3D Geometry for Computer Graphics

Lesson 2: PCA & SVD
Last week - eigendecomposition

- We want to learn how the matrix A works:
Last week - eigendecomposition

- If we look at arbitrary vectors, it doesn’t tell us much.
Spectra and diagonalization

- If A is symmetric, the eigenvectors are orthogonal (and there’s always an eigenbasis).

$$A = U \Lambda U^T$$

$$\Lambda = \begin{pmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n \end{pmatrix}$$

$$A u_i = \lambda_i u_i$$
Why SVD…

- Diagonalizable matrix is essentially a scaling.
- Most matrices are not diagonalizable – they do other things along with scaling (such as rotation)

- So, to understand how general matrices behave, only eigenvalues are not enough
- SVD tells us how general linear transformations behave, and other things…
The plan for today

- First we’ll see some applications of PCA – Principal Component Analysis that uses spectral decomposition.
- Then look at the theory.
- SVD
 - Basic intuition
 - Formal definition
 - Applications
PCA – the general idea

- PCA finds an orthogonal basis that best represents given data set.

- The sum of distances\(^2\) from the \(x'\) axis is minimized.
PCA – the general idea

- PCA finds an orthogonal basis that best represents given data set.

- PCA finds a best approximating plane (again, in terms of $\sum \text{distances}^2$)
Application: finding tight bounding box

- An axis-aligned bounding box: agrees with the axes
Application: finding tight bounding box

- Oriented bounding box: we find better axes!
Application: finding tight bounding box

- This is not the optimal bounding box
Application: finding tight bounding box

- Oriented bounding box: we find better axes!
Usage of bounding boxes (bounding volumes)

- Serve as very simple “approximation” of the object
- Fast collision detection, visibility queries
- Whenever we need to know the dimensions (size) of the object

- The models consist of thousands of polygons
- To quickly test that they don’t intersect, the bounding boxes are tested
- Sometimes a hierarchy of BB’s is used
- The tighter the BB – the less “false alarms” we have

Sample
Scanned meshes
Point clouds

- Scanners give us raw point cloud data
- How to compute normals to shade the surface?
Point clouds

- Local PCA, take the third vector
Notations

- Denote our data points by \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathbb{R}^d \)

\[
\mathbf{x}_1 = \begin{pmatrix}
 x_1^1 \\
 x_1^2 \\
 \vdots \\
 x_1^d
\end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix}
 x_2^1 \\
 x_2^2 \\
 \vdots \\
 x_2^d
\end{pmatrix}, \quad \ldots, \quad \mathbf{x}_n = \begin{pmatrix}
 x_n^1 \\
 x_n^2 \\
 \vdots \\
 x_n^d
\end{pmatrix}
\]
The origin of the new axes

- The origin is zero-order approximation of our data set (a point)
- It will be the center of mass:
 \[m = \frac{1}{n} \sum_{i=1}^{n} x_i \]
- It can be shown that:
 \[m = \arg\min_{x} \sum_{i=1}^{n} \| x_i - x \|^2 \]
Scatter matrix

- Denote $y_i = x_i - m$, $i = 1, 2, \ldots, n$

\[
S = YY^T
\]

where Y is $d \times n$ matrix with y_k as columns ($k = 1, 2, \ldots, n$)

\[
S = \begin{pmatrix}
y_1^1 & y_2^1 & \cdots & y_n^1 \\
y_1^2 & y_2^2 & \cdots & y_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
y_1^d & y_2^d & \cdots & y_n^d \\
\end{pmatrix}
\begin{pmatrix}
y_1^1 \\
y_2^1 \\
\vdots \\
y_n^1 \\
\end{pmatrix}
\begin{pmatrix}
y_1^2 \\
y_2^2 \\
\vdots \\
y_n^2 \\
\end{pmatrix}
\begin{pmatrix}
y_1^d \\
y_2^d \\
\vdots \\
y_n^d \\
\end{pmatrix}
\]

\[
Y \quad Y^T
\]
Variance of projected points

- In a way, S measures variance (= scatterness) of the data in different directions.
- Let’s look at a line L through the center of mass m, and project our points x_i onto it. The variance of the projected points x'_i is:

$$\text{var}(L) = \frac{1}{n} \sum_{i=1}^{n} \| x'_i - m \|^2$$
Variance of projected points

- Given a direction \mathbf{v}, $||\mathbf{v}|| = 1$, the projection of \mathbf{x}_i onto $L = \mathbf{m} + \mathbf{v}t$ is:

$$||\mathbf{x}'_i - \mathbf{m}|| = \langle \mathbf{v}, \mathbf{x}_i - \mathbf{m} \rangle / ||\mathbf{v}|| = \langle \mathbf{v}, \mathbf{y}_i \rangle = \mathbf{v}^T \mathbf{y}_i$$
Variance of projected points

So,

\[
\text{var}(L) = \frac{1}{n} \sum_{i=1}^{n} \| x_i' - m \|^2 = \frac{1}{n} \sum_{i=1}^{n} (v^T y_i)^2 = \frac{1}{n} \| v^T Y \|^2 = \frac{1}{n} \| Y^T v \|^2 = \frac{1}{n} < Y^T v, Y^T v > = \frac{1}{n} v^T YY^T v = \frac{1}{n} v^T S v = \frac{1}{n} < S v, v >
\]
Directions of maximal variance

- So, we have: $\text{var}(L) = \langle S\mathbf{v}, \mathbf{v} \rangle$

- **Theorem:**

 Let $f : \{\mathbf{v} \in \mathbb{R}^d \mid \|\mathbf{v}\| = 1\} \rightarrow \mathbb{R}$,
 $$f(\mathbf{v}) = \langle S\mathbf{v}, \mathbf{v} \rangle$$ (and S is a symmetric matrix).

 Then, the extrema of f are attained at the eigenvectors of S.

- So, eigenvectors of S are directions of maximal/minimal variance!
Summary so far

- We take the centered data vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_n \in \mathbb{R}^d$
- Construct the scatter matrix $S = XX^T$
- S measures the variance of the data points
- Eigenvectors of S are directions of maximal variance.
Scatter matrix - eigendecomposition

- S is symmetric

\Rightarrow S has eigendecomposition: $S = V \Lambda V^T$

The eigenvectors form orthogonal basis
Principal components

- Eigenvectors that correspond to big eigenvalues are the directions in which the data has strong components (= large variance).
- If the eigenvalues are more or less the same – there is no preferable direction.
- Note: the eigenvalues are always non-negative.
Principal components

- There's no preferable direction
- S looks like this:

$$ V \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} V^T $$

- Any vector is an eigenvector

- There is a clear preferable direction
- S looks like this:

$$ V \begin{pmatrix} \lambda & \mu \\ \mu & \mu \end{pmatrix} V^T $$

- μ is close to zero, much smaller than λ.
How to use what we got

- For finding oriented bounding box – we simply compute the bounding box with respect to the axes defined by the eigenvectors. The origin is at the mean point m.
For approximation

This line segment approximates the original data set

The projected data set approximates the original data set
For approximation

- In general dimension d, the eigenvalues are sorted in descending order:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$$

- The eigenvectors are sorted accordingly.

- To get an approximation of dimension $d' < d$, we take the d' first eigenvectors and look at the subspace they span ($d' = 1$ is a line, $d' = 2$ is a plane...
For approximation

To get an approximating set, we project the original data points onto the chosen subspace:

\[\mathbf{x}_i = \mathbf{m} + \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_{d'} \mathbf{v}_{d'} + \ldots + \alpha_d \mathbf{v}_d \]

Projection:

\[\mathbf{x}_i' = \mathbf{m} + \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_{d'} \mathbf{v}_{d'} + 0 \cdot \mathbf{v}_{d'+1} + \ldots + 0 \cdot \mathbf{v}_d \]
SVD
We want to know what a linear transformation A does

Need some simple and “comprehendible” representation of the matrix of A.

Let’s look what A does to some vectors

Since $A(\alpha \mathbf{v}) = \alpha A(\mathbf{v})$, it’s enough to look at vectors \mathbf{v} of unit length
The geometry of linear transformations

- A linear (non-singular) transform A always takes hyper-spheres to hyper-ellipses.
The geometry of linear transformations

- Thus, one good way to understand what A does is to find which vectors are mapped to the “main axes” of the ellipsoid.

![Diagram of linear transformation]
Geometric analysis of linear transformations

- If we are lucky: \(A = V \Lambda V^T, \quad V \) orthogonal (true if \(A \) is symmetric)
- The eigenvectors of \(A \) are the axes of the ellipse
Symmetric matrix: eigen decomposition

- In this case A is just a scaling matrix. The eigen decomposition of A tells us which orthogonal axes it scales, and by how much:

\[A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \end{bmatrix}^{T} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \]

\[A \mathbf{v}_i = \lambda_i \mathbf{v}_i \]
General linear transformations: SVD

- In general, A will also contain rotations, not just scales:

$$A = U \Sigma V^T$$

$$A = \begin{bmatrix} u_1 & u_2 & \ldots & u_n \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \ldots \\ \sigma_n \end{bmatrix} \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix}^T$$
General linear transformations: SVD

\[AV = U \Sigma \]

\[A \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_n \end{bmatrix} \]

\[A v_i = \sigma_i u_i, \quad \sigma_i \geq 0 \]
SVD more formally

- SVD exists for any matrix
- Formal definition:
 - For square matrices $A \in \mathbb{R}^{n \times n}$, there exist orthogonal matrices $U, V \in \mathbb{R}^{n \times n}$ and a diagonal matrix Σ, such that all the diagonal values σ_i of Σ are non-negative and
 $$A = U \Sigma V^T$$
The diagonal values of Σ ($\sigma_1, \ldots, \sigma_n$) are called the singular values. It is accustomed to sort them: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$.

The columns of $U (u_1, \ldots, u_n)$ are called the left singular vectors. They are the axes of the ellipsoid.

The columns of $V (v_1, \ldots, v_n)$ are called the right singular vectors. They are the preimages of the axes of the ellipsoid.

$$A = U \Sigma V^T$$
Reduced SVD

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
 - The columns of U are orthonormal
 - Cheaper form for computation and storage

\[
A = U \Sigma V^T
\]
Full SVD

- We can complete \(U \) to a full orthogonal matrix and pad \(\Sigma \) by zeros accordingly.

\[
A = U \Sigma V^T
\]
Some history

- SVD was discovered by the following people:

 - E. Beltrami (1835 – 1900)
 - M. Jordan (1838 – 1922)
 - J. Sylvester (1814 – 1897)
 - E. Schmidt (1876-1959)
 - H. Weyl (1885-1955)
SVD is the “working horse” of linear algebra

- There are numerical algorithms to compute SVD. Once you have it, you have many things:
 - Matrix inverse \rightarrow can solve square linear systems
 - Numerical rank of a matrix
 - Can solve least-squares systems
 - PCA
 - Many more…
Matrix inverse and solving linear systems

- **Matrix inverse:** \(A = U \sum V^T \)

\[
A^{-1} = (U \sum V^T)^{-1} = (V^T)^{-1} \sum^{-1} U^{-1} =
\]

\[
= V \begin{bmatrix}
\frac{1}{\sigma_1} & & \\
& \ddots & \\
& & \frac{1}{\sigma_n}
\end{bmatrix} U^T
\]

- So, to solve \(Ax = b \)

\[
x = V \sum^{-1} U^T b
\]
Matrix rank

- The rank of A is the number of non-zero singular values
Numerical rank

- If there are very small singular values, then A is close to being singular. We can set a threshold t, so that $\text{numeric_rank}(A) = \#\{\sigma_i | \sigma_i > t\}$

- If $\text{rank}(A) < n$ then A is singular. It maps the entire space \mathbb{R}^n onto some subspace, like a plane (so A is some sort of projection).
Back to PCA

- We wanted to find principal components
PCA

- Move the center of mass to the origin

\[p_i' = p_i - m \]
PCA

- Constructed the matrix X of the data points.

$$X = \begin{bmatrix}
p'_1 & p'_2 & \cdots & p'_n \\
\end{bmatrix}$$

- The principal axes are eigenvectors of $S = XX^T$

$$XX^T = S = U \begin{bmatrix}
\lambda_1 \\
\vdots \\
\lambda_d \\
\end{bmatrix} U^T$$
PCA

We can compute the principal components by SVD of X:

$$X = U \Sigma V^T$$

$$XX^T = U \Sigma V^T (U \Sigma V^T)^T =$$

$$= U \Sigma V^T V \Sigma^T U^T = U \tilde{\Sigma}^2 U^T$$

Thus, the left singular vectors of X are the principal components! We sort them by the size of the singular values of X.

Shape matching

- We have two objects in correspondence
- Want to find the rigid transformation that aligns them
Shape matching

- When the objects are aligned, the lengths of the connecting lines are small.
Shape matching – formalization

- Align two point sets
 \[P = \{ p_1, \ldots, p_n \} \quad \text{and} \quad Q = \{ q_1, \ldots, q_n \}. \]

- Find a translation vector \(t \) and rotation matrix \(R \) so that:
 \[\sum_{i=1}^{n} \left\| p_i - (Rq_i + t) \right\|^2 \quad \text{is minimized} \]
Shape matching – solution

- Turns out we can solve the translation and rotation separately.
- Theorem: if \((R, t)\) is the optimal transformation, then the points \(\{p_i\}\) and \(\{Rq_i + t\}\) have the same centers of mass.

\[
\begin{align*}
p &= \frac{1}{n} \sum_{i=1}^{n} p_i \\
q &= \frac{1}{n} \sum_{i=1}^{n} q_i
\end{align*}
\]

\[
p = \frac{1}{n} \sum_{i=1}^{n} (Rq_i + t)
\]

\[
\Downarrow
\]

\[
p = R \left(\frac{1}{n} \sum_{i=1}^{n} q_i \right) + t = Rq + t
\]

\[
t = p - Rq
\]
Finding the rotation R

- To find the optimal R, we bring the centroids of both point sets to the origin:

$$p'_i = p_i - p \quad q'_i = q_i - q$$

- We want to find R that minimizes

$$\sum_{i=1}^{n} \left\| p'_i - R q'_i \right\|^2$$
Finding the rotation R

\[
\sum_{i=1}^{n} \|p'_i - R q'_i\|^2 = \sum_{i=1}^{n} (p'_i - R q'_i)^T (p'_i - R q'_i) =
\]

\[
= \sum_{i=1}^{n} \left(p'^T_i p'_i - p'^T_i R q'_i - q'^T_i R^T p'_i + q'^T_i R^T R q'_i \right)
\]

These terms do not depend on R, so we can ignore them in the minimization.
Finding the rotation \(R \)

\[
\min \sum_{i=1}^{n} \left(-p_i'^T R q_i' - q_i'^T R^T p_i' \right) = \max \sum_{i=1}^{n} \left(p_i'^T R q_i' + q_i'^T R^T p_i' \right).
\]

\(q_i'^T R^T p_i' = \left(q_i'^T R^T p_i' \right)^T = p_i'^T R q_i' \)

\[\Rightarrow \max \sum_{i=1}^{n} \left(2p_i'^T R q_i' \right) = \max \sum_{i=1}^{n} \left(p_i'^T R q_i' \right)\]

this is a scalar
Finding the rotation R

\[
\sum_{i=1}^{n} \left(p_i^T R q_i' \right) = \text{Trace} \left(\sum_{i=1}^{n} R q_i' p_i^T \right) = \text{Trace} \left(R \sum_{i=1}^{n} q_i' p_i^T \right)
\]

\[
H = \sum_{i=1}^{n} q_i' p_i^T
\]

\[
\text{Trace}(A) = \sum_{i=1}^{n} A_{ii}
\]
Finding the rotation R

- So, we want to find R that maximizes $\text{Trace}(RH)$

- Theorem: if M is symmetric positive definite (all eigenvalues of M are positive) and B is any orthogonal matrix then $\text{Trace}(M) \geq \text{Trace}(BM)$

- So, let’s find R so that RH is symmetric positive definite. Then we know for sure that $\text{Trace}(RH)$ is maximal.
Finding the rotation R

- This is easy! Compute SVD of H:
 \[H = U \Sigma V^T \]

- Define R:
 \[R = VU^T \]

- Check RH:
 \[RH = (VU^T)(U \Sigma V^T) = V \Sigma V^T \]

This is a symmetric matrix, its eigenvalues are $\sigma_i \geq 0$
So RH is positive!
Summary of rigid alignment:

- Translate the input points to the centroids:
 \[p_i' = p_i - p \quad q_i' = q_i - q \]

- Compute the “covariance matrix”
 \[H = \sum_{i=1}^{n} q_i' p_i'^T \]

- Compute the SVD of \(H \):
 \[H = U \Sigma V^T \]

- The optimal rotation is
 \[R = V U^T \]

- The translation vector is
 \[t = p - Rq \]
Complexity

- Numerical SVD is an expensive operation
- We always need to pay attention to the dimensions of the matrix we’re applying SVD to.
Small somewhat related example
The End