting for P, we get:
(Po+tV)eN+d=0 Ve
Solution:
t=-(Po*N+d)/(Ve+N)

P=P,+tV

Ray-Triangle Intersection |

» Check if point is inside triangle algebraically
T3

For each side of triangle
V,=T,-P
V,=T,-P
N, =V,xV,
Normalize N;

d; =-Pye N,
if (PN, +d;) <0)
return FALSE;
end

Ray-Triangle Intersection Il

» Check if point is inside triangle parametrically

Compute a, B: E

P=o(TyTy)+B(T3Ty)

Check if point inside triangle.
O<a<landO0<p<1
a+p<1

Other Ray-Primitive Intersections

Cone, cylinder, ellipsoid:
o Similar to sphere

* Box
o Intersect 3 front-facing planes, return closest

Convex polygon
o Same as triangle (check point-in-polygon algebraically)

Concave polygon
o Same plane intersection
o More complex point-in-polygon test

Ray-Scene Intersection
» Find intersection with front-most primitive in group

Intersection Findintersection(Ray ray, Scene scene)

{
min_t = infinity
min_primitive = NULL @

For each primitive in scene {
t = Intersect(ray, primitive);
if (t<min_t) then

min_primitive = primitive
min_t=t
}
; ®)

return Intersection(min_t, min_primitive)
)

Ray-Scene Intersection

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
* Octrees
» BSP trees

Next Time!

11

Summary

« Writing a simple ray casting renderer is easy
o Generate rays
o Intersection tests
o Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new I mage(width, height);
for (inti=0; i <width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRay ThroughPixel (camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}

return image;

}

Constructing Ray Through a Pixel

Up direction

Ray: P =Py +tV

12

We need to determine Vx and Vy

Up direction

Ray: P =Py +tV

Camera Coordinate System

» Find the transformation matrix M that rotate the
world coordinate system to the camera coordinate

system (Vx,Vy,Vz) (normalized)

y Vy,
M (0,0,1) = Vz VX

Vz

Camera Coordinate System

* The vector X and Y are rotated by M

M (0,0,1) = Vz

VX

Vz

The definition of the Matrix M
Let Cx and Sx denote sin(x), cos(x), respectively

Rotate around z
Cz Sz O

-Sz Cz O
0O 0 1

(0,0,1) » = (0,0,1)

Rotate around X Rotate around y

1 O 0 Cy 0 Sy Cy 0
M= 0 Cx Sx|. 1 0] _
0 -Sx Cx| |Sy 0 Cy

Sy
-SXSy Cx X
-CxSy -Sx Cx

14

The definition of the Matrix M

Since:

(0,0,1) e M = (-CxSy, -Sx, CxCy) =
(Vz.x,Vz.y,Vz.z) = Vz = (a,b,c).

We get:
a = -CxSy; b =-Sx; ¢ = CxCy,
or

Sx = -b; Cx = sqrt(1 - sqr(Sx));
Sy = -a/Cx;Cy = c/Cx;

Compute the Camera Coordinate System

Now, use M to rotate the world coordinate

vectors:
Vx = (1,0,0) « M
Vy = (0,1,0) « M
Vz = (0,0,1) « M

Note that the vector V is normalized.

15

We need to determine Vx and Vy

Let f be the distance between \%
the eye E and the plane along %/
Vz, and w and h the lengths
of half the screen size.

O—Lvags |
E

—

P=E+Vz*f

Po=P-w*VX - h*Vy

The main loop

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new I mage(width, height);
Set PO (asin the previous slide);
for (inti =0;i < height; i++) {
p=Po;
for (intj =0; j <width; j++) {
Rayray=E+t* (p—E);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);
p += Vx; // move one pixel aong the vector Vx
}
PO +=Vy; // move one pixel along the vector Vy

}

return image;

16

