Image Space Occlusion Culling
Hudson et al, SoCG 97

Viewpoint

Occluder

umbra

A

B

C
What Methods are Called Image-Space?

- Those where the decision to cull or render is done after projection (in image space)

Two classic examples
- Hierarchical Z-Buffer [HBZ93]
- Hierarchical Occlusion Maps [HOM97]
Ingredients of an Image Space Method

• An object space data structure that allows fast queries to the complex geometry

- Space partitioning
- Hierarchical bounding boxes
- Regular grid
An image space representation of the occlusion information

- **Discrete**
 - Z-hierarchy
 - Occlusion map hierarchy

- **Continuous**
 - BSP tree
 - Image space extends
General Outline of Image Space Methods

• During the (front-to-back) traversal of the scene hierarchy do:
 – compare each node against the view volume
 – if not culled, test node for occlusion
 – if still not culled, render objects/occluders augmenting the image space occlusion
Testing a Node for Occlusion

• If the box representing a node is not visible then nothing in it is either
• The faces of the box are projected onto the image plane and tested for occlusion
Testing a Node for Occlusion

• If the box representing a node is not visible then nothing in it is either

• The faces of the box are projected onto the image plane and tested for occlusion
Hierarchical Tests
Hierarchical Tests
Hierarchical Tests
Differences of Algorithms

• The most important differences between the various approaches are:
 – the representation of the (augmented) occlusion in image space and,
 – the method of testing the hierarchy for occlusion
Hierarchical Z-Buffer (HZB)
(Ned Greene, Michael Kass 93)

- An extension of the Z-buffer VSD algorithm
- It follows the outline described above.
- Scene is arranged into an octree which is traversed top-to-bottom and front-to-back.
- During rendering an occlusion map is incrementally built.
- Octree nodes are compared against occlusion map.
- The occlusion map is a z-pyramid…
The Z-Pyramid

Objects are rendered

Depth taken from the z-buffer

Construct pyramid by taking max of each 4

☐ = furthest

= closer

= closest
Maintaining the Z-Pyramid

• Ideally every time an object is rendered causing a change in the Z-buffer, this change is propagated through the pyramid

• However this is not a practical approach
More Realistic Implementation

• Make use of frame-to-frame coherence:
 – at start of each frame render the nodes that were visible in previous frame
 – read the z-buffer and construct the z-pyramid
 – now traverse the octree using the z-pyramid for occlusion but without updating it

Cool idea!
HZB: discussion

• It provides good acceleration in very dense scenes
• Getting the necessary information from the Z-buffer is costly
• A hardware modification was proposed for making it real-time
Hierarchical Occlusion Maps
(Hansong Zhang et.al 97)

Similar idea to HZB but:
– they separate the coverage information from the depth information, two data structures
 • hierarchical occlusion maps
 • depth (several proposals for this)
HOM: Algorithm Outline

- Select occluders until the set is large enough
- Build occlusion representation
- Occlusion culling & final rendering
Demonstration

Blue parts: occluders
Red parts: occludees
Occlusion Map Pyramid

64 x 64

32 x 32

16 x 16
Occlusion Map Pyramid
Representing Occluders

Set of Occluders

Occlusion Map
Aggressive Approximate culling