3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxel
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Implicit Surfaces

- Points satisfying: \(F(x,y,z) = 0 \)

Implicit Surfaces

- Example: quadric
 \[f(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fyz + 2gx + 2hy + 2jz + k \]

- Common quadric surfaces:
 - Sphere
 - Ellipsoid
 - Torus
 - Paraboloid
 - Hyperboloid

Implicit Surfaces

- Advantages:
 - Very concise
 - Guaranteed validity
 - Easy to test if point is on surface
 - Easy to intersect two surfaces

- Disadvantages:
 - Hard to describe complex shapes
 - Hard to enumerate points on surface
 - Hard to draw
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup
- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit
- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific

Solid Modeling

- Represent solid interiors of objects
 - Surface may not be described explicitly

Motivation 1

- Some acquisition methods generate solids
 - Example: CAT scan

Motivation 2

- Some applications require solids
 - Example: CAD/CAM

Motivation 3

- Some algorithms require solids
 - Example: ray tracing with refraction

Solid Modeling Representations

- What makes a good solid representation?
 - Accurate
 - Concise
 - Affine invariant
 - Easy acquisition
 - Guaranteed validity
 - Efficient boolean operations
 - Efficient display
Solid Modeling Representations

- Voxels
- Quadtrees & Octrees
- Binary space partitions
- Constructive solid geometry

Voxels

- Partition space into uniform grid
 - Grid cells are called a voxels (like pixels)
- Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - etc.

Voxel Storage

- $O(n^3)$ storage for $nxnxn$ grid
 - 1 billion voxels for 1000x1000x1000

Voxel Boolean Operations

- Compare objects voxel by voxel
 - Trivial

Voxel Acquisition

- Scanning devices
 - MRI
 - CAT
- Simulation
 - FEM

SUNY Stoney Brook

Stanford University
Voxel Display

- **Isosurface rendering**
 - Render surfaces bounding volumetric regions of constant value (e.g., density)

- **Slicing**
 - Draw 2D image resulting from intersecting voxels with a plane

Voxel Display

- **Ray casting**
 - Integrate density along rays through pixels

Voxels

- **Advantages**
 - Simple, intuitive, unambiguous
 - Same complexity for all objects
 - Natural acquisition for some applications
 - Trivial boolean operations

- **Disadvantages**
 - Approximate
 - Not affine invariant
 - Large storage requirements
 - Expensive display

Solid Modeling Representations

- **Voxels**
- **Quadtrees & Octrees**
- Binary space partitions
- Constructive solid geometry

Quadtrees & Octrees

- Refine resolution of voxels hierarchically
 - More concise and efficient for non-uniform objects
Quadtree Boolean Operations

Quadtree Display

• Extend voxel methods
 » Slicing
 » Isosurface extraction
 » Ray casting

Finding neighbor cell requires traversal of hierarchy (O(1))

Solid Modeling Representations

• Voxels
• Quadtrees & Octrees
• Binary space partitions
• Constructive solid geometry

Binary Space Partitions (BSPs)

• Recursive partition of space by planes
 » Mark leaf cells as inside or outside object

BSP Fundamentals

Single geometric operation
Partition a convex region by a hyperplane
Single combinatorial operation
Two child nodes added as leaf nodes

BSP is a Search Structure

Exploit hierarchy of convex regions
Regions decrease in size along any tree path
Regions converge in the limit to the surface
BSP Acquisition

- Must construct a “good” binary search structure
 - Efficiency comes from logarithmic tree depth

- “Bad”
- “Good”

BSP Boolean Operations

- Divide and conquer
 - Each node V corresponds to a convex region containing all geometry in the subtree rooted at V
 - No intersection with bounding volume of V means no intersection with subtree rooted at V
 - Do detail work only in regions required
 - Boolean operations grow with $O(\log n)$ if “good” tree

BSP Display

- Visibility ordering
 - Determine on which side of plane the viewer lies
 - near-subtree -> polygons on split -> far-subtree

Solid Modeling Representations

- Voxels
- Quadtrees & Octrees
- Binary space partitions
- Constructive solid geometry

Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference

CSG Acquisition

- Interactive modeling programs
 - CAD/CAM
CSG Boolean Operations

- Create a new CSG node joining subtrees
 - Union
 - Intersection
 - Difference

CSG Display & Analysis

- Ray casting
 - Union
 - Circle
 - Box

Summary

<table>
<thead>
<tr>
<th></th>
<th>Voxels</th>
<th>Octree</th>
<th>BSP</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy acquisition</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Guaranteed validity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient boolean operations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient display</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Taxonomy of 3D Representations

- Discrete
 - Voxels
- Continuous
- Combinatorial
- Functional
 - Topological
 - Set Membership
 - Parametric
 - Algebraic
 - Geometric
 - Mesh
 - Subdivision
 - BSP Tree
 - Cell Complex
 - Bezier
 - B-Spline